Mining Rules from Player Experience and Activity Data
DOI:
https://doi.org/10.1609/aiide.v8i1.12522Keywords:
Association rule learning, player modelling, player experienceAbstract
Feedback on player experience and behaviour can be invaluable to game designers, but there is need for specialised knowledge discovery tools to deal with high volume playtest data. We describe a study witha commercial third-person shooter, in which integrated player activity and experience data was captured and mined for design-relevant knowledge. We demonstrate that association rule learning and rule templates can be used to extractmeaningful rules relating player activity and experience during combat. We found that the number, type and quality of rules varies between experiences, and is affected by feature distributions. Further work is required on rule selection and evaluation.