What Can I Not Do? Towards an Architecture for Reasoning about and Learning Affordances

Authors

  • Mohan Sridharan The University of Auckland
  • Ben Meadows The University of Auckland
  • Rocio Gomez The University of Auckland

DOI:

https://doi.org/10.1609/icaps.v27i1.13852

Abstract

This paper describes an architecture for an agent to learn and reason about affordances. In this architecture, Answer Set Prolog, a declarative language, is used to represent and reason with incomplete domain knowledge that includes a representation of affordances as relations defined jointly over objects and actions. Reinforcement learning and decision-tree induction based on this relational representation and observations of action outcomes are used to interactively and cumulatively (a) acquire knowledge of affordances of specific objects being operated upon by specific agents; and (b) generalize from these specific learned instances. The capabilities of this architecture are illustrated and evaluated in two simulated domains, a variant of the classic Blocks World domain, and a robot assisting humans in an office environment.

Downloads

Published

2017-06-05

How to Cite

Sridharan, M., Meadows, B., & Gomez, R. (2017). What Can I Not Do? Towards an Architecture for Reasoning about and Learning Affordances. Proceedings of the International Conference on Automated Planning and Scheduling, 27(1), 461-469. https://doi.org/10.1609/icaps.v27i1.13852