Adaptable Conversational Machines
DOI:
https://doi.org/10.1609/aimag.v41i3.5322Abstract
In recent years we have witnessed a surge in machine learning methods that provide machines with conversational abilities. Most notably, neural-network–based systems have set the state of the art for difficult tasks such as speech recognition, semantic understanding, dialogue management, language generation, and speech synthesis. Still, unlike for the ancient game of Go for instance, we are far from achieving human-level performance in dialogue. The reasons for this are numerous. One property of human–human dialogue that stands out is the infinite number of possibilities of expressing oneself during the conversation, even when the topic of the conversation is restricted. A typical solution to this problem was scaling-up the data. The most prominent mantra in speech and language technology has been “There is no data like more data.” However, the researchers now are focused on building smarter algorithms — algorithms that can learn efficiently from just a few examples. This is an intrinsic property of human behavior: an average human sees during their lifetime a fraction of data that we nowadays present to machines. A human can even have an intuition about a solution before ever experiencing an example solution. The human-inspired ability to adapt may just be one of the keys in pushing dialogue systems toward human performance. This article reviews advancements in dialogue systems research with a focus on the adaptation methods for dialogue modeling, and ventures to have a glance at the future of research on adaptable conversational machines.
Downloads
Published
How to Cite
Issue
Section
License
- The author(s) warrants that they are the sole author and owner of the copyright in the above article/paper, except for those portions shown to be in quotations; that the article/paper is original throughout; and that the undersigned right to make the grants set forth above is complete and unencumbered.
- The author(s) agree that if anyone brings any claim or action alleging facts that, if true, constitute a breach of any of the foregoing warranties, the author(s) will hold harmless and indemnify AAAI, their grantees, their licensees, and their distributors against any liability, whether under judgment, decree, or compromise, and any legal fees and expenses arising out of that claim or actions, and the undersigned will cooperate fully in any defense AAAI may make to such claim or action. Moreover, the undersigned agrees to cooperate in any claim or other action seeking to protect or enforce any right the undersigned has granted to AAAI in the article/paper. If any such claim or action fails because of facts that constitute a breach of any of the foregoing warranties, the undersigned agrees to reimburse whomever brings such claim or action for expenses and attorneys’ fees incurred therein.
- Author(s) retain all proprietary rights other than copyright (such as patent rights).
- Author(s) may make personal reuse of all or portions of the above article/paper in other works of their own authorship.
- Author(s) may reproduce, or have reproduced, their article/paper for the author’s personal use, or for company use provided that original work is property cited, and that the copies are not used in a way that implies AAAI endorsement of a product or service of an employer, and that the copies per se are not offered for sale. The foregoing right shall not permit the posting of the article/paper in electronic or digital form on any computer network, except by the author or the author’s employer, and then only on the author’s or the employer’s own web page or ftp site. Such web page or ftp site, in addition to the aforementioned requirements of this Paragraph, must provide an electronic reference or link back to the AAAI electronic server, and shall not post other AAAI copyrighted materials not of the author’s or the employer’s creation (including tables of contents with links to other papers) without AAAI’s written permission.
- Author(s) may make limited distribution of all or portions of their article/paper prior to publication.
- In the case of work performed under U.S. Government contract, AAAI grants the U.S. Government royalty-free permission to reproduce all or portions of the above article/paper, and to authorize others to do so, for U.S. Government purposes.
- In the event the above article/paper is not accepted and published by AAAI, or is withdrawn by the author(s) before acceptance by AAAI, this agreement becomes null and void.