U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting
DOI:
https://doi.org/10.1609/aaai.v38i13.29337Keywords:
ML: Time-Series/Data StreamsAbstract
Time series forecasting is a crucial task in various domains. Caused by factors such as trends, seasonality, or irregular fluctuations, time series often exhibits non-stationary. It obstructs stable feature propagation through deep layers, disrupts feature distributions, and complicates learning data distribution changes. As a result, many existing models struggle to capture the underlying patterns, leading to degraded forecasting performance. In this study, we tackle the challenge of non-stationarity in time series forecasting with our proposed framework called U-Mixer. By combining Unet and Mixer, U-Mixer effectively captures local temporal dependencies between different patches and channels separately to avoid the influence of distribution variations among channels, and merge low- and high-levels features to obtain comprehensive data representations. The key contribution is a novel stationarity correction method, explicitly restoring data distribution by constraining the difference in stationarity between the data before and after model processing to restore the non-stationarity information, while ensuring the temporal dependencies are preserved. Through extensive experiments on various real-world time series datasets, U-Mixer demonstrates its effectiveness and robustness, and achieves 14.5% and 7.7% improvements over state-of-the-art (SOTA) methods.Downloads
Published
2024-03-24
How to Cite
Ma, X., Li, X., Fang, L., Zhao, T., & Zhang, C. (2024). U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 38(13), 14255-14262. https://doi.org/10.1609/aaai.v38i13.29337
Issue
Section
AAAI Technical Track on Machine Learning IV