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Abstract

The objective learning formulation is essential for the success
of convolutional neural networks. In this work, we analyse
thoroughly the standard learning objective functions for multi-
class classification CNNs: softmax regression (SR) for single-
label scenario and logistic regression (LR) for multi-label
scenario. Our analyses lead to an inspiration of exploiting LR
for single-label classification learning, and then the disclosing
of the negative class distraction problem in LR. To address this
problem, we develop two novel LR based objective functions
that not only generalise the conventional LR but importantly
turn out to be competitive alternatives to SR in single label
classification. Extensive comparative evaluations demonstrate
the model learning advantages of the proposed LR functions
over the commonly adopted SR in single-label coarse-grained
object categorisation and cross-class fine-grained person in-
stance identification tasks. We also show the performance
superiority of our method on clothing attribute classification
in comparison to the vanilla LR function. The code had been
made publicly available.

Introduction
Convolutional neural networks (CNNs) (LeCun et al. 1989)
have demonstrated impressive performance success in a
wide variety of image recognition problems (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016; Liu et al. 2016).
Two common problems are single-label (one class label per
image) and multi-label (multiple class labels per image) clas-
sification. Whilst both problems have the same learning
objective of inducing a multi-class classifier CNN model
through supervised training, their standard objective learning
functions are rather different.

Specifically, in single-label classification learning, we of-
ten adopt the softmax regression (SR) learning algo-
rithm. This is based on the per-sample single-label and class-
exclusion assumptions (Bridle 1990). For multi-label classifi-
cation in which a data sample may be tied with multiple class
labels, we instead adopt the logistic regression
(LR) learning algorithm (Bishop 2006). Without the “single-
label” and “class-exclusion” prior, LR considers per-sample
prediction of all individual class labels independently.
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It is intuitive that single-label classification is a special
case of multi-label classification. Hence, LR should be appli-
cable for single-label classification. Surprisingly, despite that
both SR and LR have been extensively studied and exploited
for learning single-label and multi-label classification inde-
pendently, their comparison in deep learning of single-label
classification has never been investigated systematically in
the literature to our knowledge. A few fundamental questions
remain unclear: How advantageous is the de facto standard
choice SR over LR for single-label classification on earth? Is
LR possibly competitive with or even superior to SR?

In this work, we investigate the potential and validity of
the Logistic Regression learning algorithm for single-label
multi-class classification in theory and practice. We observe
that although SR has an advantage of conducting class dis-
criminative learning via posing a competition mechanism be-
tween the ground-truth and other classes per training sample,
it may simultaneously distort the underlying data manifold
geometry which may in turn hurt the model generalisation
capability (Belkin, Niyogi, and Sindhwani 2006). This is
because in SR all non-ground-truth classes are identically
pushed away from the labelled ground-truth class in a homo-
geneous fashion with the class-to-class correlation ignored
in model learning. On the contrary, LR avoids this limitation
due to that each class is modelled independently as a separate
binary classification task (Bishop 2006). This allows the in-
trinsic inter-class geometrical correlation to emerge naturally
in a data-mining manner.

In light of the above theoretical merit, we particularly study
the efficacy of LR for single-label classification learning. Em-
pirically, we found that the vanilla LR indeed yields less
discriminative and generalisable models on image classifica-
tion tasks in most cases. With in-depth LR loss and gradient
analysis, we identify that the negative class distraction prob-
lem turns out to be the major model learning barrier.

We make three contributions: (1) We investigate the fun-
damental characteristics of SR and LR in single-label multi-
class classification learning. This is an essential and under-
studied problem in the literature to our knowledge. (2) We
identify the negative class distraction problem in LR as the
main obstacle for single-label classification learning, and pro-
pose two optimisation focus rectified LR learning algorithms
in a hard mining principle as effective solvers. (3) We con-
duct extensive evaluations on two single-label multi-class
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classification based image recognition tasks, coarse-grained
object categorisation and fine-grained zero-shot person in-
stance identification, by using five standard benchmarks. The
results show that our methods perform on par with or out-
perform the standard algorithm SR. We further validate the
effectiveness of our method in clothing attribute classification
with extremely sparse labels per data sample.

Related Work
With the recent surge of interest in neural networks like
CNNs, image classification by deep learning has gained mas-
sive attention and remarkable success (Krizhevsky, Sutskever,
and Hinton 2012; Girshick 2015; Dong, Gong, and Zhu
2017b; Liu et al. 2016; Lin et al. 2017; Dong, Gong, and
Zhu 2017a). We have witnessed significant advances in many
aspects including network architecture improvement (He et al.
2016), nonlinear activations (Maas, Hannun, and Ng ), layer
designs (Lin, Chen, and Yan 2014), regularisation techniques
(Srivastava et al. 2014), optimisation algorithms (Kingma
and Ba 2015), and data augmentation (Krizhevsky, Sutskever,
and Hinton 2012).

Essentially, these existing methods are mostly used and
grounded on the well-established learning algorithms such
as softmax regression (SR) (Luce 2005; Bridle 1990) and
logistic regression (LR) (Little 1974; Mor-Yosef et al. 1990).
Impacted by the traditional design principles (Goodfellow,
Bengio, and Courville 2016; Krishnapuram et al. 2005), LR
is often used to produce the prediction output of multi-label
multi-class classification models (Liu et al. 2016; Chua et
al. 2009), whilst SR to that of single-label multi-class clas-
sification models (Krizhevsky, Sutskever, and Hinton 2012;
Russakovsky et al. 2015) in current deep learning practice.

Although taking different learning formulations, both SR
and LR algorithms aim to train a multi-class neural network
classifier which, once trained, is able to predict the top one or
multiple class label(s) of new samples at test time. One reason
for this design discrepancy is that in SR, the single-label
constraint facilitates the learning of a multi-class classifier.
Although lacking the single-label class prior, LR has a merit
of individually learning per-class distributions and better
maintaining the class manifold structures (Bishop 2006). In
spite of that, LR is however rarely chosen to learn single-label
multi-class classification by existing methods, leaving its
potential efficacy for image recognition remaining unknown
in deep learning. To fill this gap, we systematically study
this ignored problem, identify and address a negative class
distraction (NCD) problem.

The NCD problem is concerned with imbalance learning
with a particular focus on positive and negative classes per
training sample. It is therefore related to the conventional
class imbalanced learning problem (Japkowicz and Stephen
2002; Weiss 2004; He and Garcia 2009; Dong, Gong, and Zhu
2018; Huang et al. 2016). Whilst sharing some theoretical
concept in general, the NCD problem in our context is funda-
mentally different because it is independent of the training
data distribution which however is the core problem existing
class imbalanced learning methods aim to address. Differ-
ently, the NCD problem is underpinned in the target class
space, occurring in the multi-class joint optimisation process

on each training sample. A larger class space leads to a more
serious NCD problem. In other words, the NCD problem
remains even with absolutely balanced (equally sized) train-
ing samples per class. Besides, LR bias correction has been
extensively studied (King and Zeng 2001; Schaefer 1983;
Qiu et al. 2013; Heinze and Schemper 2002) but still focus-
ing on the data imbalance issue, rather than the NCD problem
as considered in this work.

Delve Deep into Deep Learning Classification
Supervised deep learning algorithms learn to classify in-
put images into target class labels, given a training set of
n image-label pairs D = {(xi, yi)}ni=1 where yi ⊆ Y =
{1, 2, · · · ,K} specifies the ground-truth label set of image
xi with one (single-label) or multiple (multi-label) class(es)
associated. There are totally K possible classes. Supervised
learning of such multi-class classifiers is generally conducted
based on estimating probabilistic class distributions p of
training images with the element pk = p(k | x), k ∈ Y .
Probability Distribution Estimation. To make pk repre-
sent valid probability values, one common approach to nor-
malising individual pk is to apply the logistic (or sigmoid)
function (Little 1974; Mor-Yosef et al. 1990) to squash the
raw output z = φ(x | θ) into the interval (0, 1) as:

pk = p(k | x;θ) = σ(z)k =
1

1 + e−zk

=
ezk

ezk + 1
, k ∈ Y = {1, 2, · · · ,K}

(1)

where θ denotes the model parameters that project an input
x into a logit space z via a to-be-learned mapping φ.

In essence, Eq (1) models a Bernoulli distribution for each
individual class (a binary-value random variable) indepen-
dently, i.e. the model learns to predict the positive probability
p(1 | x) for each class k. Therefore, it naturally fits the
multi-label classification scenario: Each image sample can
be associated with multiple (an unknown number) class la-
bels in any possible combinatorial ways. Eq (1) is known as
Logistic Regression (LR).

Single-label classification is another common scenario in
which only one class label is outputted for a single sam-
ple. This implicitly assumes a mutual exclusion relation-
ship between all classes. Hence, we can further require
the entire vector p as a multi-class probability distribution:∑K
k=1 pk = 1 and pk ≥ 0. To that end, the softmax function

is often employed (Luce 2005; Peterson and Söderberg 1989;
Bridle 1990). Formally, we exponentiate and normalise the
logit z to obtain a valid probability vector p as:

pk = p(k | x;θ) = h(z)k =
ezk

∑K
j=1 e

zj
,

with k ∈ Y = {1, 2, · · · ,K}
(2)

Eq (2) models a categorical distribution of a discrete variable
over multi-classes collectively and inter-dependently. Eq (2)
is called Softmax Regression (SR).
Learning Objective Function. To perform supervised clas-
sification learning, we usually employ the principle of maxi-
mum likelihood that attempts to match the model distribution
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Figure 1: Colour-coded t-SNE feature embedding of 5 CIFAR100 object classes produced by (a) SR, (b) LR, and (c) the proposed
SS-LR (Eq (6)) loss functions. It is evident that in the feature embedding space by the vanilla LR, different classes are poorly
distinguishable with severe cross-class boundary overlap. In contrast, our SS-LR yields more discriminative feature embedding
by addressing the NCD problem involved in model optimisation. Best viewed in colour.

with the data empirical distribution by a cross-entropy mea-
surement (Goodfellow, Bengio, and Courville 2016). The
specific learning objective function relies on the regression
form of the model’ s prediction.

In case of multi-label classification, the objective function
for maximum likelihood learning is formulated as:

LLR(x, y) = −
K∑

k=1

(
qk log(pk)+(1−qk) log(1−pk)

)
(3)

This objective function aggregates the negative log-likelihood
of all class-wise Bernoulli distributions.

In case of single-label classification, we directly use the
cross-entropy between the ground-truth class distribution q
of the training datum and the predicted class distribution p
of the model to form the objective function. q=δk,y is Dirac
delta which equals to 1 if k=y, and 0 otherwise. The learning
objective function is written as:

LSR(x, y) = −
K∑

k=1

qk log pk = − log py (4)

Remarks. In essence, the key of model learning is to induce
the target multi-class feature embedding space. A general-
isable feature space should be characterised by an accurate
inter-class manifold structure. Given a training sample x, SR
enforces a competition between the ground-truth and other
classes to learn the model discrimination capability: the soft-
max output always sums to 1, subject to that an increase
in the estimation of one class necessarily corresponds to a
decrease in the estimation of others. Whilst this competition
significantly helps learn discriminative inter-class boundaries,
it may distort the underlying inter-class manifold structure
therefore potentially hurting the model generalisation capabil-
ity (Belkin, Niyogi, and Sindhwani 2006), since SR treats all
non-ground-truth classes identically by pushing them away
from the ground-truth class in a homogeneous manner. In
contrast, LR learns to induce the inter-class manifold struc-
ture from the training data, enabling a natural emergence of
the underlying multi-class manifold geometry.

Focus Rectified Logistic Regression
The Negative Class Distraction Problem
Despite the theoretical merit of LR, directly using the vanilla
LR often leads to inferior model performance than SR, as
shown in Fig 1 (b). Why does this happen? To examine this
problem in LR, we track and analyse the training loss and
gradient quantities (the blue curves in Fig 2). We observe
that at the beginning of model training, the LR loss drops
dramatically until near 0 (see Fig 2 (a)). Further decomposing
the LR loss into two parts: the positive class loss on the
ground truth class (see Fig 2(b)) and negative class loss on
all non-ground-truth classes (see Fig 2(c)), we find that at
early training iterations, (1) the starting negative class loss
is far larger than the starting positive class loss (e.g. 140 vs
0.4); and (2) the positive class loss increases unexpectedly,
while the negative class loss drops fast. This suggests that at
the early training stage, the overall LR loss is dominated by
negative classes therefore the positive class is largely ignored.
We call this effect as negative class distraction (NCD).

The NCD problem is intrinsic to single-label multi-class
classification. Specifically, suppose a K-class setting, each
training sample x has only one positive class (the ground-
truth label y) but (K−1) negative classes. With the vanilla
LR learning objective (Eq (3)), the positive class obtains
insufficient attention, especially when K is large. Therefore,
the training is hinted by the severe learning bias towards the
negative classes. Such a biased loss composition deceives the
model to converge towards some poor local minima with the
negative classes well satisfied (Fig 2(c)) whilst the positive
class largely ignored (Fig 2(b)). This can be further justified
by the nearly zero gradient ratio of positive to negative classes
(Fig 2)(d)). The NCD problem similarly exists in multi-label
classification with sparse labels per sample (Fig 4).

Often, the inherent learning difficulty and velocity of dif-
ferent classes can be distinct, as indicated in the accuracy
variety over object classes (Deng et al. 2009). Hence, treating
all negative classes per sample identically as Eq (3) may be
not optimal, and selecting important ones to learn is likely
to be more effective. Crucially, this helps mitigate the NCD
problem as more learning focus is assigned to the positive
class. Inspired by such consideration, we formulate two nega-
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Figure 2: Negative class distraction effect of LR on Tiny ImageNet. . (a) Overall training loss values; The loss of (b) the positive
class and (c) the negative classes; (d) Gradient ratio of positive to negative classes.

tive class selection mechanisms to rectify the biased learning
focus of the vanilla LR in a hard mining principle: A training
sample x is more (less) informative to hard (easy) classes.

Rectification by Negative Class Hard Selection
We confine the learning focus to non-trivial (hard) other than
all negative classes. Specifically, we use the predicted proba-
bility pk as the hardness measurement to rank (K−1) nega-
tive classes in the descending order. We then choose the top
negative classes to formulate the objective loss function as:

Lhs
LR(x, y) = − log(py)−α

∑

k∈fhs(m|p,y)

(
log(1−pk)

)
(5)

where the hard selection function fhs(m|p, y) returns the top
m% negative classes with highest prediction probabilities.
We add a balancing weight α to trade-off positive and nega-
tive classes, inspired by the cost-sensitive learning (Akbani,
Kwek, and Japkowicz 2004; He and Garcia 2009).

Adjusting m ∈ [0, 100] allows us to modulate the focus
rectification degree: with a training sample, we learn the
decision boundaries of m% most confusing negative classes
along with the positive class. We empirically found that m=
25 is satisfactory. When m = 100, we attend all negative
classes with a cost-sensitive trade-off between the positive
and all negative classes. The weight α can be intuitively set as
inversely proportional to the selected negative class number:
α= β

bm%(K−1)c < 1 where β is a hyper-parameter (β=10 in
our experiments). We call this negative class Hard Selection
based LR formulation as HS-LR.

Rectification by Negative Class Soft Selection
An alternative to HS-LR is a soft selection of negative classes.
Formally, we employ a hardness (probability) adaptive weight
(pk)

r to each negative class as:

Lss
LR(x) = − log(py)−α

K∑

k=1,k 6=y

(
(pk)

r log(1−pk)
)

(6)

where r ≥ 0 is the attending parameter that controls the
rate of attending hard negative classes and disregarding easy
negative classes. Note that when r=0, it is equivalent to HS
at m=100. Growing r makes the focus modulating effect

like-wisely increase. In our experiments, we found that r is
not sensitive in a reasonable range of and r=2 is selected
in our main experiments (Fig 7). We set α= β

K−1 since all
negative classes are considered.

Our soft selection mechanism achieves the effect of hard
class mining in this manner: If a negative class k is a hard
class w.r.t. x and receives a higher probability pk, its weight
(pk)

r is larger and hence more attention is assigned. When
the value of pk is small which suggests an easy negative class,
the learning attention will be close to 0 and the quantity of
class k is significantly down-weighted. We call this negative
class Soft Selection based LR formulation as SS-LR.

The soft selection principle has been used in other meth-
ods, e.g. Entropy-SGD (Chaudhari et al. 2016) and focal loss
(Lin et al. 2017). Entropy-SGD tackles a different problem
of seeking better local minima. The focal loss is more similar
to our SS-LR (Eq (6)) but differs in a number of fundamental
aspects: (1) Focal loss solves the global training data sample
imbalance whilst SS-LR deals with the local sample-wise
negative class distraction, independent of the training data
distribution over classes. (2) Focal loss is built on the soft-
max regression, whilst SS-LR is formulated based on the
logistic regression. (3) Focal loss aims to suppress easy train-
ing instances in the sample space whilst SS-LR handles the
per-sample negative classes in the class space.

(c) Deepfashion(a) CIFAR (c) Tiny Imagenet
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2.3. Pre-Processing and Data Augmentation 
 

Prior to training, the training, validation, and test 
data were zero centered by subtracting the mean 
image from the training data – this pre-processing 
step, as well as the data loading, was implemented by 
re-using code given by CS231N instructors during 
assignments[11]. 

Given the small size of the training dataset, live data 
augmentation was applied during training. In 
particular, images were randomly rotated by up to 60 
degrees, zoomed in up to 1.2x magnification, and 
shifted vertically and horizontally.  

In order to perform the data augmentation, Keras’ 
Image Data Generator implementation was used[6]. 
 
3. Methods  

 
To implement my models I am using version r1.2 of 

Google’s TensorFlow[6] open source deep learning 
framework, stacked with the included higher level 
API, Keras[7]. Keras offers a functional API that 
allows for faster prototyping as well as creation of 
wide layers such as Inception with significantly less 
overhead than vanilla TensorFlow.  

 
3.1. Objective Function 
 
 As is to be expected, the all the models trained 
leverage back-propagation to perform gradient 
updates. The updates were done by minimizing the 
cross-entropy loss as given by the Softmax function.  
 

 
 
 [12]. This is of course the standard in the field, but 
it is worth noting that cross-entropy is preferable to 
other losses such as the SVM or hinge loss as cross-
entropy provides a probabilistic interpretation.  

Note that regularization and bias terms were added 
to each convolutional layer. In particular, L-2 
regularization was utilized after early trials showed it 
outperformed L-1.  
 
3.2. Weight Initialization 
 
 The means of initializing all weights for every layer 
of each model was the Glorot Uniform Initializer, also 
called the Xavier Uniform Initializer[13], as 
implemented by Keras. Namely, the weights were 
drawn from the following distribution, with n being 
the layer size. [13] 

 
 
3.3. Optimization Algorithm 
 
 Per guideline presented by Justin Johnson in 
CS231N lecture 7, the primary optimization algorithm 
used was Adam[14], as implemented by Keras.  Early 
trials tried using stochastic gradient descent, and 
Adam + Nesterov Momentum[8], all as implemented 
by Keras, but ultimately, empirical results showed 
Adam to be superior in my trials. 
 
3.4. Network Regularization 
 
 Early on, I experimented with incorporating 
Dropout [10] with varying rates, and at different 
points in the network – after each conv layer, before 
just the input, after pools, and after batch norm layers. 
However, ultimately I found Batch Normalization [9] 
to provide much better validation performance for the 
models that were trained. The idea behind Batch 
Normalization being that by adding multiple 
normalizing layers through the network, we can 
reduce the internal covariate shift from layer to layer 
within the network.  
 Of an interesting note, I found that, contrary to 
common wisdom, utilizing Dropout led to 
significantly faster training than Batch Normalization, 
at a cost in validation loss and accuracy – I found 
Dropout to overfit significantly more than Batch 
Normalization. 
 
3.5. VGG Style Model Architectures 
 
 The VGG Style architecture features a structure 
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Figure 3: Example images of benchmark datasets evaluated.
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Experiments
We evaluated the proposed method on (1) single-label ob-
ject classification, (2) person instance identification, and (3)
multi-label clothing attribute recognition. For each test, we
performed 10 independent runs and reported the average re-
sult. Note that, outperforming existing best performers by
extra complementary techniques is not the focus of our eval-
uations. Rather, the key is to investigate the model general-
isation performance of the same network model learned by
the SR and LR objective functions in a fair test setting.

Single-Label Object Image Classification
Datasets. We used three single-label object classification
benchmarks. CIFAR10 and CIFAR100 (Krizhevsky and Hin-
ton 2009) both have 32× 32 sized images from 10 and
100 classes, respectively. We adopted the benchmarking
50,000/10,000 train/test image split on both. Tiny ImageNet
(Tiny200) (Deng et al. 2009) contains 110,000 64×64 images
from 200 classes. We followed the standard 100,000/10,000
train/val setting. These datasets present varying class num-
bers, thus giving a spectrum of different single-label model
test scenarios. Example images of these datasets are given in
Fig 3.
Experiment setup. We carried out all the following exper-
iments in TensorFlow (Abadi et al. 2016). We tested three
varying-capacity networks: ResNet-32 (32 layers with 0.7
million parameters) (He et al. 2016), WideResNet-28-10 (28
layers with 36.5 million parameters) (Zagoruyko 2016), and
DenseNet-201 (20 million parameters) (Huang et al. 2017).
We adopted the top-1 classification accuracy in our evalua-
tions. We used the standard SGD with momentum for model
training. We set the initial learning rate to 0.1, the momentum
to 0.9, the weight decay to 10−4, the batch size to 128/64/128
for CIFAR/Tiny200/ImageNet, the epoch number to 300. We
set the parameter m (Eq (5)) in the range of [25, 75] and
r = 2 (Eq (6)) (r = 50 for ImageNet) by a grid search on
the validation dataset. Data augmentation includes horizontal
flipping and translation. All models compared used the same
training/test data for fair comparative evaluations.

Table 1: Evaluation on single-label object image classifica-
tion. Metric: Top-1 accuracy rate (%).

Base Net ResNet-32 (He et al. 2016)
Dataset CIFAR10 CIFAR100 Tiny200

SR 92.5 68.1 50.2
LR 93.0 64.3 45.9

HS-LR 93.0 68.9 50.7
SS-LR 93.0 69.1 56.0

Base Net WideResNet-28-10 (Zagoruyko 2016)
Dataset CIFAR10 CIFAR100 Tiny200

SR 95.3 81.0 57.4
LR 95.0 79.0 55.2

HS-LR 95.3 79.0 59.0
SS-LR 96.0 81.2 61.0

Evaluation. Table 1 compares the single-label object cat-
egorisation performances between the SR and LR function

variants using the small ResNet-32 and large WideResNet-
28-10 architectures. We make these observations: (1) When
the class number increases, the vanilla LR suffers a more
severe NCD problem and yields much weaker performances
than SR. For example, on CIFAR10 with 10 classes, LR per-
forms on a par or even slightly better. However, LR is clearly
inferior on Tiny ImageNet with 200 classes (On the other
hand, this also simultaneously implies a good potential of
LR since the results are not far worse). (2) The proposed LR
variants notably improve the performance and outperform
the SR, especially on tasks with more classes. This indicates
that once the NCD problem is properly solved (Fig 2), LR
can be a stronger formulation for single-label classification
learning. This observation is rarely made in the literature
where SR dominants the learning of single-label classifica-
tion models. (3) The Soft Selection (SS) strategy consistently
yields the best model generalisation, suggesting the advan-
tages of exploiting all negative object classes in a hardness
adaptive manner. (4) Both small and large nets benefit from
the proposed LR algorithms, indicating that our method is
generically applicable to different CNN architectures.

Fine-Grained Person Instance Identification
Datasets. We used two popular person instance identifica-
tion (a.k.a., person re-identification) benchmark datasets in
our experiments. The Market-1501 (Zheng et al. 2015) has
32,668 images of 1,501 different identities (ID) captured
from 6 outdoor camera views. We followed the standard
751/750 train/test ID split. The DukeMTMC (Ristani et al.
2016) consists of 36,411 images of 1,404 IDs from 8 cam-
era views. We adopted the benchmarking 702/702 ID split
as (Zheng, Zheng, and Yang 2017). Unlike normal image
classification, person re-identification (re-id) is a more fine-
grained recognition problem of matching person instances
across non-overlapping camera views. It is more challenging
due to the inherent zero-shot learning knowledge transfer
from seen classes (IDs) to unseen classes in deployment, i.e.
no overlap between training and test classes.
Experiment setup. We tested two nets, with variant capac-
ities, often used in existing re-id methods: ResNet-50 (He
et al. 2016) (50 layers with 25.6 million parameters), and
MobileNet (Howard et al. 2017) (28 layers with 3.3 million
parameters). We adopted two standard performance metrics
in the single query mode: the Cumulative Matching Charac-
teristic accuracy (Rank-1 rate) and mean Average Precision
(mAP). We used the Adam optimiser (Kingma and Ba 2015),
and set the initial learning rate to 0.0003, the momentum
to 0.9, the weight decay to 10−4, the batch size to 32, and
the maximum epoch number to 300. We trained all methods
without using complex tricks in order to focus the evaluation
on comparing SR and LR algorithms.
Evaluation. Table 2 shows the performance comparisons of
SR and LR methods on person re-id. We have the following
observations: (1) Unlike generic object classification (Table
1), the vanilla LR and SR produce very similar generalisation
performances when using ResNet-50. The plausible reason
is that, re-id has the less stringent requirement of well fitting
the model to training classes since the test classes are entirely
new and unseen to model training. (2) Both proposed LR
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Table 2: Evaluation on person instance identification.

Base Net ResNet-50 (He et al. 2016)
Dataset Market-1501 DukeMTMC

Metric (%) Rank-1 mAP Rank-1 mAP
SR 83.3 65.8 73.7 54.9
LR 81.4 65.0 72.2 54.6

HS-LR 87.1 70.7 77.9 60.1
SS-LR 85.8 69.7 76.7 58.2

Base Net MobileNet (Howard et al. 2017)
Dataset Market-1501 DukeMTMC

Metric (%) Rank-1 mAP Rank-1 mAP
SR 71.7 50.0 57.0 35.8
LR 51.5 34.3 43.9 27.5

HS-LR 76.4 54.1 63.7 42.5
SS-LR 74.0 53.7 62.9 41.5

algorithms improve the model performance, suggesting that
the NCD problem still matters in cross-class recognition. (3)
Hard selection (HS) turns out to be the best strategy, as op-
posite to object classification (Table 1) where SS is the best
performer. This indicates that using every training sample to
learn all classes is not necessarily superior, which may nega-
tively affect the modelling capacity of mining fine-grained
discriminative information among a large number of training
classes (751 on Market-1501, and 702 on DukeMTMC).

To validate the statistical significance of our model’s per-
formance, we conducted a Wilcoxon signed-rank test on the
DukeMTMC results using MobileNet. The test verifies that
the improvements in accuracy and mAP rates are statistically
significant at the 5% significance level.

Clothing Attributes Recognition
Apart from single-label classification, we evaluated our LR
methods on the multi-label classification specially with only
a few labels per instance, which also suffers a similar NCD
problem. The SR is not applicable in this test.
Dataset. We evaluated a large scale multi-label clothing
attribute dataset DeepFashion (Liu et al. 2016). This dataset
has 289,222 images labelled with 1,000 fine-grained clothing
attributes with a 209,222/40,000/40,000 train/val/test bench-
mark setting. Each image is associated with extremely sparse
labels, 3 out of 1,000 in average. The training set is also
highly class imbalanced (733:1), therefore presenting a very
challenging multi-label classification task. We adopted the
standard multi-label classification setting without using aux-
iliary types of supervision such as key-points and clothing
category as used in (Liu et al. 2016).
Experiment setup. We similarly tested two nets: ResNet-
50 (He et al. 2016), and MobileNet (Howard et al. 2017).
We adopted two standard performance measurement criteria:
mean Average Precision (mAP) and balanced classification
accuracy (Dong, Gong, and Zhu 2018; Huang et al. 2016).
The latter is particularly designed to remedy the performance
evaluation bias towards the majority classes of imbalanced
data. For each metric, we evaluated per-image and per-class
model performances of top-5 class predictions. We used the

Table 3: Evaluation on multi-label attribute recognition.

Base Net ResNet-50 (He et al. 2016)

Metric (%) Accuracy mAP
Per Img Per Cls Per Img Per Cls

LR 64.8 50.1 21.6 2.5
HS-LR 74.3 59.0 31.5 9.3
SS-LR 73.9 58.7 34.4 9.2

Base Net MobileNet (Howard et al. 2017)

Metric (%) Accuracy mAP
Per Img Per Cls Per Img Per Cls

LR 62.4 51.9 23.4 4.7
HS-LR 72.2 57.4 28.1 7.2
SS-LR 72.0 55.8 31.0 6.5

Adam optimiser (Kingma and Ba 2015), with the learning
rate of 0.0001 for the first 45 epochs and 0.00001 for the last
5 epochs, the weight decay of 0.00004, the momentum of 0.9,
and the batch size of 32.
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Figure 4: Training loss on DeepFashion.

Evaluation. Table 3 shows the clothing attribute classifica-
tion performances of different LR variants. It is observed that:
(1) Our LR methods are significantly superior to the vanilla
algorithm, which is consistent with the results on single-
label object classification and person re-id. (2) Hard and soft
selection strategies perform similarly across different nets
and metrics. These results suggest the generic advantages
of our approach in multi-label classification, confirming the
existence of NCD. Moreover, our method also notably out-
performs the state-of-the-art result (54.5 per-class accuracy)
in the same test setting obtained by (Dong, Gong, and Zhu
2018), further validating the efficacy of our approach.

Figure 4 shows the loss converging process during training.
Similar to single label object classification (Fig 2), the vanilla
LR is clearly hurt by the NCD problem. In contrast, SS-LR
and HS-LR achieve a more stable and healthy model learning
process by adaptively hard mining negative classes.

Further Analysis and Discussion
Learning Focus Rectification. We employ the gradient ra-
tio of positive to negative classes to explicitly reveal the
model learning focus (the higher ratio, the more focus on the
positive class and vice versa). By comparing two lines in Fig
2 (d), it is clear that with the vanilla LR, the positive class
is highly distracted by negative classes throughout model
training. The proposed SS-LR formulation effectively raises

3491



the learning focus of positive classes in training and therefore
mitigating the NCD problem.
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Figure 5: Evaluating the converging rate on CIFAR100.

Convergence Rate. Figure 5 compares the convergence rate
of SR and LR on CIFAR100. It is shown that all learning
algorithms have very similar convergence speeds, suggesting
that our method does not sacrifice the training efficiency
whilst yielding favourable performance advantages.
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where the hard selection function fhs(m|p, y) returns the top m% negative classes with highest162

prediction probabilities. We also adjust the balancing weight ↵, inspired by cost-sensitive imbalance163

learning formulation [65, 44] The weight ↵ can be intuitively set as inversely proportional to the164

selected negative class number: ↵ = �
bm%(K�1)c where � is a hyper-parameter (� = 10 in our165

experiments). We call this negative class Hard Selection based LR formulation as HS-LR.166

It is worth pointing out that a smaller m will lead to that fewer negative classes learn from the training167
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where r � 0 is the attending parameter that controls the rate of attending hard classes and disregarding174
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K�1 since all negative classes are considered.175

Our soft selection mechanism achieves hard class mining in this manner: If a negative class k is a hard176
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is assigned. When the value of pk is small which suggests an easy negative class, the learning178

attention will be close to 0 and the objective quantity of class k is significantly down-weighted. We179

call this negative class Soft Selection based LR formulation as SS-LR.180

With SS-LR, we overcome the per-batch lower utilisation limitation of hard selection (Eq (6)). The181

soft attention principle has also been exploited in other optimisation methods, e.g. Entropy-SGD182
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SS-LR deals with the local sample-wise negative class distraction, regardless whether the global186
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formulated based on logistic regression. (3) Focal loss aims to suppress easy training instances in188

sample space whilst SS-LR handles the sample-wise negative classes in class space.189
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is assigned. When the value of pk is small which suggests an easy negative class, the learning178

attention will be close to 0 and the objective quantity of class k is significantly down-weighted. We179

call this negative class Soft Selection based LR formulation as SS-LR.180

With SS-LR, we overcome the per-batch lower utilisation limitation of hard selection (Eq (6)). The181

soft attention principle has also been exploited in other optimisation methods, e.g. Entropy-SGD182
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Parameter Analysis. We analysed the parameter sensitivity
of HS (m in Eq (5)) and SS (r in Eq (6)) designs. Fig 6 shows
that a good selection of m is important, and a high value of
m is preferred for object classification but hurts the perfor-
mance of person re-id. This is consistent with the earlier
observation that re-id needs to mine fine-grained discrimina-
tive information by concentrating the learning attention more
on the most confusing negative classes. As shown in Fig 7, r
is not sensitive to the model performance (r=2 in the main
experiments), rendering SS a favourable choice over HS in
terms of parameter selection.
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Hard Mining for SR. How is the performance of the pro-
posed focus rectified hard mining on SR? We additionally
applied the same HS formulation (Eq (5)) to SR, and tested
two cases: (1) With MobileNet on DukeMTMC, we obtained
54.9%/34.9% Rank-1/mAP vs 57.0%/35.8% by the standard

SR. (2) With WRN-28-10 on CIFAR100, no performance
change, both at 80.0%. This suggests SR does not suffer from
the same NCD problem as LR.

Conclusion
In this work, we have extensively investigated the validity
and advantages of the logistic regression (LR) learning al-
gorithms for training single-label multi-class neural network
classifiers, a standard technique conventionally employed
for multi-label classification model learning. This is moti-
vated by our in-depth analyses of softmax regression (SR)
and LR in learning properties and their correlation. We iden-
tified the negative class distraction problem and proposed
two rectification solutions using a hard mining idea. Exten-
sive experiments on both coarse-grained object classification
and fine-grained person re-identification and spare attribute
recognition tasks show the performance effectiveness of the
proposed LR algorithms over the standard choice SR.
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