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Abstract

The Optimal Power Flow (OPF) problem is a fundamental
building block for the optimization of electrical power sys-
tems. It is nonlinear and nonconvex and computes the gen-
erator setpoints for power and voltage, given a set of load
demands. It is often solved repeatedly under various condi-
tions, either in real-time or in large-scale studies. This need is
further exacerbated by the increasing stochasticity of power
systems due to renewable energy sources in front and behind
the meter. To address these challenges, this paper presents a
deep learning approach to the OPF. The learning model ex-
ploits the information available in the similar states of the sys-
tem (which is commonly available in practical applications),
as well as a dual Lagrangian method to satisfy the physical
and engineering constraints present in the OPF. The proposed
model is evaluated on a large collection of realistic medium-
sized power systems. The experimental results show that its
predictions are highly accurate with average errors as low as
0.2%. Additionally, the proposed approach is shown to im-
prove the accuracy of the widely adopted linear DC approxi-
mation by at least two orders of magnitude.

Introduction

The Optimal Power Flow (OPF) problem determines the
generator dispatch of minimal cost that meets the demands
while satisfying the physical and engineering constraints
of the power system (Chowdhury and Rahman 1990). The
OPF (aka AC-OPF) is a non-convex non-linear optimiza-
tion problem and the building bock of many applications, in-
cluding security-constrained OPFs (Monticelli et al. 1987),
optimal transmission switching (Fisher, O’Neill, and Ferris
2008), capacitor placement (Baran and Wu 1989), expansion
planning (Verma et al. 2016), and security-constrained unit
commitment (Wang, Shahidehpour, and Li 2008).

Typically, generation schedules are updated in intervals
of 5 minutes (Tong and Ni 2011), possibly using a solu-
tion to the OPF solved in the previous step as a starting
point. In recent years, the integration of renewable energy
in sub-transmission and distribution systems has introduced
significant stochasticity in front and behind the meter, mak-
ing load profiles much harder to predict and introducing sig-
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nificant variations in load and generation. This uncertainty
forces system operators to adjust the generators setpoints
with increasing frequency in order to serve the power de-
mand while ensuring stable network operations. However,
the resolution frequency to solve OPFs is limited by their
computational complexity. To address this issue, system op-
erators typically solve OPF approximations such as the lin-
ear DC model (DC-OPF). While these approximations are
more efficient computationally, their solution may be sub-
optimal and induce substantial economical losses, or they
may fail to satisfy the physical and engineering constraints.

Similar issues also arise in expansion planning and other
configuration problems, where plans are evaluated by solv-
ing a massive number of multi-year Monte-Carlo simula-
tions at 15-minute intervals (Pache et al. 2015; Deutche-
Energue-Agentur 2019). Additionally, the stochasticity in-
troduced by renewable energy sources further increases the
number of scenarios to consider. Therefore, modern ap-
proaches recur to the linear DC-OPF approximation and fo-
cus only on the scenarios considered most pertinent (Pache
et al. 2015) at the expense of the fidelity of the simulations.

To address these challenges, this paper studies how to ap-
proximate OPFs using a Deep Neural Network (DNN) ap-
proach. The main goal of the OPF is to find generator set-
points, i.e., the amount of real power and the voltage mag-
nitude for each generator. Approximating the OPF using
DNNs can thus be seen as an empirical risk minimization
problem. However, the resulting setpoints must also satisfy
the physical and engineering constraints that regulate power
flows, and these constraints introduce significant difficulties
for machine learning-based approaches, as shown in (Ng et
al. 2018; Deka and Misra 2019). To address these difficul-
ties, this paper presents a DNN approach to the OPF (OPF-
DNN) that borrows ideas from Lagrangian duality and mod-
els the learning task as the Lagrangian dual of the empirical
risk minimization problem under the OPF constraints. Note
also that the AC-OPF is an ideal application for machine
learning, since it must be solved almost continuously. Hence
significant data is available to train deep learning networks
and improve them over time.

The contributions of this paper can be summarized as fol-
lows. (1) It proposes an approach (OPF-DNN) that uses a
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Op 9pd, 9qdq “ argminpg ,v

ř
iPN costppgi q (1)

subject to:

9vmin
i ď vi ď 9vmax

i @i P N (2a)

– 9θΔij ď θi – θj ď 9θΔij @pijq P E (2̄b)

9pgmin
i ď pgi ď 9pgmax

i @i P N (3̄a)

9qgmin
i ď qgi ď 9qgmax

i @i P N (3b)

ppfijq2 ` pqfijq2 ď 9Sf max
ij @pijq P E (4̄)

pfij “ 9gijv
2
i –vivjp9bijsinpθi–θjq ` 9gijcospθi–θjqq @pijqPE (5̄a)

qfij “–9bijv
2
i –vivjp 9gijsinpθi–θjq–9bijcospθi–θjqq @pijqPE (5b)

pgi – 9pdi “ ř
pijqPE pfij @i P N (6̄a)

qgi – 9qdi “ ř
pijqPE qfij @i P N (6b)

output: ppg ,vq – The system operational parameters

Figure 1: AC Optimal Power Flow (AC-OPF)

DNN to predict the generator setpoints for the OPF; (2) It
exploits the physical and engineering constraints in a La-
grangian framework using violation degrees; (3) It enhances
the prediction accuracy by leveraging the availability of a
solution to a related OPF (e.g., the solution to a closely re-
lated historical instances, which is almost always available);
(4) It recasts the OPF prediction as the Lagrangian dual of
the empirical risk minimization under constraints, using a
subgradient method to obtain a high-quality solution.

OPF-DNN is evaluated on realistic medium-sized power
system benchmarks: The computational results show sig-
nificant improvements in accuracy and efficiency compared
to the ubiquitous DC model. In particular, OPF-DNN pro-
vides accuracy improvements of up to two orders of magni-
tude and efficiency speedups of several orders of magnitude.
These results may open new avenues for power system anal-
yses and operations under significant penetration of renew-
able energy.

Preliminaries

The paper uses the following notations: Variables are de-
noted by calligraph lowercase symbols, constants by dotted
symbols, and vectors by bold symbols. The hat notation x̂
describes the prediction of a value x and } ¨ } denotes the
L2-norm. The power flow equations are expressed in terms
of complex powers of the form S “ pp`jqq, where p and
q denote active and reactive powers, admittance of the form
Y “pg`jbq, where g and b denote the conductance and sus-
ceptance, and voltages of the form V “ pv=θq, with magni-
tude v and phase angle θ.

Optimal Power Flow

The Optimal Power Flow (OPF) determines the least-cost
generator dispatch that meets the load (demand) in a power
network. A power network is viewed as a graph pN , Eq
where the nodes N represent the set of n buses and the edges

minimize: }pg ´ p̂g}2 ` }v ´ v̂}2 (2)
subject to: (2a) ´ (6b)

Figure 2: The Load Flow Model

E represent the set of e transmission lines. The OPF con-
straints include physical and engineering constraints, which
are captured in the AC-OPF formulation of Figure 1. The
model uses pg , and pd to denote, respectively, the vectors of
active power generation and load associated with each bus
and pf to describe the vector of active power flows associ-
ated with each transmission line. Similar notations are used
to denote the vectors of reactive power q. Finally, the model
uses v and θ to describe the vectors of voltage magnitude
and angles associated with each bus. The OPF takes as in-
puts the loads p 9pd, 9qdq and the admittance matrix 9Y , with
entries 9gij and 9bij for each line pijqPE ; It returns the active
power vector p of the generators, as well the voltage mag-
nitude v at the generator buses. The objective function (1)
captures the cost of the generator dispatch, and is typically
expressed as a quadratic function. Constraints (2a) and (2̄b)
restrict the voltage magnitudes and the phase angle differ-
ences within their bounds. Constraints (3̄a) and (3b) enforce
the generator active and reactive output limits. Constraints
(4̄) enforce the line flow limits. Constraints (5̄a) and (5b)
capture Ohm’s Law. Finally, Constraint (6̄a) and (6b) cap-
ture Kirchhoff’s Current Law enforcing flow conservation.

The DC Relaxation The DC model is a ubiquitous linear
approximation to the OPF (Wood and Wollenberg 1996). It
ignores reactive power and assumes that the voltage mag-
nitudes are at their nominal values (1.0 in per unit nota-
tion). The model uses only the barred constraints in Fig-
ure 1. Constrains (4̄) considers only the active flows and
hence can be trivially linearized and Constraints (5̄a) be-
comes pfij “ ´9bijpθi ´ θjq. The quadratic objective is also
replaced by a piecewise linear function. Being an approx-
imation, a DC solution p̂g may not satisfy the AC model
constraints. As result, prior to being deployed, one typically
solves a load flow optimization, described in Figure 2. It is
a least squares minimization problem that finds the closest
AC-feasible solution to the approximated one.

Deep Learning Models

Supervised Deep Learning (SDL) can be viewed as the task
of approximating a complex non-linear mapping from la-
beled data. Deep Neural Networks (DNNs) are deep learn-
ing architectures composed of a sequence of layers, each
typically taking as inputs the results of the previous layer
(LeCun, Bengio, and Hinton 2015). Feed-forward neural
networks are basic DNNs where the layers are fully con-
nected and the function connecting the layer is given by
o “ πpWx ` bq, where x P R

n and is the input vector,
o P R

m the output vector, W P R
mˆn a matrix of weights,

and b P R
m a bias vector. The function πp¨q is often non-

linear (e.g., a rectified linear unit (ReLU)).
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OPF Learning Goals

The goal of this paper is to learn the OPF mapping O :
R

2n Ñ R
2n: Given the loads

`
pd, qd

˘
, predict the setpoints

ppg,vq of the generators, i.e., their active power and the
voltage magnitude at their buses. The input of the learning
task is a dataset D “ tpx�,y�quN�“1, where x�“ppd, qdq and
y� “ ppg,vq represent the �th observation of load demands
and generator setpoints which satisfy y� “Opx�q. The out-
put is a function Ô that ideally would be the result of the
following optimization problem

minimize:

Nÿ
�“1

Lopy�, Ôpx�qq

subject to: Cpx�, Ôpx�qq
where the loss function is specified by

Lopy, ŷq “ }pg ´ p̂g}2looooomooooon
Lppy,ŷq

` }v ´ v̂}2looomooon
Lvpy,ŷq

(3)

and Cpx,yq holds if there exist voltage angles θ and reactive
power generated qg that produce a feasible solution to the
OPF constraints with x “ ppd, qdq and y “ ppg,vq.

One of the key difficulties of this learning task is the pres-
ence of the complex nonlinear feasibility constraints in the
OPF. The approximation Ô will typically not satisfy the
problem constraints. As a result, like in the case of the DC
model discussed earlier, the validation of the learning task
uses a load flow computation that, given a prediction ŷ “
Ôpx�q, computes the closest feasible generator setpoints.

Baseline Deep Learning Model

The baseline model for this paper assumes that function Ô
is given by a feed-forward neural network, whose architec-
ture is part of the final network outlined in Figure 3 and
discussed in detail later. While this baseline model is often
accurate for many regression problems, the experimental re-
sults show that it has low fidelity for complex AC-OPF tasks.
More precisely, a load flow computation on the predictions
of this baseline model to restore feasibility produces gener-
ator setpoints with substantial errors. The rest of the paper
shows how to improve the accuracy of the model by exploit-
ing the problem structure.

Capturing the OPF Constraints

To capture the OPF constraints, this paper uses a La-
grangian relaxation approach based on constraint violations
(Fontaine, Laurent, and Van Hentenryck 2014) used in gen-
eralized augmented Lagrangian relaxation (Hestenes 1969).
The Lagrangian relaxation of an optimization problem

minimize: fpxq
subject to: hpxq “ 0; gpxq ď 0

is given by

minimize: fpxq ` λhhpxq ` λggpxq

where λh and λg ě 0 are the Lagrangian multipliers. In
contrast, the violation-based Lagrangian relaxation is

minimize: fpxq ` λh|hpxq| ` λg maxp0, gpxqq
with λh, λg ě 0. In other words, the traditional Lagrangian
relaxation exploits the satisfiability degrees of constraints,
while the violation-based Lagrangian relaxation is expressed
in terms of violation degrees. The satisfiability degree of
a constraint measures how well the constraint is satisfied,
with negative values representing the slack and positive val-
ues representing violations, while the violation degree is al-
ways non-negative and represents how much the constraint
is violated. More formally, the satisfiability degree of a con-
straint c : Rn Ñ Bool is a function σc : Rn Ñ R such
that σcpxq ď 0 ” cpxq. The violation degree of a con-
straint c : Rn Ñ Bool is a function νc : Rn Ñ R

` such
that σcpxq ” 0 ” cpxq. For instance, for a linear constraints
cpxq of type Ax ě b, the satisfiability degree is defined as

σcpxq ” b ´ Ax

and the violation degrees for inequality and equality con-
straints are specified by

νě
c pxq “ max p0, σcpxqq ν“

c pxq “ |σcpxq| .
Although the resulting term is not differentiable (but admits
subgradients), computational experiments indicated that vi-
olation degrees are more appropriate for predicting OPFs
than satisfiability degrees. Observe also that an augmented
Lagrangian method uses both the satisfiability and violation
degrees in its objective.

To define the violation degrees of the AC-OPF con-
straints, the baseline model needs to extended to predict the
reactive power dispatched qg and the voltage angles θ of the
power network. Given the predicted values v̂, θ̂, p̂g, and q̂g ,
the satisfiability degree of (a subset of) the OPF constraints
can be expressed as:

σL
2apv̂iq“p 9vmin

i – v̂iq σR
2apv̂iq“pv̂i – 9vmax

i q @i P N
σL
3app̂gi q“ 9pgmin

i – p̂gi σR
3app̂gi q“ p̂gi – 9pmax

i @i P N
σ6app̂gi , 9pdi , p̃f q“

ÿ
pijqPE

p̃fij – pp̂gi – 9pdi q @i P N

where σL
2a and σR

2a correspond to Constraints (2a) and cap-
ture the distance of the predictions v̂i from the voltage
bounds. Similarly, σL

3a and σR
3a relate to Constraints (3̄a) and

describe the distance of the predicted generator active dis-
patches from their bounds. Finally, the functions σ6a relate
to the Kirchhoff Current Laws (Constraints (6̄a)) and ex-
press the violation of flow conservation at a bus. Here p̃fij is
the active power flow for line pijq P E computed from Con-
straints (5̄a), using the predicted quantities v̂i, v̂j , θ̂i, and θ̂j .
The complete list of the satisfiability degrees of the OPF
constraints is detailed in the extended version of this paper
(Fioretto, Mak, and Van Hentenryck 2019).

The violation degrees associated with the satisfiability de-
gree above are defined as follows:

ν2apv̂q “ 1
n

ř
iPN

`
νě
c

`
σL
2apv̂iq

˘ ` νě
c

`
σR
2apv̂iq

˘˘
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Figure 3: The OPF-DNN Model: Each layer is fully connected with ReLU activation. White boxes correspond to input tensors,
dark, colored, boxes correspond to output layers. Loss components and violation degrees are shown as white rectangles.

ν3app̂q “ 1
n

ř
iPN

`
νě
c

`
σL
3app̂iq

˘ ` νě
c

`
σR
3app̂iq

˘˘

ν6app̂g, 9pd,pf q “ 1
e

ř
ijPE ν“

c

`
σ6app̂gi , 9pdi , p̃f q˘

,

where n and e denote the number of buses and transmission
lines, respectively. These functions capture the average de-
viation by which the prediction violates the associated con-
straint. The complete set of the OPF constraints violation
degrees is given in the supplemental material. The violations
degrees define penalties that will be used to enrich the DNN
loss function to encourage their satisfaction. Prior describ-
ing the DNN objective, we introduce a further extension that
exploits yet another aspect of the structure of the OPF.

Exploiting Existing Solutions
The solving of an OPF (or a load flow) rarely happens in
a cold-start: OPFs are typically solved in the context of an
existing operating point and/or with the availability of solu-
tions to similar instances (hot-start). As a result, the learning
task can exploit this existing configuration, which is called
the hot-start state in this paper. The hot-start state is a tuple
s0 “ `

pd
0, q

d
0 ,p

g
0, q

g
0 ,v0,θ0

˘
, describing the load, the gen-

eration, and the voltages that are solutions to a related OPF.
The learning can then use a new, enriched, training dataset,
defined as follows:

D“
!̀

p
x1hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

pd
0, q

d
0 ,p

g
0, q

g
0 ,v0,θ0,p

d, qdq1,
y1hkkkkkkikkkkkkj

ppg, qg,v,θq1˘
, . . . ,

`ppd
0, q

d
0 ,p

g
0, q

g
0 ,v0,θ0,p

d, qdlooooooooooooooooomooooooooooooooooon
xN

qN , ppg, qg,v,θloooooomoooooon
yN

qN˘)
.

The elements x� PR8n are vectors describing the hot-start
state s0 (e.g., the configuration in the previous timestep) and
the current loads ppd, qdq. The elements y� P R

4n are vec-
tors describing the optimal generator and voltage settings
for input data x�. The collection of the elements tx�uN�“1 is
denoted by X and the elements ty�uN�“1 by Y . The goal re-
main that of learning a mapping Ô. Note that, despite some
proximity of loads in subsequent states, the OPF non linear-
ities often cause severe variations in the operational param-
eters outputs. Therefore, as confirmed by our experimental
results, the learning mechanism cannot rely exclusively on
the information encoded in the hot-start state.

Objective

It is now possible to define the final loss function used to
train the OPF-DNN. First, the loss is augmented to con-
sider the predictions of voltage phase angles and the reactive
power of generators, since these are required to compute the
violation degrees associated with the OPF constraints. The
resulting loss function Lopy, ŷq is:

}v ´ v̂}loomoon
Lvpy,ŷq

2 ` }θ ´ θ̂}loomoon
Lθpy,ŷq

2 ` }pg ´ p̂g}loooomoooon
Lppy,ŷq

2 ` }qg ´ q̂g}loooomoooon
Lqpy,ŷq

2. (4)

It minimizes the mean squared error between the optimal
voltage and generator settings y and the predicted ones ŷ.

Moreover, the objective function includes the Lagrangian
relaxation based on the OPF physical and engineering con-
straints violation degrees. Given the set C of OPF con-
straints, the associated loss is captured by the expression

Lcpx, ŷq “
ÿ
cPC

λcνcpx, ŷq.

The model loss function sums these two terms, i.e.,

Lpx,y, ŷq “ Lopy, ŷq ` Lcpx, ŷq.
The Network Architecture

The network architecture is outlined in Figure 3. The in-
put layers on the left process the tensor of loads ppd

0, q
d
0q

of the hot-start state s0 and the input loads ppd, qdq. The
network has 4 basic units, each following a decoder-encoder
structure and composed by a number of fully connected lay-
ers with ReLU activations. Each subnetwork predicts a tar-
get variable: voltage magnitudes v̂, phase angles θ̂, active
power generations p̂g , and reactive power generations q̂g .
Each sub-network takes as input the corresponding tensor
in the hot-start state s0 (e.g., the sub-network responsible
for predicting the voltage magnitude v̂ takes as input v0),
as well as the last hidden layer of its input subnetwork, that
processes the load tensors.

The predictions for the voltage magnitude v̂ and angle θ̂
are used to compute the load flows pp̃f , q̃fq, as illustrated on
the bottom of the Figure. The components of the losses are
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highlighted in the white boxes and a full description of the
network architecture is provided in the extended version of
this paper (Fioretto, Mak, and Van Hentenryck 2019).

Lagrangian Duality

Let Ôrws be the resulting OPF-DNN with weights w and let
Lrλs be the loss function parametrized by the Lagrangian
multipliers λ “ tλcucPC . The training aims at finding the
weights w that minimize the loss function for a given set of
Lagrangian multipliers, i.e., it computes

LRpλq “ min
w

Lrλspx,y, Ôrwspxqq.
It remains to determine appropriate Lagrangian multipliers.
This paper proposes the use of Lagrangian duality to obtain
the optimal Lagrangian multipliers when training the OPF-
DNN, i.e., it solves

LD “ max
λ

LRpλq.
The Lagrangian dual is solved through a subgradient method
that computes a sequence of multipliers λ1, . . . ,λk, . . . by
solving a sequence of trainings LRpλ0q, . . . ,LRpλk´1q, . . .
and adjusting the multipliers using the violations, i.e.,

wk`1 “ argmin
w

Lrλkspx,y, Ôrwkspxqq (L1)

λk`1 “
´
λk
c ` ρ νcpx, Ôrwk`1spxqq | c P C

¯
. (L2)

In the implementation, step (L1) is approximated using a
Stochastic Gradient Descent (SGD) method. Importantly,
this step does not recomputes the training from scratch but
uses a hot start for the weights w.

The overall training scheme is presented in Algorithm 1.
It takes as input the training dataset pX ,Yq, the optimizer
step size α ą 0 and the Lagrangian step size ρ ą 0. The
Lagrangian multipliers are initialized in line 1. The training
is performed for a fixed number of epochs, and each epoch
optimizes the weights using a minibatch of size b. After pre-
dicting the voltage and generation power quantities (line 4),
the objective and constraint losses are computed (lines 5 and
6). The latter uses the Lagrangian multipliers λk associated
with current epoch k. The model weights are updated in line
7. Finally, after each epoch, the Lagrangian multipliers are
updated following step (L2) described above (lines 8 and 9).

Experiments

This section evaluates the predictive accuracy of OPF-DNN
and compares it to the AC model and its linear DC approxi-
mation. It also analyzes various design decisions in detail.

Data sets The experiments examine the proposed mod-
els on a variety of power networks from the NESTA library
(Coffrin, Gordon, and Scott 2014). For presentation simplic-
ity, the analysis focuses primarily on the IEEE 30, 118, and
300-bus networks. However, the results are consistent across
the entire benchmark set (see (Fioretto, Mak, and Van Hen-
tenryck 2019)). The ground truth data are constructed as fol-
lows: For each network, different benchmarks are generated

Algorithm 1: Learning Step
input: pX ,Yq : Training data

α, ρ : Optimizer and Lagrangian step sizes, reps.
1 λ0 Ð 0 @c P C
2 for epoch k “ 0, 1, . . . do
3 foreach px,yqÐminibatchpX ,Yq of size b do

4 ŷ Ð Ôrwspxq
5 Lopŷ,yq Ð 1

b

ř
�Prbs Lvpy�, ŷ�q ` Lθpy�, ŷ�q`

Lppy�, ŷ�q ` Lqpy�, ŷ�q
6 Lcpx, ŷq Ð 1

b

ř
�Prbs

ř
cPC λk

cνcpx�, ŷ�q
7 ω Ð ω ´ α∇ωpLopŷ,yq ` Lcpx, ŷqq
8 foreach c P C do

9 λk`1
c Ð λk ` ρνcpx, ŷq

Δ1% pd Δ3% pd

Test Case |N | |E | |pX ,Yq| p%q MW p%q MW

14 ieee 14 40 395806 2.05 5.334 3.15 8.181
30 ieee 30 82 273506 2.47 7.010 3.36 9.533
39 epri 39 92 287390 2.49 156.3 3.42 213.9
57 ieee 57 160 269140 2.65 33.20 3.67 45.92
73 ieee rts 73 240 373142 2.72 233.2 3.80 324.9
89 pegase 89 420 338132 2.50 204.0 3.53 288.0
118 ieee 118 372 395806 3.03 128.6 3.98 169.1
162 ieee dtc 162 568 237812 3.10 296.5 4.04 385.9
189 edin 189 412 69342 2.85 39.09 3.72 50.94
300 ieee 300 822 235732 3.25 775.9 4.22 1007.0

Table 1: The Power Networks Adopted as Benchmarks.

by altering the amount of nominal load x“ ppd, qdq within
a range of ˘20%. The loads are thus sampled from the dis-
tributions x1 “ ppd1, qd1q „ Uniformp0.8x, 1.2xq. The re-
sulting benchmarks thus have load demands that vary by a
factor of up to 20% of their nominal values: Many of them
become congested and significantly harder computationally
than their original counterparts. A network value that consti-
tutes a dataset entry px1,y1q is a feasible OPF solution ob-
tained by solving the AC-OPF problem detailed in Figure 1.

When the learning step exploits an existing hot-start state
s0, the training test cases have the property that the total
active loads }pd

0}1 in s0 are within 1% and 3% of the to-
tal active loads }pd}1. Note that, while the aggregated loads
follow this restriction, the individual loads may have far
greater variations. Those are illustrated in Table 1 for the 1%
(Δ1%p

d) and 3% (Δ3%p
d) cases, where the average varia-

tions are expressed both in percentage of the total load and
in absolute values (MWs). As can be seen, the variations
are significant. The table also describes the dataset sizes, in-
cluding the number of buses and transmission lines of the
networks. The data are normalized using the per unit (pu)
system so that all quantities are close to 1. The experiments
use a 80{20 train-test split and report results on the test set.

Settings The experiments examine the OPF-DNN models
whose features are summarized in Table 2. MB refers to the
baseline model: It minimizes the loss function Lo described
in Equation (3). MC exploits the problem constraints and
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Model MB MC MCS MD
CS MD(3%)

CS

Exploit Constraints l �l �l �l �l
Exploit hot-start State l l �l �l �l
Lagrangian Dual Update l l l �l �l
Prior State Accuracy – – 1% 1% 3%

Table 2: The DNN Models Adopted.

Test Case Type p̂g v̂ θ̂ p̃f

30 ieee

MB 3.3465 14.699 4.3130 27.213
MC 3.1289 2.7346 1.5930 1.6820
MCS 0.3052 0.3130 0.0580 0.2030
MD

CS 0.0055 0.0070 0.0041 0.0620

MD(3%)
CS 0.0030 0.0160 0.0080 0.2120

118 ieee

MB 0.2150 7.1520 4.2600 38.863
MC 0.1810 6.9150 4.6520 6.4730
MCS 0.0380 0.1170 1.2750 0.6640
MD

CS 0.0340 0.0290 0.2070 0.4550

MD(3%)
CS 0.0070 0.0210 0.0590 0.3030

300 ieee

MB 0.0838 28.025 12.137 125.47
MC 0.0914 14.727 7.7450 34.133
MCS 0.0174 3.1130 7.2330 26.905
MD

CS 0.0126 0.0610 2.5670 1.1360

MD(3%)
CS 0.0260 0.2270 0.9980 1.9300

Table 3: Prediction Errors (%).

minimizes the loss: Lo ` ř
cPC λcνc, with Lo defined in

Equation (4) and all λc set to 1. The suffix S is used for
the models that exploit a hot-start state. In particular, MCS
uses the same loss function as MC, but it adopts the archi-
tecture outlined in Figure 3. Finally, MD

CS extends MCS by
learning the Lagrangian multipliers λc using the Lagrangian
dual scheme described in Algorithm 1. The latter model is
also denoted with OPF-DNN in the paper. The experimen-
tal results also used a model (called MD

C) that extends MC
by using the Lagrangian dual scheme to adjust the values
of the multipliers, and a model (called ML

CS) that extends
MCS by learning the values of the multipliers during train-
ing. The former performs better, in general, than MC, but
significantly worse than MCS, and the latter performs simi-
larly to MCS. All the models that exploit a hot-start state are
trained over datasets using states differing by at most 1%,
except for model MD(3%)

CS , which denotes the MD
CS model

trained with states differs by at most 3%. The reader is re-
ferred to (Fioretto, Mak, and Van Hentenryck 2019) for an
extensive analysis of the results.

The training uses the Adam optimizer with learning rate
(α“0.001) and β values p0.9, 0.999q and was performed for
80 epochs using batch sizes b “ 64. Finally, the Lagrangian
step size ρ is set to 0.01. Additional information are reported
in (Fioretto, Mak, and Van Hentenryck 2019).

Prediction Errors

We first analyze the prediction error of the DNN models. Ta-
ble 3 reports the average L1 distance between the predicted
generator power p̂g , voltage magnitude v̂ and angles θ̂ and
the original quantities. It also reports the errors of the pre-
dicted flows p̃f (which use the generator power and volt-
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Figure 4: Prediction Errors at varying of the network loads.

age predictions) and are important to assess the fidelity of
the predictions. The results focuses on comparing models
MB MC MCS MD

CS, and report MD(3%)
CS for completeness.

The distances are reported in percentage: }x̂´x}1
}x}1 ˆ100, for

quantity x, and best results are highlighted in bold. For com-
pleteness, the results report an extended version of model
MB, which predicts quantities θ and qg; A clear trend ap-
pears: The prediction errors decrease with the increasing of
the model complexity. In particular, model MC, which ex-
ploits the problem constraints, predicts much better voltage
quantities and power flows than MB. MCS, which also ex-
ploits a hot-start state, improves MC predictions by one or-
der of magnitude in most of the cases. Finally, the use of
the Lagrangian dual to find the best weights (MD

CS) further
improves MCS predictions by up to an additional order of
magnitude. The results are consistent for MD(3%)

CS .
Figure 4 further illustrates the importance of modeling the

problem constraints and exploiting a hot-start state. It illus-
trates the prediction errors on the operational parameters v
(left) and pg (right) at the varying of the demands in the
power networks. The plots are in log-10 scale and clearly in-
dicate that the models exploiting the problem structure better
generalize to the different network settings.

Load Flow Analysis

Having assessed the predictive capabilities of OPF-DNN,
the next results focus on evaluating its practicality by sim-
ulating the prediction results in an operational environment.
The idea is to measure how much the predictions need to be
adjusted in order to satisfy the operational and physical con-
straints. The experiments perform a load flow (Figure 2) on
the predicted p̂g and v̂ values. In addition to comparing the
DNN model variants, the results also report the deviations of
the linear DC model from an AC-feasible solution. The DC
model is widely used in power system industry. The results
also reports the performance of a baseline load flow model
LFS that finds a feasible solution using the hot-start state
s0 as reference point in its objective function. These results
highlight the value of learning in OPF-DNN: The reference
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Test Case DC MB MC MCS MD
CS MD(3%)

CS DC LFS MB MC MCS MD
CS MD(3%)

CS

30 ieee
pg 2.6972 2.0793 1.9688 0.1815 0.0007 0.0019 0.1907 13.504 2.1353 1.8268 0.2735 0.0058 0.0030
v 1.2929 83.138 0.4309 0.0944 0.0037 0.0019 3.4931 0.4829 6.2996 2.7458 0.4299 0.0086 0.0126

118 ieee
pg 0.2011 0.1071 0.0359 0.0043 0.0038 0.0010 0.5865 3.8034 0.1353 0.1557 0.0372 0.0368 0.0068
v 1.9971 3.4391 0.8995 0.0956 0.0866 0.0050 2.2780 0.9772 4.5972 6.0326 0.1599 0.1335 0.0200

300 ieee
pg 0.1336 0.0447 0.0339 0.0091 0.0084 0.0124 0.1717 14.813 0.0644 0.0766 0.0204 0.0175 0.0247
v 3.8526 31.698 10.292 0.2383 0.1994 0.2507 0.6854 1.5737 2.9985 2.1296 1.1553 0.2196 0.1575

Total Avg. (%)
pg 0.7751 0.9843 0.9719 0.0777 0.0197 0.0279 0.6090 7.7780 0.5694 0.5307 0.1096 0.0356 0.0268
v 2.4284 36.288 10.334 0.8780 0.1995 0.1345 1.7870 0.8213 3.3879 2.4985 0.9429 0.2136 0.1230

Table 4: Average distances (%) for the active power (top rows) and voltage magnitude (bottom rows) of the Load Flow solutions
w.r.t. the corresponding predictions (left table) and w.r.t. the AC-OPF solutions (right table).

Test Case DC LFS MB MC MCS MD
CS MD(3%)

CS

14 ieee 5.1792 4.5246 0.7562 0.6290 0.2614 0.0007 0.0001
30 ieee 7.9894 8.2411 2.9447 2.1316 0.5433 0.0180 0.0078
39 epri 0.9094 2.2869 0.1901 0.0752 0.0537 0.0003 0.0027
57 ieee 1.7758 3.8445 1.1115 1.0609 0.2025 0.0527 0.0001
73 ieee rts 2.6846 1.4581 9.4364 3.2399 0.5143 0.4586 0.0356
89 pegase 1.5089 2.6287 0.3284 0.3274 0.3347 0.1494 0.0237
118 ieee 4.7455 1.0389 1.0973 1.1897 0.5300 0.5408 0.1620
162 ieee dtc 6.2090 4.2094 0.5021 0.8360 0.3162 0.2845 0.1535
189 edin 9.9803 7.5561 5.3851 2.7770 0.7135 0.3177 0.3500
300 ieee 4.7508 6.6394 1.9543 1.1576 0.3233 0.3011 0.6226

Total Avg. (%) 4.5733 4.2428 2.3706 1.3424 0.3793 0.2124 0.1358

Table 5: Load Flow vs. AC-OPF cost distances (%).

point alone is not sufficient to find high quality solutions.
The results are tabulated in Table 4. The left table reports

the L1 distances, in percentage, of the predictions p̂g and v̂
to the solutions pg and v of the load flows. Trends similar
to the previous section are observed, with MD

CS being sub-
stantially more accurate than all other DNN versions. The
table also shows that MD

CS is up to two orders of magnitude
more precise than the DC model. The right table reports the
L1 distances of the load flow solutions to the optimal AC-
OPF solutions. The results follow a similar trend, with the
OPF-DNN model (MD

CS) being at least one order of magni-
tude more precise than the DC model and the baseline LFS

model. The bottom rows of the table show the average re-
sults over all the power network adopted in the experimental
analysis. Note that the very high accuracy of OPF-DNN may
render the use of a load flow optimization, to restore feasibil-
ity, unnecessary. These results are significant: They suggest
that OPF-DNN has the potential to replace the DC model as
an AC-OPF approximation and deliver generator setpoints
with greater fidelity.

Solution Quality and Runtime

Finally, the last results compare the accuracy and runtime of
the proposed DNN models, the DC approximation, and the
load flow baseline LFS , against the optimal AC-OPF solu-
tions. The solution quality is measured by first finding the
closest AC feasible solution to the predictions returned by
the DC or by the DNN models. Then, the cost of the dis-
patches are compared to the original ones. Table 5 reports
the average L1-distances of the dispatch costs. The last row
reports the average distances across all the test cases. The
analysis of the DNN variants exhibits the same trends as
before, with the networks progressively improving the re-

sults as they exploit the problem constraints (MC), a hot-
start state (MCS), and use the Lagrangian dual (MD

CS).
Finally, Table 6 illustrates the average time required to

find an AC OPF solution, the AC load flow with a reference
solution, a linear DC approximation, and a prediction using
OPF-DNN (MD

CS) on the test dataset. Recall that the dataset
adopted uses a load stress value of up to 20% of the nominal
loads and hence the test cases are often much more chal-
lenging than their original counterparts. The last row of the
table reports the average speedup of the models compared to
the AC OPF. Observe that OPF-DNN finds dispatches whose
costs are at least one order of magnitude closer to the AC so-
lution than those returned by the DC approximation, while
being several order of magnitude faster.

Related Work

Within the energy research landscape, DNN architectures
have mainly been adopted to predict exogenous factors af-
fecting renewable resources, such as solar or wind. For in-
stance, Anwar et al. 2016 uses a DNN-based system to pre-
dict wind speed and adopt the predictions to schedule gen-
eration units ahead of the trading period, and Boukelia et
al. 2017 studied a DDN framework to predict the electric-
ity costs of solar power plants coupled with a fuel backup
system and energy storage.

Another power system area in which DNNs have been
adopted is that of security assessment: Arteaga et al. (2019)
proposed a convolutional neural network to identify safe
vs. unsafe operating points to reduce the risks of a blackout.
Donnot et al. (2019) use a ResNet architecture to predict the
effect of interventions that reconnect disconnected transmis-
sion lines in a power network.

In terms of OPF prediction, the literature is much sparser.
The most relevant work uses a DNN architecture to learn the
set of active constraints (e.g., those that, if removed, would
improve the value of the objective function) at optimality in
the linear DC model (Ng et al. 2018; Deka and Misra 2019).
Once the set of relevant active constraints are identified, ex-
ploiting the fact that the DC OPF is a linear program, one
can run an exhaustive search to find a solution that satisfies
the active constraints. While this strategy is efficient when
the number of active constraints is small, its computational
efficiently decreases drastically when its number increases
due to the combinatoric nature of the problem. Additionally,
this strategy applies only to the linear DC approximation.

This work departs from these proposals and predicts the
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Test Case AC LFS DC OPF-DNN

14 ieee 0.0332 0.0430 0.0075 0.0000
30 ieee 0.1023 0.0755 0.0148 0.0000
39 epri 0.2169 0.0968 0.0232 0.0000
57 ieee 0.3288 0.1394 0.0359 0.0000
73 ieee rts 0.3081 0.2979 0.0496 0.0000
89 pegase 1.4503 0.6014 0.0601 0.0000
118 ieee 0.4207 0.7819 0.0785 0.0001
162 ieee dtc 1.8909 0.7393 0.2016 0.0000
189 edin 4.0081 0.4490 0.0865 0.0001
300 ieee 8.0645 1.4850 0.2662 0.0001
Avg speedup 1x 2.76x 15.2x ą104x

Table 6: Average runtime in seconds.

optimal setpoints for the network generators and bus volt-
ages in the AC-OPF setting. Crucially, the presented model
actively exploits the OPF constraints during training, pro-
ducing reliable results that significantly outperform classi-
cal model approximations (e.g., DC-OPF). This work also
provides a compelling alternative to real-time OPF track-
ing (Tang, Dvijotham, and Low 2017; Liu et al. 2018): OPF-
DNN always converges instantly with very high accuracy
and can be applied to a wider class of applications.

Conclusions

The paper studied a DNN approach for predicting the gener-
ators setpoint in optimal power flows. The AC-OPF problem
is a non-convex non-linear optimization problem that is sub-
ject to a set of constraints dictated by the physics of power
networks and engineering practices. The proposed OPF-
DNN model exploits the problem constraints using a La-
grangian dual method as well as a related hot-start state. The
resulting model was tested on several power network test
cases of varying sizes in terms of prediction accuracy, op-
erational feasibility, and solution quality. The computational
results show that the proposed OPF-DNN model can find
solutions that are up to several order of magnitude more pre-
cise and faster than existing approximation methods (e.g.,
the commonly adopted linear DC model). These results may
open a new avenue in approximating the AC-OPF problem,
a key building block in many power system applications, in-
cluding expansion planning and security assessment studies
which typically requires a huge number of multi-year sim-
ulations based on the linear DC model. Current work aims
at improving the (currently naive) implementation to test the
approach on very large networks whose entire data sets are
significantly larger than the GPU memory.
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