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Spoken dialogue systems enable human-computer inter-
action where primary modes of input are speech and 
language. It has been a long-standing goal of computer 

science to build a machine that can communicate with 
humans using natural language. Alan Turing said that we 
can only claim to have built true artificial intelligence (AI) 
once we can talk to it without being able to tell if we are 
talking to a human being or not (Turing 1950). While this 
has long been a part of science-fiction literature and films  
(Rossumovi Univerzální Roboti [Rossum’s Universal Robots], 
or R.U.R., 1920; the Heuristically Programmed Algorithmic or 
HAL computer in the movie 2001: A Space Odyssey, 1968), 
due to the surge in the ubiquity of virtual personal assis-
tants such as Apple’s Siri, Amazon’s Alexa, and Microsoft’s 
Cortana, it seems that this dream is closer to reality than 
ever. The main driving factors for this development are the 
impressive results that deep learning has achieved in auto-
matic speech recognition (ASR), exploiting huge amounts 
of data available for widely-spoken languages. The word 
error rate on a well-respected conversational English bench-
mark has dropped from about seventeen percent in 2011 
to just about five percent in 2017 — a staggering improve-
ment (Seide, Li, and Yu 2011; Xiong et al. 2017; Saon et al. 
2017). While the claim of human parity is still somewhat 
controversial, it is clear that now the downstream tasks 
have the chance of making a real impact. Still, it seems that 
this has only opened a Pandora’s box of problems to deal 
with on our way to achieving intelligent conversation with 
machines.

 In recent years we have witnessed 
a surge in machine learning methods 
that provide machines with conversa-
tional abilities. Most notably, neural- 
network–based systems have set the 
state of the art for difficult tasks such 
as speech recognition, semantic under-
standing, dialogue management, lan-
guage generation, and speech synthesis. 
Still, unlike for the ancient game of Go 
for instance, we are far from achieving 
human-level performance in dialogue. 
The reasons for this are numerous. One  
property of human–human dialogue 
that stands out is the infinite num-
ber of possibilities of expressing oneself  
during the conversation, even when the 
topic of the conversation is restricted. 
A typical solution to this problem was 
scaling-up the data. The most prom-
inent mantra in speech and language 
technology has been “There is no data  
like more data.” However, the research-
ers now are focused on building smarter 
algorithms — algorithms that can 
learn efficiently from just a few exam-
ples. This is an intrinsic property of 
human behavior: an average human 
sees during their lifetime a fraction 
of data that we nowadays present to 
machines. A human can even have an 
intuition about a solution before ever 
experiencing an example solution. The  
human-inspired ability to adapt may  
just be one of the keys in pushing dialogue 
systems toward human performance. 
This article reviews advancements in 
dialogue systems research with a focus 
on the adaptation methods for dia-
logue modeling, and ventures to have 
a glance at the future of research on 
adaptable conversational machines.
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The most promising way to tackle the problem of 
human-computer conversation is to take a machine 
learning approach: collect data, define the model, 
and then make predictions. The data are simply dia-
logues or some part of dialogues, such as annotated 
user requests or user-provided feedback. The model 
is the underlying statistical model that we use to 
explain the data we have. In dialogue, a variety 
of models are used: supervised, unsupervised, or 
reinforcement-learning (RL) models. Machine learn-
ing methods hinge on data. More crucially, they 
hinge on this data being good. That is, showing high 
coverage, being extensively annotated with high 
inter-annotator agreement labels, as well as being 
consistent and noise-free. The reality is, however, 
that only a tiny fraction of available data sets have 
these properties. Particularly for dialogue modeling, 
these requirements are difficult to meet due to the 
dynamic and infinite nature of human conversation.

In contrast, the requirements for humans to achieve 
good comprehension skills are much lower than for 
machines, according to studies (Moore 2003). An oft-
cited estimation speaks of exposure to up to 10,000  
hours of speech for 10-year–olds (Hart and Risley 
1995), which amounts to fewer than 100-million 
spoken words. Today’s large-scale conversational ASR 
systems with acceptable performance are trained on 
tens of thousands of hours of recorded speech and 
on billions of written words. Given the struggles to 
achieve human parity for ASR, one needs little imag-
ination to see how data requirements would be even 
more demanding for building conversational AI. 
However, even the largest dialogue corpora, few in 
number, do not exceed 1,000 hours of speech (Serban 
et al. 2018).

This realization leads us to another route in dia-
logue system research. While we can embark on a 
mission to collect larger and better data sets, which 
would certainly help research in this area, we also 
need to address a more fundamental issue: how 
to adapt to and learn from imperfect conditions. 
Endowing machines with this human-inspired capa-
bility is one of the necessary steps in advancing con-
versational machines to make our sci-fi visions come 
true. In this article, we review research efforts toward 
adaptive conversational AI with a focus on the adap-
tation methods used in dialogue modeling and cast a 
glance at possible future developments.

Spoken Dialogue System 101
For a long time, the research in conversational AI has 
been divided into two tracks: task-oriented-dialogue 
systems and chat-based systems. Task-oriented dia-
logue systems are conversational systems that pro-
vide information based on a particular user goal — for 
example, finding an Italian restaurant in the east of 
town. On the other hand, chat-based systems could 
talk about anything the user possibly wants and 
focus on simulating a human-like chit-chat. This 
article will mainly focus on task-oriented dialogue 

systems, drawing parallels with chat-based systems 
where necessary.

The most widely adopted approach to dialogue sys-
tems within the research community has followed the 
divide-and-conquer paradigm. The idea is to divide 
the system into smaller modules such that each mod-
ule can be trained with well-defined and well-labeled 
data sets. Figure 1 illustrates an interaction within 
the typical pipeline of a statistical spoken dialogue 
system.

The front-end of a dialogue system allows spoken 
interaction between the user and system. It consists of 
a speech recognizer, which turns user’s speech into 
text, and a speech synthesizer, which maps natural 
language in text form to speech. In recent years, 
both tasks have hugely benefited from the advance-
ment of neural network models, showing continu-
ous improvements in performance (Seide, Li, and Yu 
2011; Hinton et al. 2012; van den Oord et al. 2016). 
In a dialogue system, the text-to-speech synthesizer 
can make use of dialogue context to produce more 
natural and expressive speech (Yu et al. 2010).

Underlying all the dialogue system modules is 
the ontology, a structural representation of concepts 
that can occur in conversations with the system. In 
information-seeking dialogue systems, they contain 
categories of interest, called slots, such as food, area, 
price; their possible instances, called values, such as 
Italian, east, cheap; and actions that the system can 
perform, called dialogue acts, such as request, inform, 
confirm. The amount of work that flows into build-
ing good ontologies by hand is substantial, which 
inevitably renders them finite and limited to specific 
domains, such as restaurant.

Given a user utterance, the natural language under-
standing unit decodes the concepts from the ontology 
that occur in the input using a dialogue act formalism. 
In its simplest form, a dialogue act formalism repre-
sents each user utterance by a dialogue act type and 
a list of slot values (Traum 2000). Subsequently, the 
belief tracker is tasked with keeping track of user goals 
throughout the dialogue, producing the belief state. 
While natural language understanding only considers 
the current user utterance, the belief tracker consid-
ers the whole dialogue context up to that point in 
time. More recently, these modules have merged into 
a single module, alleviating the need for labeled data 
to train a natural language understanding component 
and to avoid information loss between natural lan-
guage understanding and the belief tracker. However, 
belief trackers are still imperfect and rely on the avail-
ability of sufficient labeled data.

Given a belief state, the policy decides on the 
system’s next action. Because fulfilling user goals 
typically requires multiple dialogue turns, it is not 
sufficient to estimate the optimal immediate action, 
but to behave in such a way that the overall conver-
sation will be successful. Consequently, the dialogue 
is treated as a sequential decision-making task. The 
policy is optimized using an RL algorithm to maxi-
mize the reward of the dialogue. The reward function 
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defines the objective of the dialogue. Task success is 
still commonly used as a dialogue-level reward; how-
ever, there are also competing approaches to learn the 
reward function from data (Walker et al. 1997; Yang, 
Levow, and Meng 2012; El Asri, Laroche, and Pietquin 
2012; Pietquin 2013; Su et al. 2015). Figure 2 illus-
trates the difference between belief tracking and 
policy optimization in a dialogue. Policy is essential in 
ensuring a goal-directed behavior, as governed by the 
reward function. However, the need for a substantial 
amount of training interactions is often limiting.

The natural language generator (NLG) component 
deals with mapping between the system action, 
selected by the policy, to its corresponding natural  
language response. A traditional approach is to use 
hand-coded rules (Walker, Rambow, and Rogati 2002). 
Class-based (Oh and Rudnicky 2000) and phrase-
based (Mairesse et al. 2010) NLGs have also been 
explored. State-of-the-art systems use long short-term 
memory networks to generate a sequence of words 
as the system response, conditioned on the dialogue 
act representation (Wen et al. 2015). Despite the 
progress, producing long and coherent sentences 
remains a difficult challenge in NLG.

We have witnessed progress in each of these tasks and  
in developing task-oriented dialogue systems as a whole. 
However, there are issues arising as a consequence of 
this design. We highlight these issues, and later show 
how adaptation is a key in minimizing or perhaps 
eliminating them. The first issue is error propagation 
down the pipeline. To some extent, each of these 

modules will produce an error, causing the next mod-
ule in line to start with incorrect input, accumulating 
the error over time and severely degrading the final 
output. Second is the ontology-dependent nature of 
each module. Having to predefine the concepts that 
can appear in dialogue poses a serious limitation, 
especially because ontology coverage is minuscule rel-
ative to the number of concepts that humans can 
talk about. It is desirable to have a dialogue system 
that is able to learn from its experience, compound 
knowledge through interaction, and evolve over 
time — as humans do.

End-to-End Neural  
Network Dialogue Modeling
In recent years, research on chat-bots and dialogue 
modeling has started to intertwine, driven by advance-
ments in deep learning. This is owed to the fact that 
in both settings the basic problem can be treated as 
a sequence-to-sequence learning task: the user input 
can be treated as the input sequence and the system 
output can be treated as the output sequence. For 
such tasks, models based on neural networks are 
generally most effective (Sutskever, Vinyals, and Le 
2014). Instead of the modular pipeline, a dialogue 
system can be modeled using a neural network that 
maps user input sequence directly to system output 
sequence in an end-to-end fashion. A range of mech-
anisms are used, including memory networks and 
additional supervision signals, in an attempt to make 
the conversation task-oriented (Zhao and Eskenazi  
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Figure 1. Modular Approach to Statistical Dialogue Systems.
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2016; Bordes, Boureau, and Weston 2017; Dhingra 
et al. 2017; Li et al. 2017; Serban et al. 2015; Yang et al. 
2017; Wen et al. 2017b-). On the whole, results score 
highly on automatic translation measures such as 
bilingual evaluation understudy (BLEU), which meas-
ures the similarity of the generated output with the 
data (Papineni et al. 2002), that is, the output indeed 
appears to be human-like. However, end-to-end sys-
tems are not yet subject to as strict a human evaluation 
as their modular systems counterpart. That is, while 
human evaluation metrics such as appropriateness and 
diversity are occasionally reported in addition to BLEU 
or perplexity, the measure of task success is not typi-
cally included. Therefore, when it comes to completing 
a particular task, the results are less conclusive. More-
over, the approaches investigated so far do not readily 
scale to changes in the ontology.

Adaptation
Modularization of a dialogue system such as that 
described above allows machine learning methods to 

be applied to each module (Young 2002; Lemon and 
Pietquin 2012). Still, in reality there is a long way to 
go from state-of-the-art to achieve human parity in 
dialogue. Dialogue is an example of an AI-complete 
task (Shapiro 1992) as it requires understanding, 
reasoning, and generation. If we take the machine 
learning approach to model dialogue, we quickly are 
confronted with a mismatch between training and 
testing conditions, especially when the systems are 
deployed in the wild.

For example, although arguably speech recognizers 
nowadays achieve parity with human performance 
in a noise-free environment (Xiong et al. 2017), ASR 
still produces high error rates when applied in dia-
logue systems, as they are meant to be used in a 
variety of situations — noisy cars or busy streets, 
for instance. Noise-robustness can be improved by 
propagating the uncertainty further down the pipe-
line of a modular dialogue system, which has led to 
approaches using partially observable Markov decision  
processes (Zhang et al. 2001; Young 2002; Williams 
and Young 2007; Thomson and Young 2010; Young 
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Figure 2. The Temporal Contrast between Belief Tracking and Policy Optimization.

At each dialogue turn, belief tracking aims to encapsulate the past while policy focuses on maximizing future rewards.
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et al. 2010; Lee and Eskénazi 2012; Young et al. 2013). 
The main idea is that each module of the spoken dia-
logue system takes as input a probability distribution 
and likewise produces a probability distribution as 
output. In this way, the uncertainty that arises from 
speech recognition or understanding errors can be 
propagated to other modules, and in particular to 
the decision-making module (see figure 3). Although 
state-of-the-art dialogue modeling is nowadays mostly 
based on deep learning, these principles still prevail 
and are essential to ensure robustness.

More fundamentally than noise level, mismatch in 
knowledge and language complexity between human 
users and dialogue systems greatly affects ease of use 
and, consequently, user success rate. For example, a 
task can be simplified into a series of yes/no ques-
tions. This is very intuitive for the user; however, it 
comes at the cost of severely restricting the dialogue. 
Furthermore, the system has no chance to learn about 
new concepts unless a new one is programmed into it.  
On the other hand, many of today’s conversational 
AIs break down during their interaction with the 
user, likely due to their inability to match human 
dialogue despite them giving an impression of being 
able to facilitate one. If a dialogue system was to 
reach human parity, the ease of use and success rate 
would increase, but not at the cost of oversimplify-
ing the interaction. The major challenge of today’s 
research on conversational machines is to escape the 
uncanny valley that lies between the two extremes of 

overly simplistic, designed interaction, and human-
like, natural interaction (see figure 4).

Adaptation could be a means for this much-needed 
leap forward. A key is to encapsulate large knowledge 
and allow its accumulation over time through flex-
ible, adaptive models. When doing this, it is impor-
tant that we rely on sample-efficient methods that are 
able to learn from imperfect conditions. These goals 
are particularly challenging for dialogue systems, as 
they deal with infinite possibilities and very complex 
patterns.

Adaptive Ontology and Word Vectors
Populating ontologies from text is the process of 
deriving high-level concepts and relations from infor-
mation (Wong, Liu, and Bennamoun 2012). Given 
the pervasion and ubiquity of natural-language–based 
systems, there is a growing need for adaptive ontolo-
gies that can include new knowledge with ease, pref-
erably fully automated.

For the longest time, most research focused on 
expanding specific ontologies using semiautomated 
tools for supporting humans in the loop (Agirre 
et al. 2000; Navigli and Velardi 2004). Approaches 
along this line generally use, among others, linguistic 
techniques and lexico-syntactic patterns (Pantel and 
Pennacchiotti 2006; Aguado de Cea et al. 2008), clus-
tering techniques (Agirre et al. 2000; Witschel 2005),  
statistical techniques (Sugiura et al. 2003), and asso-
ciation rules (Bodenreider, Aubry, and Burgun 2005;  
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Figure 3. Propagation of Uncertainty in a Dialogue System Pipeline.

In blue is an example of a dialogue system that utilizes uncertainty propagation; the horizontal bar chart illustrates a probability distribution. 
The system is able to ask for confirmation in unsure cases. In gray, the system does not consider uncertainty at the expense of selecting 
an incorrect action.
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Gulla, Brasethvik, and Kvarv 2009). This angle demands 
manual work, rules, and heuristics, which naturally 
results in severe limitations.

For building truly adaptive and flexible ontolo-
gies, we need to start from the beginning and look at 
what is the nature of the information that flows into 
these models. For instance, it is intuitive to represent 
words as discrete, atomic units, or sequences thereof, 
such as characters. The problem with atomic units 
is that no meaningful comparison is possible except 
equality testing (figure 5). Even with character-level 
comparisons between words, only lexical similarity 

can be measured. The similarity in meaning remains 
unquantifiable. To match potential slot values in a 
user’s utterance with ontology entries, heuristics and 
rules have long been indispensable.

Distributional representations are continuous mul-
tidimensional representations of tokens. Modeling 
words as real-valued vectors open up an entirely 
different approach to modeling concepts and their 
relations. One great advantage of such approaches is 
their ability to represent concepts in a more compact 
manner, which helps to fight the curse of dimension-
ality (Bengio et, al. 2003). Popularly known as word 
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Figure 4. Relationship between User Experience and System Complexity.

One important indicator of human-like dialogue systems is positive user experience, which is highly influenced by system complexity. In 
this regard, engineering and design may alleviate shortcomings to a certain extent. However, adaptation is one of the key technologies to 
overcome the uncanny valley of dialogue systems.
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vectors, distributional representations have been around  
for some time in the sphere of natural language pro-
cessing (Collobert et al. 2011). The distributional 
hypothesis, which states that “the meaning of words 
lie in their use” (Wittgenstein 1953), provides a basis 
for distributional semantics, that is, a data-driven sta-
tistical study of word meanings. In the 1990s, latent 
semantic analysis emerged as an early method to 
compute vectors such that words that appear in similar 
contexts possess similar representations. This approach 
has been massively popularized by neural methods 
emerging in the early 2010s, such as Word-to-Vector  
(Mikolov et al. 2013a, 2013b) and Global Vectors 
for Word Representation (Pennington, Socher, and  
Manning 2014), which learn word vectors by being 
trained to reconstruct the context of words. These 
methods all have in common that they embed 
semantic similarities between words in a continuous 
vector space (see figure 5). Improvements and exten-
sions soon followed, with fastText (Bojanowski et al. 
2017) providing a way to meaningfully embed pre-
viously unseen words, and contextualized word vec-
tors (McCann, Bradbury, Xiong, and Socher 2017), 
enabling the inference of contextualized vector rep-
resentations. The field has since seen a surge of sophis-
ticated language modeling techniques used to learn 
latent contextual word and sentence representations. 
Most prominent among these are Embeddings from 
Language Models (ELMo) and Bidirectional Encoder 
Representations from Transformers (BERT), along with 

others (Peters et al. 2018; Devlin et al. 2019; Sun et al.  
2019), most of which are based on the popular trans-
former neural network architecture (Vaswani et al. 
2017). These new and massive models led to a wave of 
drastic improvements on traditionally very hard natural 
language processing problems such as sentiment clas-
sification, entailment detection, question answering,  
and co-reference resolution (Wang et al. 2019a, 2019b). 
For dialogue tasks specifically, the potency of these 
models has recently been demonstrated impression-
ably by the chatbot Meena (Adiwardana et al. 2020). 
Distributed word representations have been shown 
to help in building adaptive models that represent 
knowledge in one form or another (Mitchell et al. 
2018). Recently proposed models for dialogue mode-
ling fuse semantic parsing and belief tracking by 
relying on distributed representations of concepts 
as well (Mrkšić et al. 2016b; Mrkšić and Vulić 2018; 
Ramadan, Budzianowski, and Gašić 2018). With this 
approach, learned semantic similarity is used to probe 
dialogue utterances for the presence of ontology 
terms. The ontology can be substantially expanded 
without the need to hand-code specialized semantic 
dictionaries, simply through the use of comparable 
vector representations. In addition to that, ambiguity 
is inherently captured by these representations, which 
naturally alleviates input restrictions. Recent research 
on ontology adaptation and ontology growing fol-
lows these lines as well. Initial work expands the set 
of values for any given slot by applying similarity 

cheap

expensive

affordable

cheap

affordable

expensive

Figure 5. Words Represented as Atomic Units or Vectors.

(Left) Words that are represented as atomic units live at the corners of a simplex. The distance between any two units is identical to the 
distance of any other pair, that is, the only possible similarity test is the test for equality. (Right) Words that are represented as vectors in a 
continuous semantic embedding space become comparable by applying suitable distance measures. Similar words inhabit the same neigh-
borhoods. Conversely, dissimilar words are located apart from each other.
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measures to known values and words in the input that 
have not been seen before (Jayawardana et al. 2017). 
Other work exploits the presence of common slots in 
multiple domains to facilitate cross-domain adapta-
tion (Wu et al. 2019). The main underlying challenge 
here is to learn distributed representations that cap-
ture meaningful properties of concepts and semantic 
similarity, which is a nontrivial task and therefore a 
very active field of research.

Dialogue modeling differs from other natural 
language processing tasks in that the distributional 
hypothesis is problematic in task-oriented systems, 
where words like cheap and expensive share near- 
identical contexts but clearly differ in their impact on 
a dialogue. Specialized word vectors help alleviate such 
issues (Mrkšić et al. 2016b). A method called retrofitting 
shifts vectors in the embedding space so that semanti-
cally similar words, based on external relational infor-
mation, have similar vector representations (Faruqui 
et al. 2015). Counter-fitting injects antonymy and syn-
onymy constraints into vector space representations to 
improve their capability to judge semantic similarity 
(Mrkšić et al. 2016a). Semantic quality of word vectors 
can also be refined by introducing constraints consid-
ering information from multilingual corpora (Mrkšić 
et al. 2017). Specialization of this kind so far has only 
been achieved for static word embeddings, which on 
their own underperform in comparison with contex-
tual representations. Targeted specialization of contex-
tual word embeddings is nontrivial because they do 
not live in a fixed space, and it therefore remains an 
open problem.

Most recently, research follows the trend of value- 
less ontologies, that is, values remain entirely unde-
fined and are extracted from user input directly (Chao 
and Lane 2019; Wu et al. 2019). These approaches 
use distributed word representations such as ELMo 
and BERT. The internal states of such models consti-
tute contextualized word vectors. With a suitable strat-
egy for fine-tuning, these models have been shown 
to be extremely efficient at solving downstream tasks 
such as identifying words of interest in user’s dialogue 
input — for example, potential values for a requested 
slot. With the desire to build complex and dynamic 
ontologies comes the need for more sophisticated 
dialogue system components in general that can sup-
port changing and growing knowledge. This espe-
cially concerns the belief tracker, policy optimization, 
and the NLG, as the ontology is at the heart of these 
subsystems.

Adaptive Multidomain Belief Tracking
A belief tracker is tasked to predict user goals in a dia-
logue by considering the dialogue context from the 
beginning up to the current point in time. While this 
task can be reasonably solved within a limited and 
simple domain, the complexity increases exponentially 
when multiple domains are considered. Strides have 
been made with the surge of neural network methods 
that have been shown to be particularly effective for 
representation learning and language modeling.

Methods such as the Multi-Domain Belief Tracker 
(Ramadan, Budzianowski, and Gašić 2018) and 
the Neural Belief Tracker (Mrkšić and Vulić 2018) 
attempted to solve the task at hand by using a one-
versus-all approach, which makes predictions for 
each possible configuration independently. While this 
method seems like a good solution, it has proven to 
not generalize well to multidomain settings. A more 
adaptive approach is proposed by the Global-Local 
Self-Attention encoder state tracker (Zhong, Xiong, 
and Socher 2018). The Global-Local Self-Attention 
encoder state tracker proposes to use a likelihood 
scoring method of observing the current utterances. 
Applying this scoring has achieved some height-
ened success in predicting the value given a domain-
slot pairing. However, the quality of a model such 
as the Global-Local Self-Attention encoder state 
tracker or Globally Conditioned Encoder (Nouri and 
Hosseini-Asl, 2018) relies on the quality of the rep-
resentations learned.

Obtaining meaningful and robust representations  
of the user goal has proven to be very challenging. 
One method that has stood out in this regard is 
the use of a multi-head self-attention mechanism 
to extract meaning from dialogue utterances. This 
mechanism utilizes the estimated relative importance 
of words through the use of attention to create better 
representations. The Slot Utterance Matching Belief 
Tracker (Lee, Lee, and Kim 2019) uses this mecha-
nism to obtain representations for domain-slot pairs, 
which has shown to produce more robust scores 
over possible value candidates. While this approach 
shows promising results in a fixed ontology setting, 
it lacks the ability to extract values not present in the 
ontology.

Adaption to new domains, slots, or values not seen 
during training time is a problem not yet addressed 
by many methods. One means to take on this chal-
lenge could lie in finding ways of efficiently utilizing 
more of the readily available data, including nondia-
logue data. For example, can a dialogue system learn 
to talk about music by utilizing music reviews? An 
approach is to fine-tune the representation model, 
such as BERT (Devlin et al. 2019), utilizing unstruc-
tured data. Using this representation and language 
modeling as a self-supervised fine-tuning task, we 
can then teach the model about new concepts and 
their relations in a specific domain (Mitchell et al. 
2018). Furthermore, could models actually extract 
user-mentioned values from the dialogue utterances? 
Results from the Transferable Dialogue State Generator 
(Wu et al. 2019) method have shown the potential of 
extracting new values from text, supporting adaptation 
to unseen values. The natural next step is adaptation to 
unseen slots or domains, a problem that, to our knowl-
edge, has not yet been solved.

As shown in table 1, although state-of-the-art meth-
ods perform very well on single-domain dialogue, 
these models heavily struggle when more than one 
domain is considered. The best available models still 
make erroneous predictions roughly half of the time 
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when conversation can be about multiple domains 
simultaneously, such as a dialogue about finding a 
hotel and restaurant in the same area. Clearly more 
work needs to be done to bring these numbers on par 
by improving belief tracker adaptability to multiple, 
dynamic domains.

Policy Adaptation
To create a dialogue system that is able to handle a 
variety of tasks, we need a policy that can handle 
multiple domains in a seamless manner. The major-
ity of approaches to policy optimization assume that 
the policy needs to be optimized as a function of the 
whole belief state. For large domains, however, this 
belief state becomes a high-dimensional vector, 
and standard RL approaches do not scale. This is 
known as the curse of dimensionality: The com-
plexity increases exponentially with the number of 
features in the belief state vector.

One way to build a multidomain dialogue system is 
to use a committee of policies. The idea is to develop 
different expertise in each committee member by 
training them on different data, allowing the com-
mittee to rely on the member with most experience 
at each decision. At each point in time, each policy 
can propose an action to take, out of which one is 
selected according to a heuristic (Lison 2011). Using a 
Bayesian committee machine (Tresp 2000) approach, 
the collective decision-making can be handled more 
elegantly through statistical methods and by incor-
porating uncertainty (Gašić et al. 2017). A trade-off 
is the inability to combine the decisions from the 
experts — only one domain expert is chosen at each 
turn. The computational cost is linearly dependent 
on the number of committee members. The problem 
remains of how to handle multiple domains within 
a single dialogue turn.

Another route is to train a multidomain policy. 
More recently, deep RL has been applied on the policy  
optimization task; for example, see the papers by  
Cuayáhuitl, Keizer, and Lemon (2015), Fatemi et al.  

(2016), and Williams, Asadi, and Zweig (2017), 
among others. The problem can be modeled as a 
neural network that predicts the expected dis-
counted cumulative reward of each state and action 
pair, based on which the policy selects the next 
action given a particular state to maximize this 
value. One way to promote knowledge sharing is to 
consider two kinds of agents in a policy — slot-de-
pendent and slot-independent (Chen et al. 2018). 
Slot-dependent agents have parameters that keep 
track of common characteristics of all slots, as well 
as private parameters to model characteristics spe-
cific to each slot. Given a new domain, the shared 
parameters can be easily transferred to ensure 
good initialization, leading to faster convergence. 
Unfortunately, deep RL approaches are not robust 
to errors, and adaptation toward more complex 
domains is still suboptimal.

To facilitate policy adaptation, it is important to 
learn quickly and efficiently, even in large, growing 
action spaces. This is in line with the exploration 
toward more sample-efficient methods in RL (Su et al. 
2017; Lipton et al. 2018; Weisz et al. 2018). Actor– 
critic experience replay has been applied in dialogue 
system settings, showing faster learning that yields 
state-of-the-art performance in a large action space 
(Weisz et al. 2018). The biggest gain in efficiency is 
due to the experience replay, which allows learning 
from a particular experience multiple times (Munos 
et al. 2016), unlike typical RL algorithms that are 
able to learn from an experience only once.

Large action spaces can also be tackled by decom-
position. Many tasks are hierarchical in nature: there 
are subgoals that the agent needs to complete first. 
For example, in interaction with a hotel booking 
system, the user must first be able to find a hotel, 
then book it, and only then pay for it. The more 
complex the intended dialogue becomes, the more 
pressing the need for a subtasks hierarchy. To date, 
no standard RL algorithms that can efficiently solve 
hierarchical problems are available (Duan et al. 2016).  

Model WOZ2.0 MultiWOZ2.0 MultiWOZ2.1

Multi-Domain Belief Tracker (Ramadan, Budzianowski, and Gašić 2018) 85.5% 15.6% —

Globally Conditioned Encoder (Nouri and Hosseini-Asl, 2018) 88.5% 35.5% —

Slot Utterance Matching Belief Tracker (Lee, Lee, and Kim 2019) 91.0% 42.4% —

Transferable Dialogue State Generator (Wu et al., 2019) — 48.6% 45.6%

Non-Autoregressive Dialogue State Tracking (Lee, Lee, and Kim 2019) — 50.5% 49.0%

Dual Strategy - Dialogue State Tracking (Zhang et al., 2019) — — 51.2%

Selectively Overwriting Memory - Dialogue State Tracking (Kim et al., 2019) — 51.4% 52.6%

Single-domain: WOZ2.0; multidomain: MultiWOZ2.0/2.1.

Table 1. Comparison of User Goal Prediction Accuracy in Single-Domain and Multidomain Environments.
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However, early research on hierarchical RL was prom-
ising (Dayan and Hinton 1993; Dietterich 2000; Barto 
and Mahadevan 2003). There has already been some 
initial success in applying this technique to dialogue 
modeling (Cuayáhuitl et al. 2010; Casanueva et al. 
2018). The idea is to model the dialogue as a semi-
Markov process so that the policy can be decomposed 
into a hierarchy of policies. Each policy operates only 
on a part of the belief space, making it very efficient. 
This hierarchy, however, needs to be predefined.

Recently researchers have also ventured into self-
play for policy learning, where a dialogue system 
talks to itself or another dialogue system as a form 
of learning (Li et al. 2016; Shah et al. 2018). Self-play 
has been demonstrated to be more sample-efficient 
(Gupta et al. 2019) and effective in estimating interac-
tive quality of dialogue (Ghandeharioun et al. 2019). 
However, arriving at a rich dialogue policy from self-
play training is still a challenge as it is prone to dia-
logue breakdown between the systems; that is, after 
several turns, the dialogue cannot continue further as 
the systems get stuck in an infinite loop of repetitive 
responses such as “I don’t know.” Sample efficiency 
and scalable learning are two of the most important 
keys in facilitating a successful policy adaptation in  
dialogue. The aforementioned approaches demon-
strate ways to achieve them, although their application 
within the context of policy adaptation in dialogue 
systems is yet to be exploited. Another bottleneck in 
domain adaptation that has not yet been resolved 
is the need to predefine all actions and slots prior 
to learning. It is desirable for a policy to be able 
to dynamically adapt to new concepts discovered 
throughout an interaction, similar to how humans 
continuously evolve and learn through communi-
cation (Chandramohan et al. 2014), moving further 
beyond multi-domain dialogue systems to open- 
domain ones.

Adaptation in Response Generation
Early efforts in NLG relied on templates and hand-
crafted rules. However, these approaches are quickly 
outgrown by the increasing urgency of more var-
ied system responses in dialogue as well as adapta-
tion capabilities. Recent approaches use language 
modeling with neural networks, treating NLG as a 
sequence generation problem conditioned on the 
dialogue action from the policy. Typically, a discrete 
flat representation is used as dialogue action, such 
as inform(type=hotel, area=center, price=cheap). One 
approach is to supply the dialogue act representa-
tion to condition the language generation using a 
recurrent neural network (Wen et al. 2015). More 
recently, novel dialogue act representations have 
been proposed to allow better domain adaptation 
through knowledge sharing. For example, by using 
a tree-structured representation of dialogue actions 
(Tseng et al. 2019), or a multilayered graph (Chen 
et al. 2019). The main idea is to merge identical parts 
of multiple domain ontologies, allowing information 
sharing in the dialogue act representation across 

domains. However, this line of methods does not 
work on ontologies that have only few or no com-
mon elements because they operate on the premise 
of merging similarities between the domains. There 
is still a need for a method that allows interpolation 
or inference of new knowledge.

Strong supervision in the form of extensively labeled 
data is required to optimize an NLG module. This may 
not always be readily available in huge amounts, if at 
all, especially for multi-domain settings. In this regard, 
NLG adaptation also benefits from a refined learning 
process and creative means to collect data. An approach 
is to use multiple adaptation stages: using an out-of-
domain data set to counterfeit the in-domain dialogue 
for pretraining before fine-tuning on the in-domain 
data (Wen et al. 2016). NLG and decision-making 
can also be seen as a joint optimization objective. This 
allows adaptation to fine-grained changes in dialogue 
context (Lemon 2008). Furthermore, general features 
can be learned across domains using a model-agnostic 
meta-learning algorithm (Tran and Nguyen 2018).

Beside domain adaptation, there is an interest in user  
adaptation by incorporating emotion- or personality- 
based conditioning in the response (Walker et al. 
2007; Mairesse and Walker 2010; Lubis et al. 2018; 
Oraby et al. 2018; Zhou et al. 2018; Colombo et al. 
2019; ). Incorporation of affective aspects has been 
reported to increase user satisfaction and feeling 
of closeness, as well as improving rapport and user 
acceptance (Higashinaka, Dohsaka, and Isozaki 2008; 
Acosta 2009, Saini et al. 2005). While the majority of 
works in this regard are done in chat-oriented set-
tings, results on the more task-oriented tutoring and 
navigation systems are promising as well (Litman 
and Silliman 2004; Bui et al. 2007). To push conver-
sational AI toward human parity, user adaptation 
strategies such as these are essential.

Adaptation in  
End-to-End Dialogue Systems
Research in end-to-end task-oriented systems is largely 
inspired by the success of sequence-to-sequence mod-
eling for chat-oriented systems (Serban et al. 2015). 
While a pure end-to-end approach may rid us of the 
dependency on ontology, the degree of freedom that 
the system has may be too high, causing difficulty 
in forming meaningful responses. A way to compen-
sate is by using a copy mechanism (Sukhbaatar et al. 
2015) on the knowledge base (Zhong, Xiong, and 
Socher 2018), or by using a memory network to keep 
track of retrieved knowledge base entities and words 
that have appeared in dialogue (Madotto, Wu, and 
Fung 2018). The need to incorporate some kind of 
structure is apparent to improve the performance of 
end-to-end task oriented systems.

A modularly connected end-to-end dialogue sys-
tem utilizes a neural network as each of its modules. 
This type of end-to-end system passes on informa-
tion in a similar manner to a modular system. How-
ever, each module outputs a representation instead 
of structured data. With this setting it is possible to 
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introduce a separate policy network that is trainable 
via RL for continuous improvement of the system  
(Wen et al. 2017a). To enforce the structure further, 
each module can be pretrained to predict its cor-
responding structured output prior to fusion and 
integration (Mehri, Srinivasan, and Eskenazi 2019). 
A flexible structure has also been introduced in the 
paper by Shu et al. (2019), which utilizes separate 
decoders for each of the inform, request, and response 
slots. Although this has been shown to help, incor-
poration of structure often requires multiple supervi-
sions, increasing the data requirement for training.

Structure in an end-to-end model reveals an avenue 
for adaptation, most notably by utilizing representa-
tion learning methods. The aim is to train a dialogue 
encoder that produces representations with a good 
domain-generalizability. Ideally, such representations 
should allow accurate interpolation given a similar 
dialogue context in a new domain. In reality, though, 
achieving such representations is still challenging. 
A common method leverages pretraining objectives 
that are inspired by natural language processing tasks, 
such as next-utterance retrieval (Lowe et al. 2016) 
and generation (Vinyals and Le 2015). Naturally, this 
requires a sufficient amount of additional data often 
along with its corresponding label or supervision. The 
choice of the pretraining objective has been demon-
strated to highly influence generalizability of the 
learned representation. For example, inconsistency 
identification is reported to be a more effective pre-
training objective for response generation, compared 
with masked-utterance retrieval and next-utterance 
retrieval (Mehri et al. 2019). However, it is still unclear 
what kind of pretraining objective truly maximizes 
the gain in domain adaptation.

Minimizing the effort in system adaptation has 
been one particular interest in this line of research. 
The task can be framed as the so-called zero-shot or 
few-shot learning, referring to the amount of train-
ing data of the new domain that the model receives 
before it is put to the test on that new domain; none 
(zero-shot), or only a small amount (few-shot). One 
approach is to induce a latent action space that spans 
across domains using dialogue context-response 
pairs as well as a set of response-dialogue act pairs 
(Zhao and Eskenazi 2018). Representations obtained 
with variational methods (Zhao, Lee, and Eskenazi 
2018) used by Shalyminov et al. (2019) allows an 
end-to-end training using raw dialogue data only. 
While improvement on metrics such as task success 
and entity recognition are reported, the numbers 
are still very low when tested on real human dialogue. 
Furthermore, lack of interpretability and control-
lability remains a major challenge in this family of 
models, especially where adaptation is concerned.

Conclusion and Outlook
We are at a transition phase in dialogue system 
research, moving from simplistic and restricted human- 
computer dialogue, into a dynamic and adaptive one 

that can learn and evolve over time. We believe that 
adaptation is the means for this much-needed leap 
forward. A key is to dynamically encapsulate large 
knowledge and allowing its accumulation over time 
through flexible, adaptive models.

Approaches using partially observable Markov 
decision processes have helped improve adaptation 
to different noise levels by allowing error propaga-
tion down the dialogue system pipeline. The surge 
of neural network methods had a huge impact in 
dialogue system research as well, enabling better 
knowledge representation in the ontology, function 
approximations, and language modeling in the mod-
ules. Sample-efficient methods aided faster learning, 
decreasing the data requirement and speeding up 
convergence.

Despite the progress made, there is still much to be 
done to achieve human parity in conversational AI. 
The reality is that being able to operate today’s dia-
logue system is a skill of its own. Patient and deter-
mined users have to learn how to talk to dialogue 
systems (Sadun and Sande 2014), finding out what 
they can or cannot do, putting intent in ways the 
systems can understand, and so forth. Humans are 
the ones adapting to dialogue systems instead of the 
other way around. Turning this around is a demanding 
task, whose eventual solutions have a high potential 
impact on the future of conversational machines.

A critical step in advancing task-oriented systems 
involves overcoming the limitations of having to 
predefine system capacities. It is not obvious to users 
which tasks a system can handle and which concepts 
(actions, slots, values) it knows. This opaqueness 
combined with limited conversational range leads 
to poor satisfaction. Furthermore, continual learning 
and adaptation of the system through time is not 
possible.

In this regard, it is important to make the systems 
as independent of a static ontology as possible. A first 
step could be a truly value-less ontology, where a 
system could seamlessly detect values unseen dur-
ing training during dialogue with human users. This 
allows the system to quickly adapt to new real-life 
concepts, such as new restaurants and movie names. 
A step beyond that is the ability to extract a new 
family of concepts and the relationships within for 
ontology growing, that is, new slots or even domains, 
from the vast knowledge contained in the world-
wide web and unstructured data. Lastly, we need to 
be able to incorporate new actions into the conver-
sation to be able to drastically increase the conversa-
tional capabilities. This may require a universal and 
dynamic action-embedding space that maps system 
intents in dialogue. Consequently, each of the mod-
ules should have the abilities to incorporate these 
new concepts on-the-go.

This vision raises the question of how to represent 
knowledge and complex relations across dialogue 
system modules. We have started exploration beyond 
discrete spaces toward continuous ones; however, 
this comes with a new set of challenges such as the 
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need for more complex supervision, including how 
to induce spaces with properties that support seam-
less adaptation across modules. In this regard, we are 
likely to benefit from research on knowledge-infused 
and semantically specialized contextual representa-
tions, which has just picked up pace. In terms of 
modeling, neural networks have been consistently 
shown to be a powerful method for solving each of 
the aforementioned challenges, but it is important 
to increase their interpretability and controllability 
to facilitate truly successful adaptation.
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