Accelerating Column Generation via Flexible Dual Optimal Inequalities with Application to Entity Resolution

Authors

  • Vishnu Suresh Lokhande University of Wisconsin-Madison
  • Shaofei Wang Unversity of Pennsylvania
  • Maneesh Singh Verisk Computational and Human Intelligence Laboratory
  • Julian Yarkony Verisk Computational and Human Intelligence Laboratory

DOI:

https://doi.org/10.1609/aaai.v34i02.5520

Abstract

In this paper, we introduce a new optimization approach to Entity Resolution. Traditional approaches tackle entity resolution with hierarchical clustering, which does not benefit from a formal optimization formulation. In contrast, we model entity resolution as correlation-clustering, which we treat as a weighted set-packing problem and write as an integer linear program (ILP). In this case, sources in the input data correspond to elements and entities in output data correspond to sets/clusters. We tackle optimization of weighted set packing by relaxing integrality in our ILP formulation. The set of potential sets/clusters can not be explicitly enumerated, thus motivating optimization via column generation. In addition to the novel formulation, we also introduce new dual optimal inequalities (DOI), that we call flexible dual optimal inequalities, which tightly lower-bound dual variables during optimization and accelerate column generation. We apply our formulation to entity resolution (also called de-duplication of records), and achieve state-of-the-art accuracy on two popular benchmark datasets. Our F-DOI can be extended to other weighted set-packing problems.

Downloads

Published

2020-04-03

How to Cite

Lokhande, V. S., Wang, S., Singh, M., & Yarkony, J. (2020). Accelerating Column Generation via Flexible Dual Optimal Inequalities with Application to Entity Resolution. Proceedings of the AAAI Conference on Artificial Intelligence, 34(02), 1593-1602. https://doi.org/10.1609/aaai.v34i02.5520

Issue

Section

AAAI Technical Track: Constraint Satisfaction and Optimization