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Abstract

In this paper, we introduce a new optimization approach to
Entity Resolution. Traditional approaches tackle entity res-
olution with hierarchical clustering, which does not bene-
fit from a formal optimization formulation. In contrast, we
model entity resolution as correlation-clustering, which we
treat as a weighted set-packing problem and write as an in-
teger linear program (ILP). In this case, sources in the input
data correspond to elements and entities in output data corre-
spond to sets/clusters. We tackle optimization of weighted set
packing by relaxing integrality in our ILP formulation. The
set of potential sets/clusters can not be explicitly enumerated,
thus motivating optimization via column generation. In ad-
dition to the novel formulation, we also introduce new dual
optimal inequalities (DOI), that we call flexible dual optimal
inequalities, which tightly lower-bound dual variables during
optimization and accelerate column generation. We apply our
formulation to entity resolution (also called de-duplication of
records), and achieve state-of-the-art accuracy on two popu-
lar benchmark datasets. Our F-DOI can be extended to other
weighted set-packing problems.

1 Introduction

In this paper we study the problem of entity resolution. En-
tity resolution aims to eliminate redundant information from
multiple sources of data. This task plays a key role in in-
formation integration, natural language understanding, in-
formation processing on the World-Wide Web all of which
are core areas of AI (Konda et al. 2016).

The Problem Setup Given a dataset of observations each
associated with up to one object, entity resolution aims to
pack (or partition) the observations into groups called hy-
pothesis (or entities) such that there is a bijection from hy-
potheses to unique entities in the dataset. We are provided a
set of observations called records, where each record is as-
sociated with a subset of fields (for example: name, social
security number, phone number etc). We seek to partition
the observations into hypothesis so that: (1) all observations
of any real world entity are associated with exactly one se-
lected hypothesis; (2) each selected hypothesis is associated
with observations of exactly one real world entity.
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Figure 1: Entity Resolution posed as MWSP: Given a struc-
tured (tabular) data, we study the problem of entity resolu-
tion where we group rows representing the same real-world
entity into the same cluster. Entity Resolution can be viewed
as a node-clustering problem over a graph. In the example
used in this figure, we identify similar rows with identical
colored dots and then tranform it into a graph with nodes
representing the entities/rows and edges represented some
measure of similarity between between the nodes. Nodes
that are not connected are understood to represent distict
rows in the table.

Traditional Approaches Entity resolution has been stud-
ied using different clustering approaches (Saeedi, Peukert,
and Rahm 2017). It is common to transform entity resolu-
tion to a graph problem and run a clustering algorithms on
top of it as depicted in Figure 1. The popular clustering al-
gorithms developed to attack entity resolution are ConCom,
where the algorithm is based on computing the connected
components of the input graph. Center clustering sequen-
tially adds edges from a priority queue and either assigns
the nodes to a cluster or tags them as a center (Hassanzadeh
and Miller 2009). Star clustering (Aslam, Pelekhov, and Rus
2004), in a similar way, prioritizes in adding those nodes to a
cluster that have the highest degree. Correlation Clustering
(Bansal, Blum, and Chawla 2004), which forms the back-
bone of our method, has also been studied for entity resolu-
tion problem. However, the lengthy and numerous iterations
to converge made it difficult for entity resolution problems
(Saeedi, Peukert, and Rahm 2017).

Entity Resolution as MWSP Contrary to previous works,
we propose to tackle entity resolution as an optimization
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problem, formulating it as a minimum weight set packing
(MWSP) problem. The set of all possible hypotheses is the
power set of the set of the observations. The real valued cost
of a hypothesis, is a second order function of the observa-
tions that compose the hypothesis. The cost of a hypoth-
esis decreases as the similarity among the observations in
the hypothesis increases. Any non-overlapping subset of all
possible hypotheses corresponds to a partition; we treat each
observation not in any element in the subset as being in a hy-
pothesis by itself. We model the quality of a packing as the
total cost of the hypothesis in the packing. The lowest to-
tal cost packing is empirically a good approximation to the
ground truth.

Efficient MWSP using Column Generation Enumerat-
ing the power set of the observations is often not possible
in practice, thus motivating us to tackle MWSP using col-
umn generation (CG) (Gilmore and Gomory 1961; Barnhart
et al. 1996; Desrosiers and Lübbecke 2005; Lübbecke 2010;
Yarkony et al. 2019). CG solves a linear programming (LP)
relaxation of MWSP by constructing a small sufficient sub-
set of the power set, such that solving the LP relaxation
over the sufficient subset provably provides the same solu-
tion as solving the LP relaxation over the entire power set.
CG can often be accelerated using dual optimal inequali-
ties (DOIs) (Ben Amor, Desrosiers, and Valério de Carvalho
2006), which bound the otherwise unbounded dual variables
of the LP-relaxation, drastically reducing the search space
of the LP problem. The use of DOI provably does not alter
the solution produced at termination of CG.

Core Contribution We make the following contributions
to the scientific literature. (1). Introduce a novel MWSP
formulation for entity resolution, that achieves efficient
exact/approximate optimization using CG. (2). Introduce
novel DOIs called Flexible DOIs (F-DOI), which can be ap-
plied to broad classes of MWSP problems.

Paper Organization The paper is structured as follows. In
Section 2 we review the integer linear programming (ILP)
formulation of MWSP, and its solution via CG. In Section
3 we introduce F-DOIs. In Section 4 we devise optimiza-
tion algorithms to solve entity resolution problem via CG
and F-DOIs. In Section 5 we demonstrate the effectiveness
of our approach on benchmark entity resolution datasets. In
Section 6 we conclude.

2 Preliminaries

In this section we review the MWSP formulation and CG
solution of (Yarkony et al. 2019). We outline this section
as follows. In Section 2.1 we review the ILP formulation
of MWSP. In Section 2.2 we review the CG algorithm that
solves an LP relaxation of the ILP formulation. In Section
2.3 we review the varying DOIs introduced in (Yarkony et
al. 2019). To be consistent with the notation used in the oper-
ations research community, we use the notation of (Yarkony
et al. 2019) throughout this paper.

2.1 An ILP Formulation of MWSP

Observations An observation corresponds to an element
in the traditional set-packing context and a data source in
the entity resolution context. We use D to denote the set of
observations, which we index by d.

Hypotheses A hypothesis corresponds to a set in the tra-
ditional set-packing context, and an entity in the entity res-
olution context. Given a set of observations D, the set of all
hypotheses is the power set of D, which we denote as G and
index by g.

We describe G using matrix G ∈ {0, 1}|D|×|G|. Here
Gdg = 1 if and only if hypothesis g includes observation
d, and otherwise Gdg = 0. A real valued cost Γg is associ-
ated to each g ∈ G, where Γg is the cost of including g in our
packing. The hypothesis g containing no observations is de-
fined to have cost Γg = 0. Γg is instantiated as a function of
Gdg . For example, let d1 ∈ D, d2 ∈ D and let θd1d2

∈ R de-
note the cost of putting d1, d2 in a single hypothesis g, then
we could write Γg =

∑
d1,d2

θd1d2Gd1gGd2g . We will dis-
cuss more on the cost (Γg) formulation, in the light of entity
resolution, in Section 4.2.

A packing is described using γ ∈ {0, 1}|G| where γg = 1
indicates that hypothesis g is included in the solution, and
otherwise γg = 0. MWSP is written as an ILP below.

min
γ∈{0,1}|G|

∑

g∈G
Γgγg (1)

s.t.
∑

g∈G
Gdgγg ≤ 1 ∀d ∈ D

The constraints in Eq 1 enforce that no observation is in-
cluded in more than one selected hypothesis in the packing.

2.2 Solving MWSP via Column Generation

Column Generation Algorithm Solving Eq 1 is chal-
lenging for two key reasons: (1) MWSP is NP-hard (Karp
1972); (2) G is too large to be considered in optimization for
our problems. To tackle (1), the integrality constraints on γ
are relaxed, resulting in an LP:

Eq 1 ≥ min
γ≥0

∑

g∈G
Γgγg (2)

s.t.
∑

g∈G
Gdgγg ≤ 1 ∀d ∈ D

(Yarkony et al. 2019) demonstrates that (2) can be cir-
cumvented by using column generation (CG). Specifically,
the CG algorithm constructs a small sufficient subset of G,
(which is denoted Ĝ and initialized empty) s.t. an optimal so-
lution to Eq 2 exists for which only hypothesis in Ĝ are used.
Thus CG avoids explicitly enumerating G, which grows ex-
ponentially in |D|. The primal-dual optimization over Ĝ,
which is referred to as the restricted master problem (RMP),
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Algorithm 1 MWSP via Column Generation

1: Ĝ ← ∅
2: repeat
3: γ, λ← Solve the RMP in Eq 3–4
4: g∗ ← Solve the pricing problem in Eq 5
5: Ĝ ← Ĝ ∪ {g∗}
6: until Γg∗ −∑

d∈D λdGdg∗ ≥ 0

7: γ ← Solve MWSP in Eq (1) over Ĝ instead of G
8: Return γ

is written as:

min
γ≥0

∑

g∈Ĝ
Γgγg (3)

s.t.
∑

g∈Ĝ
Gdgγg ≤ 1 ∀d ∈ D

= max
λ≤0

∑

d∈D
λd (4)

s.t. Γg −
∑

d∈D
Gdgλd ≥ 0 ∀g ∈ Ĝ

The CG algorithm is described in Alg 1. CG solves the
MWSP problem by alternating between: (1) solving the
RMP in Eq 4 given Ĝ (Alg 1, line 3) and (2) Adding hy-
pothesis in G to Ĝ, that have negative reduced cost given
dual variables λ (Alg 1,line 4). The selection of the lowest
reduced cost hypothesis in G is referred to as pricing, and is
formally defined as:

min
g∈G

Γg −
∑

d∈D
λdGdg (5)

Solving Eq 5 is typically tackled using a specialized solver
exploiting specific structural properties of the problem do-
main (Gilmore and Gomory 1961; Wang et al. 2018; Zhang
et al. 2017). In many problem domains pricing algorithms
return multiple negative reduced cost hypothesis in G. In
these cases some or all returned hypotheses with negative
reduced cost are added to Ĝ.

Convergence of Column Generation CG terminates
when no negative reduced cost hypotheses remain in G
(Alg 1,line 6). CG does not require that the lowest reduced
cost hypothesis is identified during pricing to ensure that Eq
2 is solved exactly; instead, Eq 2 is solved exactly as long
as a g ∈ G with negative reduced cost is produced at each
iteration of CG if one exists.

If Eq 3 produces a binary valued γ at termination of CG
(i.e. the LP-relaxation is tight) then γ is provably the opti-
mal solution to Eq 1. However if γ is fractional at termina-
tion of CG, an approximate solution to Eq 1 can still be ob-
tained by replacing G in Eq 1 with Ĝ (Alg 1,line 7). (Yarkony
et al. 2019) shows that Eq 2 describes a tight relaxation in
practice; We refer readers interested in tightening Eq 2 to
(Yarkony et al. 2019), which achieve this using subset-row
inequalities (Jepsen et al. 2008).

2.3 Dual Optimal Inequalities (DOIs)

The convergence of Alg 1 often can be accelerated by pro-
viding bounds on the dual variables in Eq 4 without altering
the final solution of Alg 1, thus limiting the dual space that
Alg 1 searches over. We define DOI with Ξd which lower
bounds dual variables in Eq 4 as −Ξd ≤ λd, ∀d ∈ D. The
primal RMP in Eq 3 is thus augmented with new primal vari-
ables ξ, where primal variable ξd corresponds to the dual
constraint −Ξd ≤ λd.

min
γ≥0
ξ≥0

∑

g∈Ĝ
Γgγg +

∑

d∈D
Ξdξd (6)

s.t. − ξd +
∑

g∈Ĝ
Gdgγg ≤ 1

= max
−Ξd≤λd≤0

∑

d∈D
λd (7)

s.t. Γg −
∑

d∈D
Gdgλd ≥ 0 ∀g ∈ Ĝ

Varying DOIs of (Yarkony et al. 2019) In the applica-
tions of (Yarkony et al. 2019), the authors observed that the
removal of a small number of observations rarely causes
a significant change to the cost of a hypothesis in Ĝ. This
fact motivates the following DOIs, which are called varying
DOIs.

Let ḡ(g,Ds) be the hypothesis consisting of g with all
observations in Ds ⊆ D removed. Formally, Gdḡ(g,Ds) =
Gdg[d /∈ Ds], ∀d ∈ D, where [] is the binary indicator func-
tion. Let ε be a tiny positive number. Varying DOI are com-
puted as:

Ξd = ε+max
g∈Ĝ

Ξ∗
dg ∀d ∈ D (8)

Ξ∗
dg ≥ max

ĝ∈G
Gd̂ĝ≤Gd̂g∀d̂∈D

Γḡ(ĝ,{d}) − Γĝ

Observe that Ξd may increase (but never decrease) over the
course of CG as Ĝ grows. In (Yarkony et al. 2019) the com-
putation of Ξ∗

dg is done using problem specific worst case
analysis for each g upon addition to Ĝ.

Related Approaches We now contrast DOIs from other
dual stabilization methods, which also aim at accelerating
CG. Dual stabilization approaches (excluding DOI) can all
be understood as imposing a norm on the dual variables to
prevent them from becoming extreme or leaving the area
around a well established dual solution. DOI based meth-
ods, in contrast, are based on providing provable bounds on
the optimal point in the dual space.
(Du Merle et al. 1999): This work optimizes the RMP with
an �1 penalty on the distance from a box around the best dual
solution found thus far. Here best is defined as the maximum
lower bound identified thus far over the course of column
generation. Variants on this approach are available and pro-
vide different schedules for weakening the �1 penalty. Other
variants can replace the best solution found thus far with the
most recent solution. The similar work of (Marsten, Hogan,
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and Blankenship 1975) binds the dual variables to lie in a
box around the previous dual solution.
(Gschwind and Irnich 2016): This work derives bounds on
dual variables corresponding to swapping elements in hy-
potheses with other elements in the primal problem. It is
appropriate for tasks such as bin packing and cutting stock
where cost terms are not defined in terms of the elements
that make up a set. In contrast, the varying DOI and F-DOI
describe bounds on the dual variables corresponding to re-
moving elements from hypotheses in the primal problem.

3 Flexible Dual Optimal Inequalities

A major drawback of varying DOI is that Ξd depends on
all hypotheses in Ĝ (as defined in Eq 8), while often only a
small subset of Ĝ are active (selected) in an optimal solution
to Eq 3. Thus during Alg 1, the presence of a hypothesis in
Ĝ may increase the cost of the optimal solution found in cur-
rent iteration, making exploration of solution space slower.
This motivates us to design new DOIs that circumvent this
difficulty, which we name Flexible DOIs (F-DOIs).

We outline this section as follows. In Section 3.1 we intro-
duce a MWSP formulation using CG featuring our F-DOIs.
In Section 3.2 we consider pricing under this MWSP formu-
lation.

3.1 Formulation with F-DOIs

Given any g ∈ G, let Ξdg be positive if Gdg = 1 and oth-
erwise Ξdg = 0, and defined such that for all non-empty
Ds ⊆ D the following bound is satisfied.

∑

d∈Ds

Ξdg ≥ ε+ Γḡ(g,Ds) − Γg (9)

Let Zd be the set of unique positive values of Ξdg over
all g ∈ Ĝ, which we index by z. We order the values in
Zd from smallest to largest as [ωd1, ωd2, ωd3...]. We de-
scribe Ξdg using Zdzg ∈ {0, 1} where Zdzg = 1 if and
only if Ξdg ≥ ωdz . We describe Ξdg using Ξdz as follows:
Ξdz = ωdz − ωd(z−1) ∀z ∈ Zd, z ≥ 2; Ξd1 = ωd1. Below
we use Z to model MWSP as a primal/dual LP.

min
γ≥0
ξ≥0

∑

g∈Ĝ
Γgγg +

∑

d∈D
z∈Zd

Ξdzξdz (10)

s.t. − ξdz +
∑

g∈Ĝ
Zdzgγg ≤ 1 ∀d ∈ D, z ∈ Zd

= max
−Ξdz≤λdz≤0
∀d∈D,z∈Zd

∑

d∈D
z∈Zd

λdz (11)

s.t. Γg −
∑

d∈D
z∈Zd

Zdzgλdz ≥ 0 ∀g ∈ Ĝ

F-DOIs are the inequalities −Ξdz ≤ λdz in Eq 11. We now
prove that at termination of CG that ξdz = 0 ∀d ∈ D, z ∈ Zd

and hence Eq 10=Eq 2.
Proposition: Let ζ∗ and ζ∗DOI be the optimal values of

Eq 2- Eq 10, at termination of CG respectively. If Ξ satisfies
Eq 9, then ζ∗DOI = ζ∗.

Proof. Let (γ∗, ξ∗) be an optimal solution to Eq 10. If
ξ∗dz = 0 for all d ∈ D, z ∈ Zd, then ζ∗DOI = ζ∗ be-
cause γ∗ is feasible and optimal for Eq 10. Otherwise, there
exists an observation d ∈ D, g ∈ G such that γ∗

g > 0,
Gdg = 1 and (Zdzg = 1) → (ξ∗dz > 0) ∀z ∈ Zd.
Let z∗ ← max z∈Zd

Zdgz=1
z. Let α = min {γ∗

g , ξ
∗
dz∗}. Con-

sider the solution obtained from (γ∗, ξ∗) by decreasing γ∗
g

and ξ∗dz for all z ∈ Zd s.t. (Zdgz = 1) by α and in-
creasing γ∗

ḡ(g,{d}) by α. We have increased the objective
by α(Γḡ(g,{d}) − Γg − Ξdg) which is non-positive since∑

z∈Zd
ΞdzZgzg = Ξdg > Γḡ(g,{d}) − Γg and α > 0. Thus

(γ∗, ξ∗) is feasible for Eq 10 and has a cost that is less than
ζ∗DOI . This contradicts the optimality of (γ∗, ξ∗) and proves
that there is no d ∈ D, z ∈ Zd such that ξ∗dz > 0.

We can produce a feasible binary solution when γ is frac-
tional at termination of CG as follows. We solve Eq 10 over
Ĝ, while enforcing γg to be binary for all g ∈ Ĝ. If the so-
lution has active ξ terms, then we apply the procedure de-
scribed in the proof above to decrease the cost of the solution
and ensure feasibility to Eq 1.

As CG proceeds we can not consider all of Zd since the
cardinality Zd may explode for some or all d ∈ D. Thus
we use a subset of Zd consisting of, the largest element and
K others selected uniformly across Zd denoted Ẑd (where
K is a user defined parameter; e.g. K = 5 works well).
Thus Ẑd = {z� k|Zd|

K+1 � ∀1 ≤ k ≤ K + 1}. With some

abuse of notation we have Zdzg be defined over Ξ+
dg , where

Ξ+
dg = Gdg min z∈Ẑd

ωdz≥Ξdg

ωdz .

3.2 Efficient Pricing

Pricing for Eq 10 is conducted as ming∈G Γg −∑
d∈D
z∈Zd

Zdzgλdz . Current MWSP applications (as in

(Yarkony et al. 2019)) are associated with mechanisms to
solve Eq 5 instead of ming∈G Γg−

∑
d∈D
z∈Zd

Zdzgλdz . We now

prove that doing pricing using Eq 5 where λd ←
∑

z∈Zd
λdz

∀d ∈ D ensures that Eq 2=Eq 10 at termination of CG.
Claim: If λ∗ is a dual optimal solution to Eq 11 (de-

fined over some Ĝ ⊆ G) satisfying that Eq 5≥ 0 then∑
d∈D
z∈Zd

λ∗
dz = Eq 2.

Proof: Since Ĝ ⊆ G then Eq 2 ≤ ∑
d∈D
z∈Zd

λ∗
dz . Let λ+

be defined as λ+
d = (

∑
z∈Zd

λ∗
dz) ∀d ∈ D. Since Eq 5≥ 0

then λ+ is a dual feasible solution to Eq 4 where G = Ĝ
; thus

∑
d∈D λ+

d ≤ Eq 2. Since
∑

d∈D
z∈Zd

λ∗
dz =

∑
d∈D λ+

d

then we have lower and upper bounded
∑

d∈D
z∈Zd

λ∗
dz by Eq 2

establishing the claim.

4 Application: Entity Resolution

In this section we apply the MWSP formulation in Section 3
to entity resolution resulting in our approach, which we call
F-MWSP. This section is structured as follows. In Section
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4.1 we describe the problem domain of entity resolution, and
outline our pipeline for solving such problems. In Section
4.2 we define problem specific cost function for evaluating a
single hypothesis in entity resolution. In Section 4.3 we de-
vise efficient pricing algorithms (i.e. finding hypotheses with
negative reduced costs) that exploit structural properties of
entity resolution. In Section 4.4 we describe the production
of Ξdg terms that satisfy Eq 9, thus defining the F-DOIs for
entity resolution problems. In Section 4.5 we provide a nu-
merical example demonstrating the value of F-DOI in this
application.

4.1 Pipeline for Entity Resolution

Entity resolution seeks to construct a surjection from obser-
vations in input dataset to real world entities. The observa-
tions in the dataset are denoted D, as defined in Section 2.1.
Specifically, the dataset consists of a structured table where
each row (or tuple) represents an observation of a real world
entity. We rely on the attributes of the table to determine if
two observations represent the same real world entity.

A naive way of doing entity resolution is to compare
every pair of observations in the input dataset and decide
whether they belong to the same entity or not; this will re-
sult in

(|D|
2

)
comparisons, which is often prohibitively large

for real-world applications. We instead employ a technique
called blocking (Konda et al. 2016), in which we use a set of
pre-defined, fast-to-run predicates to identify the subset of
pairs of observations which could conceivably correspond
to common entities (thus blocking operates in the high re-
call regime).

We first use blocking to filter out majority of pairs of ob-
servations, which leaves only a small proportion of pairs for
further processing. Next, we generate a score for each pair of
observations returned by the blocking step. The probability
score defined over a given pair of observations is the proba-
bility that the pair are associated with a common entity. The
classifier that generates probability scores is trained by any
learning algorithm on the annotated data. We take negative
of probability scores and add a bias to them, forming the
cost terms used in our MWSP algorithm. Finally, based on
the cost terms, the MWSP algorithm packs the observations
into hypothesis with the goal of creating a bijection from hy-
pothesis in the packing to real world entities. We refer to the
combination of the blocker and the scorer as the classifier.
Our entire pipeline for solving the entity resolution problem
is described in Fig 2.

4.2 Cost Function for Entity Resolution

Consider a set of observations D, where for any d1 ∈
D, d2 ∈ D that θd1d2 ∈ R is the cost associating with includ-
ing d1, d2 in a common hypothesis. Here positive/negative
values of θd1d2 discourage/encourage d1, d2 to be associ-
ated with a common hypothesis. The magnitude of θd1d2

describes the degree of discouragement/encouragement. We
assume without loss of generality θd1d2

= θd2d1
. We con-

struct θd1d2
from the output classifier as (0.5−pd1d2

) where
pd1d2

is the probability provided by the classifier that d1, d2
are associated with a common hypothesis in the ground

Figure 2: Entity Resolution Pipeline The stages of our
pipeline are written in the following order. Given our input
dataset we apply blocking to produce a limited set of pairs
of observations that may be co-associated in a common hy-
potheses. Next we provide a probability score for each such
pair using a classifier trained to distinguish between pairs
that are/are not part of a common entity in the ground truth.
Finally we convert the output of the probability scores to
cost terms and treat the entity resolution as a MWSP prob-
lem as described in Section 3.

truth. It is a structural property of our problem domain that
most pairs of observations can not be part of a common hy-
pothesis. For such pairs d1, d2 then θd1d2 = ∞. These are
the pairs not identified by the blocker as being feasible. We
use θdd = 0 for all d ∈ D. We define the cost of a hypothesis
g ∈ G as follows.

Γg =
∑

d1∈D
d2∈D

θd1d2Gd1gGd2g (12)

With the cost of a hypothesis defined, we can now treat en-
tity resolution as a MWSP problem, and use CG to solve it.
Any observation not associated with any selected hypothe-
sis in the solution to MWSP is defined to be in a hypothe-
sis by itself of zero cost. Our formulation of entity resolu-
tion can also be rewritten as correlation clustering (Bansal,
Blum, and Chawla 2004), which is usually tackled via LP
relaxations with cycle inequalities and odd wheel inequal-
ities (Nowozin and Jegelka 2009) in the machine learning
literature. In the appendix we prove Eq 2 is no looser than
(Nowozin and Jegelka 2009).

4.3 Pricing

With hypothesis cost Γg defined in Eq 12, we can now pro-
ceed to solve Eq 5. However, solving Eq 5 would be exceed-
ingly challenging if we had to consider all d ∈ D at once.
Fortunately, we can circumvent this difficulty using the fol-
lowing observation inspired by (Zhang et al. 2017), which
studies biological cell instance segmentation. For any fixed
d∗ ∈ D, solving for the lowest reduced cost hypothesis that
includes d∗ is much less challenging than solving Eq 5. This
is because given d∗ all d ∈ D for which θd∗d = ∞ can
be removed from consideration. Solving Eq 5 thus consists
of solving many parallel pricing sub-problems, one for each
d∗ ∈ D. All negative reduced cost solutions are then added
to Ĝ. In this subsection we expand on this approach.

First we produce a small set of sub-problems each defined
over a small subset of D. Then we study exact optimization
of those sub-problems, followed by heuristic optimization.
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Pricing Formulation of (Zhang et al. 2017) We write
pricing sub-problem adapted from (Zhang et al. 2017) given
d∗ ∈ D as follows:

min
g∈G

Gdg=0 ∀d/∈Dd∗
Gd∗g=1

Γg −
∑

d∈D
λdGdg (13)

Dd∗ = {d ∈ D; θdd∗ <∞}
HereDd∗ is the set of observations that may be grouped with
observation d∗, which we call its neighborhood. Since the
lowest reduced cost hypothesis must contain some d∗ ∈ D
by solving Eq 13 for each d∗ ∈ D we solve Eq 5.

Improving on (Zhang et al. 2017) by decreasing sub-
problem size We improve on (Zhang et al. 2017) by de-
creasing the number of observations considered in sub-
problems, particularly those with large numbers of obser-
vations. We achieve this by associating a unique rank rd to
each observation d ∈ D, such that rd increases with |Dd|,
i.e. the more neighbors an observation has, the higher rank it
is assigned. To ensure that each observation has unique rank
we break ties arbitrarily.

Given that d∗ is the lowest ranking observation in the hy-
pothesis we need only consider the set of observations s.t.
d ∈ {Dd∗ ∩ {rd ≥ rd∗}}, which we define to be D∗

d∗ . We
write the resultant pricing sub-problem as follows.

min
g∈G

Gdg=0 ∀d/∈D∗
d∗

Gd∗g=1

Γg −
∑

d∈D
λdGdg (14)

Further improving on (Zhang et al. 2017) by removing
superflous sub-problems We can also decrease the num-
ber of sub-problems considered as follows. First we relax
the constraint Gd∗g = 1 in Eq 14. Now observe that for
any d2 ∈ D,d ∈ D s.t. D∗

d ⊂ D∗
d2

that the lowest reduced
cost hypothesis over D∗

d2
has no greater reduced cost than

that over D∗
d. We refer a neighborhood D∗

d∗ as being non-
dominated if no d2 ∈ D exists s.t. D∗

d ⊂ D∗
d2

.
During pricing we iterate over non-dominated neighbor-

hoods. For a given non-dominated neighborhood D∗
d∗ we

write the pricing sub-problem below.

min
g∈G

Gdg=0 ∀d/∈D∗
d∗

Γg −
∑

d∈D
λdGdg (15)

(A) Exact Pricing We now consider the exact solution of
Eq 15. We frame Eq 15 as a ILP, which we solve using a
mixed integer linear programming (MILP) solver. We use
decision variables x, y as follows. We set binary variable
xd = 1 to indicate that d is included in the hypothesis be-
ing generated and otherwise set xd = 0. We set yd1d2 = 1
to indicate that both d1, d2 are included in the hypothe-
sis being generated and otherwise set yd1d2

= 0. Defin-
ing E− = {(d1, d2) : θd1d2

= ∞} as the set containing
pairs of observations that cannot be grouped together, and
E+ = {(d1, d2) : θd1d2

< ∞} as the set containing pairs
of observations that can be grouped together, we write the
solution to Eq 15 as a MILP, which we annotate below.

min
xd∈{0,1}
∀d∈D∗

d∗
y≥0

∑

d∈D∗
d∗

−λdxd +
∑

d1∈D∗
d∗

d2∈D∗
d∗

(d1,d2)∈E+

θd1d2
yd1d2

(16)

s.t. xd1
+ xd2

≤ 1 ∀(d1, d2) ∈ E− (17)

yd1d2 ≤ xd1 ∀(d1, d2) ∈ E+ (18)

yd1d2
≤ xd2

∀(d1, d2) ∈ E+ (19)

xd1
+ xd2

− yd1d2
≤ 1 ∀(d1, d2) ∈ E+ (20)

Eq 16: Defines the reduced cost of the hypothesis being
constructed.Eq 17: Enforce that pairs for which θd1d2

= ∞
are not include in a common hypothesis. Eq 18-Eq 20: En-
force that yd1d2

= xd1
xd2

. Observe that given that x is bi-
nary, that y must also be binary so as to obey Eq 18-Eq 20.
Thus we need not explicitly enforce y to be binary.

(B) Heuristic Pricing Solving Eq 15 exactly using Eq 16-
Eq 20 for each non-dominated neighborhood can be too time
intensive for some scenarios. In fact Eq 15 generalizes max-
cut, which is NP-hard (Karp 1972). This motivates the use of
heuristic methods to solve Eq 15. Heuristic pricing is com-
monly used in operations research, however we are the first
paper in machine learning/entity resolution to employ this
strategy. Thus we decrease the computation time of pricing
by decreasing the number of sub-problems solved, and solv-
ing those that are solved heuristically.
• Early termination of pricing: Observe that solving pric-

ing (exactly or heuristically) over a limited subset of the
sub-problems produces an approximate minimizer of Eq
5. We decrease the number of sub-problems solved during
a given iteration of CG as follows. We terminate pricing in
a given iteration when M negative reduced cost hypothe-
sis have been added to Ĝ in that iteration of CG (M is a
user defined constant; M = 50 in our experiments). This
strategy is called partial pricing (Lübbecke and Desrosiers
2005)
• Solving sub-problems approximately: We found em-

pirical success solving Eq 16-Eq 20 using the quadratic
pseudo-Boolean optimization with the improve option
used (QPBO-I) (Rother et al. 2007).

The use of heuristic pricing does not prohibit the exact solu-
tion of Eq 2. One can switch to exact pricing after heuristic
pricing fails to find a negative reduced cost hypothesis in G.

4.4 Computing Ξdg for Entity Resolution

In this section, for any given g ∈ Ĝ we construct Ξdg to sat-
isfy Eq 9, which in practice leads to efficient optimization.
We rewrite ε+Γḡ(g,Ds)−Γg by plugging in the expressions
for Γg in Eq 12. We use Dg to denote the subset of D for
which Gdg = 1.

ε+
∑

d1∈Dg

d2∈Dg

−θd1d2
max([d1 ∈ Ds], [d2 ∈ Ds]) (21)

We now bound components of Eq 21 as follows. For θd1d2 <
0 we upper bound −θd1d2 max([d1 ∈ Ds], [d2 ∈ Ds])
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with: −θd1d2([d1 ∈ Ds] + [d2 ∈ Ds]) For θd1d2 > 0
we upper bound −θd1d2 max([d1 ∈ Ds], [d2 ∈ Ds]) with:
− θd1d2

2 ([d1 ∈ Ds] + [d2 ∈ Ds]) Below we plug the upper
bounds into Eq 21; group by [d ∈ Ds]; and enforce non-
negativity of the result. Eq 21 ≤ ∑

d∈D[d ∈ Ds]Ξdg where
Ξdg = 0 for d /∈ Dg , and is otherwise defined below.

Ξdg = ε+max(0,−
∑

d1∈Dg

θdd1(1 + [θdd1 < 0])) ∀d ∈ Dg

The analysis in in this section can be applied directly for
other pairwise cost functions such as multi-person pose esti-
mation and multi-cell segmentation as described in (Yarkony
et al. 2019).

4.5 Numerical Example

We provide a motivating example demonstrating how
the use of F-DOI provides a lower valued LP relax-
ation given fixed Ĝ than using varying DOI or no DOI.
Consider a correlation clustering problem instance over
D = {d1, d2, d3, d4, d5 where θ is defined as follows. Let
θd1,d2 = θd2,d3 = θd1,d3 = θd4d5 = −100; θd3,d4 =
θd3d5 = −1 (note θdd̂ = θd̂d). All other θ terms not defined
above take on value ∞ . Consider that Ĝ = g1, g2 where
Dg1 = {d1, d2, d3} and Dg2 = {d3, d4, d5}. The optimal
solution to the set packing RMP using no DOI is limited
to selecting either g1 or g2. Solving the RMP using varying
DOI both g1, g2 can be selected but a penalty of 400+ε must
be paid, resulting in higher objective than selecting only g1.
Solving the RMP using F-DOI both g1, g2 can be selected
with a penalty of 4 + ε, resulting in a lower objective than
selecting either g1 or g2.

5 Experiments

In this section, we study the different properties of the F-
MWSP clustering algorithm and evaluate the performance
scores on certain benchmark datasets. The classifier, which
encompasses the blocker and the scorer, is a crucial compo-
nent of the entity resolution pipeline (see Figure 2 and Sec-
tion 4.1). We leverage the methods provided in a popular and
open source entity resolution library called Dedupe (Gregg
and Eder ) to handle the blocking and scoring functionalities
for us. Dedupe offers attribute type specific blocking rules
and a ridge logistic regression algorithm as a default for
scoring. Certainly, a more powerful classifier, especially if
designed keeping the domain of the dataset in mind, can sig-
nificantly boost the performance of the clustering outcome.
As the focus of this paper has been F-MWSP clustering al-
gorithm, an intuitive and reasonably good classifier such as
Dedupe suits our setting.
In the following sections, we first demonstrate the differ-
ent properties of F-MWSP algorithm on a single dataset and
then compare its performance with other methods on bench-
mark datasets.

5.1 Characteristics of F-MWSP algorithm

The Setting To understand the benefits of F-MWSP clus-
tering, it will be helpful to first conduct ablation study on a

Performance Hierarchical F-MWSP
Metric Clustering Clustering

Precision / Recall 95.5% / 89.1% 95.4% / 94.3%
F1 measure 92.2% 94.8%

Homogn. / Compltn. 94.6% / 94% 94.4% / 96.5%
V measure 94.3% 95.4%

Adjusted Rand Index 91.3% 94.2%
Fowlkes Mallows 92.2% 94.8%

Table 1: F-MWSP algorithm performs better than the base-
line hierarchical clustering algorithm.

Figure 3: Speedups with Flexible DOIs Varying the num-
ber thresholds (value of K) of the Flexible DOIs improves
the convergence speed. Threshold value 0 corresponds to the
Varying DOIs used in (Yarkony et al. 2019).

single dataset. The dataset that we choose in this section is
called patent example and is publicly available on Dedupe.
patent example is a labelled dataset listing the patent statis-
tics of the Dutch innovators. It has has 2379 entities and 102
clusters where the mean size of the cluster is 23. We split
the dataset into two halves and set aside the second half only
to report the accuracies. The first half of the dataset that is
visible to the learning algorithm from which we randomly
sample about 1% of the total matches and provide it to the
classifier as a labelled data.

(A) Superior performance over hierarchical clustering
Table 5.1 shows that F-MWSP clusters offers better per-
formance over hierarchical clustering, a standard method
of choice for clustering problems (Hastie et al. 2005). The
performance has been evaluated against standard clustering
metrics.

(B) Significant speed-ups owing to Flexible DOIs We
obtain at least 20% speed up with our proposed Flexible
DOIs over Varying DOIs (Yarkony et al. 2019) as indicated
in Figure 3. Moreover, we also observe that the computation
time of the problem decreases as the number of thresholds
(value of K) increases, with up to 60% speedup.

(C) Tractable solutions to the pricing problem Recall
the strategies discussed to solve the pricing problem from
Section 4.3, namely, exact and heuristic. Exact pricing is of-
ten not feasible in entity resolution owing to the large neigh-
borhoods of some sub-problems. Fortunately, the heuristic
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Dataset Entities Matches Clusters Mean Max

patent example 2379 293785 102 23 676
csv example 3337 6608 1162 3 18
Affiliations 2260 16795 330 7 47
Settlements 3054 4388 820 3.7 4
Music 20K 19375 16250 10000 2 5

Table 2: Dataset statistics The statistics of all the datasets
used in the paper are presented here. Mean and Max denote
the respective statistics over the cluster sizes.

Method Settlements Music 20K

ConCom 0.65 0.26
CCPivot 0.90 0.74
Center 0.88 0.66

MergCenter 0.68 0.39
Star1 0.82 0.62
Star2 0.92 0.69

F-MWSP 0.96 0.81

Table 3: F-MWSP on benchmark datasets We obtain higher
F1 score over the methods reported in (Saeedi, Peukert, and
Rahm 2017). The F1 scores for other methods are extracted
from the paper’s bar plot.

solver helps cut down the computation time by a large frac-
tion. For instance, patent example experiment takes atleast
1 hour for completion with the exact solver while with the
heuristic solver it takes about 20 seconds.

5.2 F-MWSP algorithm on benchmark datasets

To make sure that our findings are broadly applicable, we
conducted experiments with more entity resolution bench-
mark datasets. (Saeedi, Peukert, and Rahm 2017) provides
us with some interesting entity resolution datasets which we
also include in this section. The statistics of all the datasets
used in the paper are available in Table 2.

The Setting We make our setting consistent with (Saeedi,
Peukert, and Rahm 2017) to be able to compare against their
clustering algorithms. (Saeedi, Peukert, and Rahm 2017)
leverages hand-crafted rules designed on the entire dataset
to generate the cost terms. The costs are then fed into vari-
ous clustering algorithms and the performance is evaluated
over the whole dataset. We use dedupe classifier which is
trained on a small percentage of matches from a split half of
the dataset similar to Section 5.1. F-MWSP is then evaluated
based on the dedupe cost terms over the entire dataset.

F-MWSP is competitive In this section, we report the per-
formance of F-MWSP clustering on different datasets and
compare against the baselines available for them. We start
with csv example dataset which is publically available on
Dedupe akin to patent example. On csv example, F-MWSP
achieves a higher F1 score of 95.2 % against hierarchical
clustering 94.4%, the default in Dedupe. In Table 3, we
compare the performance of our entity resolution pipeline
against algorithms in (Saeedi, Peukert, and Rahm 2017). Ta-
ble 3 demonstrates that our pipeline, with F-MWSP cluster-
ing, is as powerful as the recognized entity resolution al-
gorithms. The affiliations dataset used in (Aumueller and

Rahm 2009) which is unique in the sense that the lack of
structure in the data generates poorer cost terms. Despite
this, F-MWSP gives us an F1 score of 63%, however, we
note that a well handcrafted rule-based classifier improve the
F1 score as demonstrated in (Aumueller and Rahm 2009).

6 Conclusions
In this paper we formulate entity resolution as MWSP prob-
lem. To solve such a problem, we devise a novel CG formu-
lation that employs flexible dual optimal inequalities which
use hypothesis specific information when constructing dual
bounds. Our formulation exploits the fact that most pairs of
observations can not be in a common hypothesis to produce
pricing subproblems over small subsets of the observations
that can be easily solved for some datasets, and for others
can be solved to high quality heuristically. We demonstrate
superior performance to the baseline hierarchical clustering
formulation to entity resolution.
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7 Appendix
In this section we describe Correlation Clustering (CC)
(Bansal, Blum, and Chawla 2004), its standard relaxation
and finally prove that our MWSP relaxation of CC is tighter
than the standard relaxations in the literature (Nowozin and
Jegelka 2009; Andres et al. 2011; Kim et al. 2011).

Given a graph with node set D we use f ∈ {0, 1}|D|×|D|
which we index by d1, d2 to describe a partition of D. We
set fd1d2

= 1 if and only if d1, d2 are in a common com-
ponent in our solution. We use θd1d2

to denote the cost of
including d1, d2 in a common component. The objective of
CC is written below.

min
f∈{0,1}

∑

d1∈D
d2∈D

θd1d2
fd1d2

(22)

CC uses cycle inequalities to enforce that f describes a valid
partitioning of the vertices. Cycle inequalities state that for
every cycle of nodes, that the number of “cut” edges (mean-
ing edges where the connected observations are in separate
components) is a number other than one. LetH be the set of
cycles of vertices, which we index by h. We treat h as the
set of edges on the associated cycle. The cycle inequality
associated with any h ∈ H, fdadb

∈ h is written below.
∑

(d1,d2)∈h−(da,db)

(1− fd1d2
) ≥ (1− fdadb

) (23)

A solution f must satisfy Eq 23 for all h ∈ H, (da, db) ∈ h
to be a feasible partition of the observations (Nowozin and
Jegelka 2009). It is sufficient to enforce only the cycle in-
equalities over each cycle of three nodes in order to enforce
all cycle inequalities (Chopra and Rao 1993). We write the
cycle inequality over observations d1, d2, d3 below.

(1− fd1d3
) + (1− fd2d3

) ≥ (1− fd1d2
) (24)

1600



Odd wheel inequalities (OWI) are a common valid inequal-
ity in CC used to tighten the LP relaxation of CC. OWI are
defined over a cycle of edges of odd cardinality hb with a
single additional node db connected to all other nodes in the
center. We define OWI below for any b ∈ B where B is the
set of OWI. We use dbm to denote the m’th observation in the
cycle hb; and note that db|hb|+1 = db1.

|hb|∑

m=1

fdb
mdb
− fdb

mdb
m+1
≤ �|hb|

2
� (25)

We produce an LP relaxation of CC by relaxing f to lie in
[0, 1] and enforcing Eq 24- Eq 25.

min
1≥f≥0

∑

d1∈D
d2∈D

θd1d2fd1d2 (26)

(1− fd1d3) + (1− fd2d3) ≥ (1− fd1d2)

|hb|∑

m=1

fdb
mdb
− fdb

mdb
m+1
≤ �|hb|

2
�

For any d1 ∈ D, d2 ∈ D the variable fd1d2
corresponds to

the following in our MWSP formulation for EC.

fd1d2 =
∑

g∈G
Gd1gGd2gγg (27)

The goal of the remainder of this section is to show that Eq
2 is no looser a relaxation of CC than Eq 26. We outline this
section as follows. In Section 7.1 we show that any feasible
solution to Eq 2 satisfies 0 ≤ f ≤ 1. In Section 7.2 we show
that any feasible solution to Eq 2 satisfies Eq 24. In Section
7.3 that that any feasible solution to Eq 2 satisfies Eq 25. In
Section 7.4 we establish that Eq 2 ≥ Eq 26.

7.1 Proof Bound Obeyed

Eq 26 enforces that for each 1 ≥ fd1d2 ≥ 0 and we now
establish that this holds for Eq 2. Using Eq 27 we observe
that the following must hold for any γ satisfying Eq 2.

0 ≤
∑

g∈G
Gd1gGd2gγg = fd1d2

(28)

∑

g∈G
Gd1gGd2gγg = fd1d2 ≤ 1 (29)

Eq 28 is satisfied since G is a binary matrix and γ is non-
negative. Eq 29 is satisfied since

∑
g∈G Gd1gGd2gγg ≤∑

g∈G Gd1gγg and Eq 2 ensures that
∑

g∈G Gd1gγg ≤ 1 for
each d1 ∈ D.

7.2 MWSP Satisfies All Cycle Inequalities

In this section we establish that any feasible solution γ to Eq
2 satisfies Eq 24. To assist in our discussion we use the no-
tation jD

−
D+ to denote the sum of the γ terms associated with

hypothesis that include all elements in D+ and no elements
in D− as follows.

jD
−

D+ =
∑

g∈G
γg(

∏

d∈D+

Gdg)(
∏

d∈D−
(1−Gdg)) (30)

We now use proof by contradiction to establish that γ obeys
Eq 24.

Claim:

All γ satisfying Eq 2 satisfy all inequalities of the form in
Eq 24.

Proof: Suppose the claim is false. Thus there exists a γ
that is feasible to Eq 2 for which there exists a d1, d2, d3 that
does not satisfy Eq 24. We re-write Eq 24 for the violated
cycle inequality using j.

(1− jd1d3
) + (1− jd2d3

) < (1− jd1d2
) (31)

1 + jd1d2 < jd1d3 + jd2d3

1 + jd1d2d3
+ jd3

d1d2
< jd2

d1d3
+ jd1

d2d3
+ 2jd1d2d3

1 + jd3

d1d2
< jd2

d1d3
+ jd1

d2d3
+ jd1d2d3

We now bound the RHS by jd3, which we in turn bound by
1.

1 + jd3

d1d2
< jd2

d1d3
+ jd1

d2d3
+ jd1d2d3 ≤ jd3 ≤ 1 (32)

Since jd3

d1d2
is non negative it can not be less than zero thus

establishing a contradiction.

7.3 MWSP Satisfies All Odd Wheel Inequalities

We now establish that all OWI are satisfied for any feasible
solution to Eq 2 using proof by contradiction.

Claim

|hb|∑

m=1

jdb
mdb
− jdb

mdb
m+1
≤ �|hb|

2
� ∀b ∈ B (33)

Proof: Consider a solution γ and b ∈ B violating the claim.

|hb|∑

m=1

jdbmdb
− jdbmdbm+1

> � |hb|
2

�

|hb|∑

m=1

jdbmdbd
b
m+1

+ j
dbm+1

dbmdb
− j

db
dbmdbm+1

− jdbmdbm+1db
> � |hb|

2
�

|hb|∑

m=1

j
dbm+1

dbmdb
− j

db
dbmdbm+1

> � |hb|
2

�
(34)

We upper bound the LHS of Eq 34 by removing the jdb

db
mdb

m+1

terms.
∑|hb|

m=1 j
db
m+1

db
mdb

> � |hb|
2 �. We express j using Eq 30.

|hb|∑

m=1

∑

g∈G
γgGdb

mg(1−Gdb
m+1g

)Gdbg > � |hb|
2
�

∑

g∈G
γgGdbg

|hb|∑

m=1

Gdb
mg(1−Gdb

m+1g
) > � |hb|

2
�

Observe that the term
∑|hb|

m=1 Gdb
mg(1−Gdb

m+1g
) is bounded

from above by � |hb|
2 �. This is because the largest indepen-

dent set defined on a cycle graph contains half the nodes
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(rounded down). We apply this bound below.
∑

g∈G
γgGdbg�

|hb|
2
� > � |hb|

2
�

∑

g∈G
γgGdbg > 1 (35)

Eq 2 ensures that
∑

g∈G Gdgγg ≤ 1 for all d ∈ D which
contradicts Eq 35 thus proving that the claim in Eq 33 true.

7.4 Eq 2 ≥ Eq 26

Since every feasible solution to Eq 2 obeys all constraints in
Eq 26 then the minimal cost solution to Eq 2 obeys all con-
straints in Eq 26 thus Eq 2≥ Eq 26. We have not established
the existence of cases for which Eq 2 > Eq 26 and leave
consideration of such cases to future research.
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Lübbecke, M. E., and Desrosiers, J. 2005. Selected topics in
column generation. Operations Research 53(6):1007–1023.
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