Single-Label Multi-Class Image Classification by Deep Logistic Regression


  • Qi Dong Queen Mary University of London
  • Xiatian Zhu Vision Semantics Limited
  • Shaogang Gong Queen Mary University of London



The objective learning formulation is essential for the success of convolutional neural networks. In this work, we analyse thoroughly the standard learning objective functions for multiclass classification CNNs: softmax regression (SR) for singlelabel scenario and logistic regression (LR) for multi-label scenario. Our analyses lead to an inspiration of exploiting LR for single-label classification learning, and then the disclosing of the negative class distraction problem in LR. To address this problem, we develop two novel LR based objective functions that not only generalise the conventional LR but importantly turn out to be competitive alternatives to SR in single label classification. Extensive comparative evaluations demonstrate the model learning advantages of the proposed LR functions over the commonly adopted SR in single-label coarse-grained object categorisation and cross-class fine-grained person instance identification tasks. We also show the performance superiority of our method on clothing attribute classification in comparison to the vanilla LR function. The code had been made publicly available.




How to Cite

Dong, Q., Zhu, X., & Gong, S. (2019). Single-Label Multi-Class Image Classification by Deep Logistic Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 3486-3493.



AAAI Technical Track: Machine Learning