Multimodal Social Media Analysis for Gang Violence Prevention


  • Philipp Blandfort DFKI, TU Kaiserslautern
  • Desmond U. Patton Columbia University
  • William R. Frey Columbia University
  • Svebor Karaman Columbia University
  • Surabhi Bhargava Columbia University
  • Fei-Tzin Lee Columbia University
  • Siddharth Varia Columbia University
  • Chris Kedzie Columbia University
  • Michael B. Gaskell Columbia University
  • Rossano Schifanella University of Turin philipp
  • Kathleen McKeown Columbia University
  • Shih-Fu Chang Columbia University



Gang violence is a severe issue in major cities across the U.S. and recent studies have found evidence of social media communications that can be linked to such violence in communities with high rates of exposure to gang activity. In this paper we partnered computer scientists with social work researchers, who have domain expertise in gang violence, to analyze how public tweets with images posted by youth who mention gang associations on Twitter can be leveraged to automatically detect psychosocial factors and conditions that could potentially assist social workers and violence outreach workers in prevention and early intervention programs. To this end, we developed a rigorous methodology for collecting and annotating tweets. We gathered 1,851 tweets and accompanying annotations related to visual concepts and the psychosocial codes: aggression, loss, and substance use. These codes are relevant to social work interventions, as they represent possible pathways to violence on social media. We compare various methods for classifying tweets into these three classes, using only the text of the tweet, only the image of the tweet, or both modalities as input to the classifier. In particular, we analyze the usefulness of mid-level visual concepts and the role of different modalities for this tweet classification task. Our experiments show that individually, text information dominates classification performance of the loss class, while image information dominates the aggression and substance use classes. Our multimodal approach provides a very promising improvement (18% relative in mean average precision) over the best single modality approach. Finally, we also illustrate the complexity of understanding social media data and elaborate on open challenges. The annotated dataset will be made available for research with strong ethical protection mechanism.




How to Cite

Blandfort, P., Patton, D. U., Frey, W. R., Karaman, S., Bhargava, S., Lee, F.-T., Varia, S., Kedzie, C., Gaskell, M. B., Schifanella, R., McKeown, K., & Chang, S.-F. (2019). Multimodal Social Media Analysis for Gang Violence Prevention. Proceedings of the International AAAI Conference on Web and Social Media, 13(01), 114-124.