Improving Search Engine Efficiency through Contextual Factor Selection
DOI:
https://doi.org/10.1609/aimag.v42i2.15099Abstract
Learning to rank (LTR) is an important artificial intelligence (AI) approach supporting the operation of many search engines. In large-scale search systems, the ranking results are continually improved with the introduction of more factors to be considered by LTR. However, the more factors being considered, the more computation resources required, which in turn, results in increased system response latency. Therefore, removing redundant factors can significantly improve search engine efficiency. In this paper, we report on our experience incorporating our Contextual Factor Selection (CFS) deep reinforcement learning approach into the Taobao e-commerce platform to optimize the selection of factors based on the context of each search query to simultaneously maintaining search result quality while significantly reducing latency. Online deployment on Taobao.com demonstrated that CFS is able to reduce average search latency under everyday use scenarios by more than 40% compared to the previous approach with comparable search result quality. Under peak usage during the Single’s Day Shopping Festival (November 11th) in 2017, CFS reduced the average search latency by 20% compared to the previous approach.
Downloads
Published
How to Cite
Issue
Section
License
- The author(s) warrants that they are the sole author and owner of the copyright in the above article/paper, except for those portions shown to be in quotations; that the article/paper is original throughout; and that the undersigned right to make the grants set forth above is complete and unencumbered.
- The author(s) agree that if anyone brings any claim or action alleging facts that, if true, constitute a breach of any of the foregoing warranties, the author(s) will hold harmless and indemnify AAAI, their grantees, their licensees, and their distributors against any liability, whether under judgment, decree, or compromise, and any legal fees and expenses arising out of that claim or actions, and the undersigned will cooperate fully in any defense AAAI may make to such claim or action. Moreover, the undersigned agrees to cooperate in any claim or other action seeking to protect or enforce any right the undersigned has granted to AAAI in the article/paper. If any such claim or action fails because of facts that constitute a breach of any of the foregoing warranties, the undersigned agrees to reimburse whomever brings such claim or action for expenses and attorneys’ fees incurred therein.
- Author(s) retain all proprietary rights other than copyright (such as patent rights).
- Author(s) may make personal reuse of all or portions of the above article/paper in other works of their own authorship.
- Author(s) may reproduce, or have reproduced, their article/paper for the author’s personal use, or for company use provided that original work is property cited, and that the copies are not used in a way that implies AAAI endorsement of a product or service of an employer, and that the copies per se are not offered for sale. The foregoing right shall not permit the posting of the article/paper in electronic or digital form on any computer network, except by the author or the author’s employer, and then only on the author’s or the employer’s own web page or ftp site. Such web page or ftp site, in addition to the aforementioned requirements of this Paragraph, must provide an electronic reference or link back to the AAAI electronic server, and shall not post other AAAI copyrighted materials not of the author’s or the employer’s creation (including tables of contents with links to other papers) without AAAI’s written permission.
- Author(s) may make limited distribution of all or portions of their article/paper prior to publication.
- In the case of work performed under U.S. Government contract, AAAI grants the U.S. Government royalty-free permission to reproduce all or portions of the above article/paper, and to authorize others to do so, for U.S. Government purposes.
- In the event the above article/paper is not accepted and published by AAAI, or is withdrawn by the author(s) before acceptance by AAAI, this agreement becomes null and void.