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Abstract
This paper gives an overview of some ways in which
our understanding of performance evaluation measures for
machine-learned classifiers has improved over the last twenty
years. I also highlight a range of areas where this understand-
ing is still lacking, leading to ill-advised practices in classi-
fier evaluation. This suggests that in order to make further
progress we need to develop a proper measurement theory of
machine learning. I then demonstrate by example what such
a measurement theory might look like and what kinds of new
results it would entail. Finally, I argue that key properties such
as classification ability and data set difficulty are unlikely to
be directly observable, suggesting the need for latent-variable
models and causal inference.

1 Introduction
Data-driven AI systems typically operate in a rich ecosystem
involving many different components and actors, between
which a multitude of signals and messages are passed. Im-
portant signals include the predicted target value for a partic-
ular data case as estimated by a model (e.g., a class label in
classification, or a real number in regression); the variabil-
ity or uncertainty in these estimates (e.g., confidence inter-
vals, calibrated class probabilities); and performance mea-
surements of a machine learning model on a test data set
(e.g., classification accuracy or F-score). The latter kind of
signals will be our main concern in this paper.

It may appear that performance measurements and re-
lated signals are well-understood, at least in supervised ma-
chine learning. For example, classification performance can
be measured by a range of evaluation measures including
accuracy, true and false positive rate, precision and recall,
F-score, Area Under (ROC) Curve, and Brier score. Each of
these evaluation measures has a clear technical interpreta-
tion that can be linked to particular use cases. There are fur-
thermore well-defined relationships between many of these
evaluation measures.

However, one only has to dig a little deeper in the machine
learning literature for problematic issues to emerge, often
stemming from a limited appreciation of the importance of
the scale on which evaluation measures are expressed. Sev-
eral examples will be given later in the paper, which aims
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to give a balanced view of where we are in machine learn-
ing performance evaluation, where we should aim to be, and
how we might get there. This short paper is therefore in part
a review of my own and others’ work on evaluation mea-
sures, in part a critique of current practice in empirical ma-
chine learning, and in part a suggested way forward towards
a well-founded measurement theory for machine learning.

2 Performance Evaluation in Machine
Learning

I will start by reviewing and critiquing current practice in
performance evaluation of machine learning algorithms. I
will highlight some good things, some not so good things,
and some things to be avoided. This is intended to demon-
strate, by example, the need for a more careful treatment of
performance evaluation and the development of a specific
measurement framework for machine learning, but should
not be taken as complete in any sense.

ML Evaluation: The Good
An important development in the last twenty years has been
the realisation that, even in the simplest scenarios, a single
aggregated measurement is insufficient to accurately reflect
the performance of a machine learning algorithm. Provost,
Fawcett, and Kohavi (1998) pointed out the limitations of
using predictive accuracy as the gold standard in classifica-
tion and were among the early proponents of ROC analy-
sis in this context. Provost and Fawcett (2001) demonstrated
the usefulness of ROC analysis for dealing with changing
class and cost distributions, and introduced the ROC con-
vex hull method, which was later shown to be equivalent
to using isotonic regression to obtain calibrated probabil-
ities from a classifier (Fawcett and Niculescu-Mizil 2007;
Flach and Matsubara 2007). An example ROC curve with
its convex hull can be seen in Figure 1 (left).

ROC analysis derives its main ethos from multi-objective
optimisation, which is to delay choosing a trade-off be-
tween the different objectives to be optimised for as long
as possible. By discarding all dominated points (ones that
cannot be optimal under any trade-off) one is left with
the set of non-dominated solutions (the Pareto front) from
which the optimal operating point can be obtained once a
trade-off is fixed. In classification the optimisation objec-
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Figure 1: (left) Example ROC curve (black, solid line) and convex hull (blue, dashed line) on 10 instances with true labels
++−++−−+−−, ranked on decreasing classifier scores. Starting in the origin, the curve steps up for a positive and along
for a negative, until it reaches the NE corner; the ideal curve would go through the NW corner. This classifier mis-ranks 5
out of 25 +/− pairs, corresponding to the five cells above the curve (AUC = 20/25 = 0.8). The convex hull introduces bins
[++][−++][−−+][−−], turning four ranking errors into half-errors (AUCH = 22/25 = 0.88). (centre) Uncalibrated scores
against true classes (black circles), calibrated scores obtained by isotonic regression (blue crosses) and logistic calibration (red
plusses). (right) Brier curves for the original scores (black, solid line) and isotonically calibrated scores (blue, dashed line); the
difference between the two curves represents the decrease in Brier score achievable by calibration. Figure from (Flach 2016).

tives are per-class accuracies, and the Pareto front is the
ROC convex hull. A trade-off between true and false pos-
itive rate manifests itself as an isometric: a straight line with
a particular slope (e.g., an accuracy isometric has the ratio
of negative to positive examples as its slope (Flach 2004;
2011)). The convex hull is constructed from isometrics with
slopes that can be used to obtain calibrated probabilities.

Importantly, ROC analysis can also be used as a concep-
tual tool, and has been used to develop a new decision tree
splitting criterion (Ferri, Flach, and Hernández-Orallo 2002)
and to more generally understand performance evaluation
metrics (Flach 2003; Fürnkranz and Flach 2005). Also very
insightful are the cost curves introduced by Drummond and
Holte (2006). Cost curves differ from ROC curves in that
they explicitly represent trade-offs and and the loss incurred
at specific operating points, but at the expense of losing
isometrics as a visual representation of the trade-off under
which that threshold is optimal (Figure 1 (right)).

What ROC curves and cost curves do have in common,
though, is the fact that the area under the curve (AUC) is it-
self meaningful as an aggregated performance measure. The
area under the ROC curve (the expected true positive rate
when uniformly averaging over all false positive rates) can
not just be interpreted as an estimate of the probability that a
random positive is ranked higher than a random negative, but
is also linearly related to the expected classification accuracy
of a classifier that sets its rate of positive predictions in a cer-
tain way, a result first derived by Hernández-Orallo, Flach,
and Ferri (2012). The area under the cost curve (i.e., the ex-
pected misclassification loss when uniformly averaging over
all trade-offs) was shown by Hernández-Orallo, Flach, and
Ramirez (2011) to be equal to the Brier score of a proba-

bilistic classifier (the mean squared residuals compared to
the ‘ideal’ probabilities 0 and 1). However, the practice of
averaging performance measures in this way is not univer-
sally applicable – we will soon encounter an area-under-
curve technique that should be avoided.

What links these techniques together is a move away from
decision boundaries per se, considering instead the entire
range of operating points: we don’t want just p̂(Y |X) = 0.5
to be in the right place, but also, say, p̂(Y |X) = 0.3 or
p̂(Y |X) = 0.8. The advantage of calibrating over the whole
range of predicted probabilities is that, if the class distri-
bution changes from 50/50 in training to 30/70 or 80/20
in testing, we can simply change the decision threshold ac-
cordingly.1 There is a wealth of material on calibration and
scoring of probabilistic forecasts that is now being exploited
in machine learning, see for example Kull and Flach (2015).
Figure 1 (centre) shows the results of two calibration meth-
ods, one using isotonic regression and the other using a lo-
gistic sigmoid.

ML Evaluation: The Bad
I now turn to some less laudable practices that can never-
theless be observed in experimental machine learning. An
obvious tendency is to over-report evaluation measures: for
example, in classification one often sees accuracy/error rate,
F-score and AUC reported on the same experiments.2 The
key point is that each of these measures assumes a differ-
ent use case: accuracy assumes that, within each class, the

1If the training distribution is imbalanced, calculation of the
new threshold is marginally more involved (Flach 2016).

2A regex search on the ICML 2018 PDFs suggests that of the 32
papers reporting AUC, nearly two-third (21) also report accuracy.
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difference in cost of correctly classifying an instance and
misclassifying it is the same, while F-score assumes addi-
tionally that true negatives do not add value; both assume
that the class distribution in the test set is meaningful. Fur-
thermore, these two measures assume that the classifier has
a fixed operating point, whereas AUC aggregates over op-
erating points in response to changing costs or class distri-
butions – or alternatively, deals with ranking performance
rather than classification performance.

It is possible that each of these use cases are relevant for
a particular study, but then this should be clearly stated: ‘the
goal of this experiment is to test the algorithm’s performance
in such-and-such use case, which is measured adequately by
performance measure so-and-so’. Experimental set-ups are
often inherited from previous studies, which quite possibly
encourages this ‘everything and the kitchen sink’ approach.
But it would be highly desirable, in my opinion, for machine
learning experimenters to be more explicit about the objec-
tive of their experiments and to justify the reported evalua-
tion measures from that perspective, so that it becomes more
straightforward to translate the experimental measurements
back to conclusions about the experimental objective.3

A concrete example where two related measures as-
sess quite different use cases concerns mean absolute error
(MAE) and mean squared error (MSE) of probabilistic clas-
sifiers. Mean squared error or Brier score is a useful mea-
sure as it decomposes into calibration loss and refinement
loss, and can also be interpreted as the expected loss when a
classifier sets its decision threshold equal to the cost param-
eter c (the cost of a false positive in proportion to the sum of
the costs of false positive and a false negative) (Hernández-
Orallo, Flach, and Ferri 2012). Mean absolute error can be
interpreted as the expected loss if the classifier uses its pre-
dicted probability p̂ to make a stochastic prediction: posi-
tive with probability p̂, negative with probability 1− p̂. Note
that this ignores the operating condition c, and also gives a
loss that is always higher than MSE (except in edge cases),
so is unlikely to be a practically useful scenario. This sug-
gests that MAE is almost never worth reporting, and authors
should prefer MSE.

The treatment of probabilistic classifier scores is an area
where current practice can fall short more generally. This
is perhaps best illustrated using the case of the naive Bayes
classifier, which makes the simplifying – and simplistic –
assumption that within each class features are mutually in-
dependent, and hence estimates the likelihood ratio jointly
over all features as a product of the per-feature likelihood
ratios. As a result, naive Bayes’ estimates of these likeli-
hoods are almost always woefully poor – its usefulness as a
classifier stems solely from the fact that often it does a good
job as a ranker (Domingos and Pazzani 1997). In terms of
performance measures, one would expect a poor Brier score
but a decent AUC. Because of this, the decision threshold
cannot be fixed in advance or derived from Bayes’ rule, but
should be estimated from the ROC curve. In other words,

3Berrar and Flach (2011) discuss further cases of mis-
application and mis-understanding of AUC, such as the fallacy that
AUC = 1/2 means random performance.

despite having the appearance of a probabilistic classifier,
naive Bayes is best treated as a scoring classifier whose
scores happen to fall in the interval [0,1]; these scores must
be calibrated in post-processing in order to be meaningful as
estimates of the posterior class probability. That naive Bayes
is neither probabilistic nor Bayesian is not widely acknowl-
edged in the machine learning literature, and textbooks con-
tinue to invoke Bayes’ rule as the decision rule.

In a related vein, logistic regression is often said to yield
well-calibrated probability estimates, but this will only be
true insofar the parametric assumptions of the model – log-
its deriving from normal distributions within each class –
are satisfied, and can give arbitrarily bad results if they
are not. Similarly, scores from a support vector machine
are often calibrated by fitting a logistic sigmoid following
Platt (1999), but this again assumes that the scores within
each class are normally distributed, and there is nothing in
the SVM model that guarantees it – indeed, the whole point
of an SVM seems to be to avoid modelling distributions
and instead identify support vectors. This makes the SVM
+ logistic calibration hybrid a somewhat curious mongrel.
Logistic sigmoids are also widely used in deep neural net-
works, in the form of the parameter-free ‘softmax’ function
or the more recently proposed ‘temperature scaling’ which
learns a single shape parameter across all classes (Guo et al.
2017), but again the assumption that the preceding network
produces logits is rarely justified.

Finally – and this is already looking to a way forward –
there appears to be a widespread belief that properties of
interest in experimental machine learning are directly mea-
surable, e.g. by inspecting a confusion matrix. Here I sug-
gest we take a leaf out of the psychometrician’s book, who
will be very familiar with the idea that many variables of
interest – such as the difficulty of a test or the ability of a
student – are latent variables that manifest themselves only
indirectly through test results. Latent variable models are of
course an important tool in the machine learner’s toolbox
and it is hence somewhat embarrassing that machine learn-
ers haven’t yet caught on to using psychometrics-like tools
in their own experimental practices, but this is fortunately
starting to change (Bachrach et al. 2012; Martı́nez-Plumed
et al. 2016).

ML Evaluation: The Ugly
I now turn to some practices that are downright wrong yet
not widely recognised as such. As two main culprits I men-
tion the tendency to use the arithmetic mean as the sole way
to obtain averages, and a related tendency to use linear in-
terpolation without checking that it is indeed coherent to do
so. These issues will be further discussed in the next sec-
tion so I will only give one example here, as both mistakes
are often made in the context of so-called precision-recall
curves. These plot precision against recall while varying the
decision threshold of the classifier, in much the same way as
ROC curves are produced. Authors also often report the area
under the precision-recall curve (AUPR), which was for ex-
ample used in a well-known object classification challenge
(Everingham et al. 2015). But this practice makes exactly
the two mistakes just mentioned:
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• while linear interpolation is correct in ROC space, in the
sense that any operating point on a straight line between
two classifiers can be achieved by random choice between
those classifiers, it doesn’t carry over to precision-recall
space as pointed out by Davis and Goadrich (2006);

• even with the correct hyperbolic interpolation method the
area under the precision-recall curve is meaningless as
linear expectations are incoherent here (Flach and Kull
2015).

Finally, I mention the dangers of using parametric mod-
els in situations where the distributions involved are inap-
propriate. One example of this arises if one applies logistic
calibration, which assumes scores on an unbounded scale
as, e.g., output by a support vector machine, to a classifier
which scores on a bounded scale, such as naive Bayes.4 The
solution proposed by (Kull, Silva Filho, and Flach 2017a;
2017b) is to replace the Gaussian distributions underlying
the logistic sigmoid with Beta distributions as they have fi-
nite support.

3 The Way Forward:
A Measurement Theory for Machine Learning
Having looked at practices good and bad in performance
evaluation of machine learning algorithms, I postulate that
many of the issues discussed relate to notions of scale. We
therefore turn our attention to measurement theory, which is
the study of concepts of measurement and scale. After a brief
introduction I will discuss how insights from measurement
theory can be brought to bear on machine learning evalua-
tion.

Concatenation, Scales and Transformations
Representational measurement is one of the most developed
formal systems for measurement (Krantz et al. 1971–1990).
Representational measurement studies homomorphisms be-
tween an empirical relational system (ERS), describing the
relationships between measured objects in the real world,
and a numerical relational system (NRS) which aims to cap-
ture those relationships numerically (Hand 2004). The fun-
damental empirical relationship is concatenation: e.g., plac-
ing two rigid rods a and b end to end in a straight line would
be denoted a ◦ b. If M denotes the mapping of rods into
some numerical scale representing their length, we would
want this scale to be such that it allows an operation ⊕ in
the NRS that corresponds to concatenation in the ERS, i.e.,
M(a ◦ b) = M(a)⊕M(b), which represents the combined
length of the concatenated rods. Furthermore, we would
have an equivalence relation ∼ on rods and their concatena-
tions, indicating that they are of the same length; this equiv-
alence relation would map to equality in the NRS, i.e.: if
a◦b∼ c then M(a◦b) = M(c).

There may be multiple concatenation relationships and
hence multiple numerical operations: e.g., if we are con-
cerned with electrical resistance then connecting two re-

4See, for example, http://scikit-learn.org/stable/modules/
calibration.html where logistic calibration is applied to naive
Bayes scores.

sistors in series would give one type of concatenation, say
M(a ◦s b) = M(a)⊕s M(b), while putting them in parallel
would give another, say M(a ◦p b) = M(a)⊕p M(b). If M
measures resistance then we would have r1⊕s r2 = r1 + r2

and r1⊕p r2 =
(
r−1

1 + r−1
2

)−1
; whereas if M measures con-

ductance (the reciprocal of resistance) then we would have
c1 ⊕s c2 =

(
c−1

1 + c−1
2

)−1
and c1 ⊕p c2 = c1 + c2. So, not

only do we have multiple concatenation relationships in this
case, but also a choice of measurement scales with associ-
ated transformations between them (c = 1/r and r = 1/c).

Concatenation also gives us averaging: e.g., a rod d with
the average length of a and b would be such that a ◦ b ∼
d ◦ d, hence M(a ◦ b) = M(d ◦ d), hence M(a)⊕M(b) =
M(d)⊕M(d). If we use an additive scale to measure length
we would have M(a)+M(b)=M(d)+M(d), hence M(d)=
(M(a)+M(b))/2 (arithmetic mean); if we use a multiplica-
tive scale we would have M′(a)M′(b) = M′(d)M′(d), hence
M′(d) =

√
M′(a)M′(b) (geometric mean); notice that such

a scale can be construed as arising from an additive scale by
the transformation M′(a)= expM(a) and hence transformed
back into an additive scale by means of M(a) = lnM′(a).
The harmonic mean arises, e.g., when we put two resistors
in parallel (series) and we want to achieve the same resis-
tance (conductance) with two resistors with equal resistance
(conductance).

There are also transformations that don’t change the nu-
merical operations in an essential way, such as transform-
ing pounds into euros (today p = 1.12e), or degrees Celsius
into Fahrenheit (c = ( f − 32) · 5/9). Notice that a change
of currency only involves scaling, since zero pounds always
corresponds to zero euros (or zero in any other currency).
This means that statements such as ‘this costs twice as much
as that’ are meaningful regardless of the currency – currency
scales are said to be of ratio scale type. In contrast, if two ob-
ject’s temperatures are 50◦ and 100◦ Celsius then it doesn’t
make sense to say that the second object is twice as hot as the
first. Only ratios of differences are meaningful here: e.g., one
could say ‘in the previous hour the patient’s body tempera-
ture increased twice as much as in the hour before’ which
does not depend on the temperature scale used – temperature
scales are said to be of interval scale type. So ratio scales are
invariant under scaling x 7→ ax only whereas interval scales
admit affine transformations x 7→ ax+ b. Other scale types
distinguished in the literature include log-interval, which are
scales invariant under transformations x 7→ cxd (the name de-
rives from the fact that a logarithmic transformation changes
the scale into an interval scale – or a ratio scale if c = 1); or-
dinal, which are scales invariant under any monotonic trans-
formation; and nominal, which allows any one-to-one trans-
formation of scale values (Stevens 1946).

Measurements on Confusion Matrices
Thinking about measurement in machine learning, the first
things that probably come to mind are absolute frequencies
(counts), relative frequencies (proportions), (conditional)
probabilities, etc. As we can meaningfully say things like
‘classifier A correctly classifies twice as many examples as
classifier B’ or ‘classifier C predicts a positive outcome as
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twice as likely as classifier D’ these measurements seem
to be expressed on a ratio scale. However, such frequen-
cies and probabilities are also bounded from above, which
is something not recognised by Stevens’ levels of measure-
ment. That is, we can also meaningfully say ‘classifier B
misclassifies twice as many examples as classifier A’ – the
complement of such measurements is also expressed on a
ratio scale. Chrisman (1998) calls such scales absolute.

What would be sensible notions of concatenation in ma-
chine learning? Concentrating on performance evaluation as
we do in this paper, let us consider what happens in one of
the most common evaluation scenarios in machine learning:
cross-validation of classifiers. In this scenario we partition a
data set into k ‘folds’, train a model on k−1 of those and test
it on the remaining fold. This is repeated so that each fold is
used for testing exactly once. We calculate a performance
measure of choice on each test fold and aggregate those k
measures to arrive at a single measure of performance. For
example, we could calculate the arithmetic mean of the ac-
curacies obtained in each test fold.

Let us furthermore assume that our chosen performance
measure can be solely evaluated in terms of the counts in
a confusion matrix, and consider binary classification for
simplicity. A two-class confusion matrix with marginals
looks as follows:

Predicted + Predicted −
Actual + TP FN Pos
Actual − FP TN Neg

PPos PNeg N

Consider now an aggregated matrix which contains in each
cell the sum of all corresponding values from the per-fold
confusion matrices. This aggregated matrix is itself a con-
fusion matrix over the entire data set, recording for each in-
stance how it was classified when it was part of a test fold.
Taking this summing of confusion matrices as our concate-
nation operation we can then obtain

acc(Ci) =
TPi +TNi

Ni
, i = 1,2 (1)

acc(C1 ◦C2) =
∑i TPi +∑i TNi

∑i Ni
=

N1

N
acc(C1)+

N2

N
acc(C2)

(2)
In particular, if the two test sets have the same number of
test instances (which is natural in cross-validation) we see
that this form of concatenation of confusion matrices cor-
responds to arithmetic averaging of accuracies. This estab-
lishes a first component of an NRS for confusion matrices.

Can we obtain similar results for other evaluation mea-
sures? Let’s consider true positive rate, the proportion of ac-
tual positives correctly classified:

tpr(Ci) =
TPi

Posi
, i = 1,2 (3)

tpr(C1 ◦C2) =
∑i TPi

∑i Posi
=

Pos1

Pos
tpr(C1)+

Pos2

Pos
tpr(C2) (4)

We again obtain a weighted arithmetic mean, which will be
unweighted if the test sets have the same class distribution

(a practice called stratified cross-validation). We can obtain
similar numerical relationships for false positive rate, and
for true/false negative rate: for all these measures it is suffi-
cient to record their value on each test set and average them
afterwards, without needing to inspect the individual confu-
sion matrices or to form the concatenated matrix.

What about precision, the proportion of positive predic-
tions that are correct? Algebraically this is again straightfor-
ward:

prec(Ci) =
TPi

PPosi
, i = 1,2 (5)

prec(C1 ◦C2) =
∑i TPi

∑i PPosi
=

PPos1

PPos
prec(C1)+

PPos2

PPos
prec(C2) (6)

However, the number of positive predictions will not, in gen-
eral, be constant across test folds, and the ‘weights’ in this
expression are themselves measurements that require inspec-
tion of the individual confusion matrices. That is, if we want
to use cross-validation to estimate the precision of a clas-
sifier, we need to either (i) record both the true positives
and false positives in each test fold, or (ii) change the cross-
validation protocol so that every classifier makes the same
number of positive predictions.5

Let us now consider the F-score, which is customarily de-
fined as the harmonic mean of precision and recall (the lat-
ter being another name for true positive rate). The use of
the harmonic rather than the arithmetic mean here is of-
ten glossed over, but is itself of measure-theoretic inter-
est. It could be justified as follows: the first row and the
first column of the confusion matrix are vectors of the form
(G(ood),B(ad)), and both precision and recall calculate the
quantity MPR((G,B)) = G/(G + B) from their respective
vector. We can concatenate the two vectors by entry-wise
arithmetic averaging, yielding

MPR((TP,FP)◦ (TP,FN)) = MPR((TP,(FP+FN)/2))
= 2TP/(2TP+FP+FN) (7)

which is easily seen to be equivalent to the harmonic mean
of precision and recall. So the F-score arises as the counter-
part of a very natural notion of concatenation of good/bad
vectors; and the arithmetic mean of counts corresponds, via
a change of scale, to the harmonic mean at the level of pre-
cision and recall.

Going back to the previous discussion of aggregating con-
fusion matrices in cross-validation, we can derive the fol-
lowing expression for the F-score of two concatenated con-
fusion matrices:

Fscore(C1 ◦C2) =
Pos1 +PPos1

Pos+PPos
Fscore(C1)

+
Pos2 +PPos2

Pos+PPos
Fscore(C2) (8)

5Changing the concatenation operation is theoretically possible
but does not really seem a viable option: for example, an aggre-
gated confusion matrix with (TP1 ·PPos2 + TP2 ·PPos1)/2 in its
true positive cell and PPos1 ·PPos2 in its predicted positive cell
would have precision equal to the arithmetic mean of the two indi-
vidual precision values but is hard if not impossible to interpret.
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As with precision, we will need access to the number of pos-
itive predictions in each test set or force them to be equal.
Flach and Kull (2015) present a way of avoiding the har-
monic mean altogether by introducing precision/recall gain,
but even then one would need to record the number of true
positives in each test set in order to properly aggregate.

recGain(C1 ◦C2) =
TP1

TP
recGain(C1)+

TP2

TP
recGain(C2) (9)

precGain(C1 ◦C2) =
TP1

TP
precGain(C1)+

TP2

TP
precGain(C2) (10)

FGain(C1 ◦C2) =
TP1

TP
FGain(C1)+

TP2

TP
FGain(C2) (11)

Some Initial Results
If we further develop a measurement theory along these
lines, what kinds of result can we hope to obtain? Here are
two conjectures that I believe would be easy to prove.

Conjecture 1 Concatenation of confusion matrices by cell-
wise summing corresponds to arithmetic averaging of evalu-
ation measures with weights not requiring further measure-
ments if and only the latter have parallel ROC isometrics.

This conjecture applies to accuracy, true/false posi-
tive/negative rate, weighted relative accuracy (Lavrač, Flach,
and Zupan 1999), and variants that manipulate the slope of
the isometrics taking external factors into account (such as
misclassification costs).

Conjecture 2 Concatenation of confusion matrices by cell-
wise summing corresponds to arithmetic averaging of evalu-
ation measures with weights possibly requiring further mea-
surements if and only if the latter have straight ROC isomet-
rics.

This extends the first conjecture to cover evaluation mea-
sures such as precision and F-score and their gain ver-
sions alluded to above, but excludes measures such as the
arithmetic (or geometric) mean of precision and recall as
these would give non-linear isometrics (as would most deci-
sion tree splitting criteria (Fürnkranz and Flach 2005)). The
weights require further measurements if the slope of the iso-
metrics varies across ROC space, which means Conjecture 1
doesn’t apply.

4 Conclusions and Outlook
Measurement is of evident importance in machine learning
in at least two ways:

• the features used by machine learning models are them-
selves measurements, which is a perspective explored in
(Flach 2012, Chapter 10);

• performance evaluation of learned models, which was the
topic of this paper.

The development of a measurement theory for machine
learning is lagging behind the remarkable achievements of
machine learning technology itself, a situation that is in ur-
gent need of rectification if we want that technology to be

accepted and trusted by users. It is hoped that this paper will
provide an impetus in that direction.

On the positive side, I have demonstrated that much
progress has been made in providing a multi-objective op-
timisation perspective on machine learning evaluation met-
rics, using tools such as ROC curves and cost plots. There
are many opportunities to expand this line of work as only
a few works go beyond two-class ROC analysis (Mossman
1999; Dreiseitl, Ohno-Machado, and Binder 2000; Ferri,
Hernández-Orallo, and Salido 2003; Everson and Fieldsend
2006). There will be much value derived from techniques
for determining and approximating the Pareto front devel-
oped in the multi-objective optimisation field.

I have outlined the contours of a measurement theory for
evaluation measures based on confusion matrices. The key
concept is concatenation, of which I have given two realis-
tic examples: one within a matrix (to derive F-score) and the
main one between confusion matrices as might be obtained
from cross-validation. I have then shown that some evalua-
tion measures commute in the sense that (measure then av-
erage) gives the same result as (concatenate then measure),
but others don’t – F-score in particular. This means that,
in the absence of a sensible concatenation operator which
commutes, arithmetic averages of F-scores are incoherent. I
have also outlined the kind of formal results that might be
expected from such a measurement theory, linking them to
geometric properties in ROC space (Flach 2003).

Other highly promising opportunities involve the use of
latent-variable models. Here we envisage a trained classifier
to have an ability, and data sets (or data points) to have a
difficulty, both unobserved. Using experimental results such
as collected, e.g., by openml.org, we can estimate these la-
tent variables using models similar to item-response theory
(IRT) models in psychometrics (Embretson and Reise 2013).
This would be useful, for example, to develop adaptive tests
for machine learning algorithms (a kind of binary search in
ability space using few data sets with varying difficulties).
We have in fact started such work and will be reporting on it
in due course.

Would a measurement theory endowed with latent vari-
ables be all we require? It seems to me that, ultimately,
the kinds of conclusions we want to draw from our ma-
chine learning experiments are causal: ‘this algorithm out-
performs that algorithm because . . . ’. This would neatly tie
in with the ‘causal revolution’ that has been declared (Pearl
and Mackenzie 2018).
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