Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods

Authors

  • Ferdinando Fioretto Syracuse University
  • Terrence W.K. Mak Georgia Institute of Technology
  • Pascal Van Hentenryck Georgia Institute of Technology

DOI:

https://doi.org/10.1609/aaai.v34i01.5403

Abstract

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.

Downloads

Published

2020-04-03

How to Cite

Fioretto, F., Mak, T. W., & Van Hentenryck, P. (2020). Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods. Proceedings of the AAAI Conference on Artificial Intelligence, 34(01), 630-637. https://doi.org/10.1609/aaai.v34i01.5403

Issue

Section

AAAI Technical Track: Applications