Monte-Carlo Tree Search: A New Framework for Game AI

Authors

  • Guillaume Chaslot Universiteit Maastricht
  • Sander Bakkes Universiteit Maastricht
  • Istvan Szita Universiteit Maastricht
  • Pieter Spronck Universiteit Maastricht

DOI:

https://doi.org/10.1609/aiide.v4i1.18700

Abstract

Classic approaches to game AI require either a high quality of domain knowledge, or a long time to generate effective AI behaviour. These two characteristics hamper the goal of establishing challenging game AI. In this paper, we put forward Monte-Carlo Tree Search as a novel, unified framework to game AI. In the framework, randomized explorations of the search space are used to predict the most promising game actions. We will demonstrate that Monte-Carlo Tree Search can be applied effectively to (1) classic board-games, (2) modern board-games, and (3) video games.

Downloads

Published

2021-09-27

How to Cite

Chaslot, G., Bakkes, S., Szita, I., & Spronck, P. (2021). Monte-Carlo Tree Search: A New Framework for Game AI. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 4(1), 216-217. https://doi.org/10.1609/aiide.v4i1.18700