Performance Evaluation in Machine Learning: The Good, the Bad, the Ugly, and the Way Forward
DOI:
https://doi.org/10.1609/aaai.v33i01.33019808Abstract
This paper gives an overview of some ways in which our understanding of performance evaluation measures for machine-learned classifiers has improved over the last twenty years. I also highlight a range of areas where this understanding is still lacking, leading to ill-advised practices in classifier evaluation. This suggests that in order to make further progress we need to develop a proper measurement theory of machine learning. I then demonstrate by example what such a measurement theory might look like and what kinds of new results it would entail. Finally, I argue that key properties such as classification ability and data set difficulty are unlikely to be directly observable, suggesting the need for latent-variable models and causal inference.