
U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time
Series Forecasting

Xiang Ma1, Xuemei Li1, Lexin Fang1, Tianlong Zhao1, Caiming Zhang1,2*

1School of Software, Shandong University, Jinan 250101, China
2Shandong Provincial Laboratory of Future Intelligence and Financial Engineering, Yantai 264005, China

{xiangma, fanglexin, tianlongzhao}@mail.sdu.edu.cn, {xmli, czhang}@sdu.edu.cn

Abstract

Time series forecasting is a crucial task in various domains.
Caused by factors such as trends, seasonality, or irregular
fluctuations, time series often exhibits non-stationary. It ob-
structs stable feature propagation through deep layers, dis-
rupts feature distributions, and complicates learning data dis-
tribution changes. As a result, many existing models struggle
to capture the underlying patterns, leading to degraded fore-
casting performance. In this study, we tackle the challenge
of non-stationarity in time series forecasting with our pro-
posed framework called U-Mixer. By combining Unet and
Mixer, U-Mixer effectively captures local temporal depen-
dencies between different patches and channels separately to
avoid the influence of distribution variations among channels,
and merge low- and high-levels features to obtain compre-
hensive data representations. The key contribution is a novel
stationarity correction method, explicitly restoring data distri-
bution by constraining the difference in stationarity between
the data before and after model processing to restore the non-
stationarity information, while ensuring the temporal depen-
dencies are preserved. Through extensive experiments on var-
ious real-world time series datasets, U-Mixer demonstrates its
effectiveness and robustness, and achieves 14.5% and 7.7%
improvements over state-of-the-art (SOTA) methods.

Introduction
Time series forecasting plays a vital role in various domains
such as finance (Ma et al. 2022), weather forecasting (Liu
et al. 2022a), and sensor data analysis (Zhao et al. 2023).
Extracting meaningful patterns, understanding the underly-
ing dynamics of time series to forecast future trends are cru-
cial for informed decision-making and effective problem-
solving (Zhang, Guo, and Wang 2023). With the advent
of deep learning, convolutional neural networks (CNNs)
(Fukushima 1980) and Transformers (Vaswani et al. 2017)
have shown remarkable progress in capturing temporal de-
pendencies and extracting features from time series. Re-
cently, the Mixer architecture (Tolstikhin et al. 2021), ini-
tially introduced for vision tasks, has gained attention for
its ability to model complex relationships within sequential
data. However, the application of Mixer to time series fore-
casting also presents challenges. Time series data often ex-

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

hibits non-stationary caused by factors such as trend, sea-
sonality, or irregular fluctuations. Such property can hinder
accurate modeling and prediction, thereby limiting the ef-
fectiveness of the Mixer architecture. In dealing with non-
stationary, Mixer mainly have the following three problems:
(1) The deep structure of Mixer leads to unstable propaga-
tion of shallow features. When information flows through
multiple layers, the transmission of low-level features be-
comes non-stationary. (2) The mixed feature extraction of
different channels leads to non-stationary feature distribu-
tions, due to significant distribution variations among chan-
nels. (3) Model training cannot intuitively learn changes in
data distribution, resulting in shifted and non-stationary dis-
tribution of predicted values.

In this article, we present U-Mixer to address the issue
of non-stationarity in time series forecasting. U-Mixer com-
bines the advantages of both Unet and Mixer architecture to
capture local temporal patterns of different levels while sep-
arately handles the temporal and channel interactions. The
key contribution of U-Mixer lies in the novel stationarity
correction technique, which explicitly restores the distribu-
tion of data by correcting the stationarity of data.

Specifically, we divide the time series into some patches
and process them independently using the Mixer architec-
ture. This patch-based processing allows localized analy-
sis of temporal patterns and captures fine-grained details
within the data. Mixer effectively captures the dependen-
cies between different patches and channels without disrupt-
ing the overall temporal sequence through the multi-layer
perceptron (MLP) block, and learns meaningful represen-
tations from the entire time series. Simultaneously, it sepa-
rately handles the temporal interactions and channel interac-
tions, avoiding feature instability caused by significant vari-
ations in data distributions across different channels. Dif-
ferent from MLP-Mixer, U-Mixer adopts a Unet architec-
ture to merge the low- and high-level features and obtain a
more comprehensive and richer data representation, thereby
improving the ability to understand and model data. Addi-
tionally, in order to improve model performance, time series
often undergoes a process of stationarization. However, due
to the loss of non-stationary information, the model cannot
intuitively learn the changes in data distribution, resulting
in a shift in the distribution of predicted values. Learning
the mapping of data distribution through training is inher-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14255

ently a challenge. Therefore, we propose a stationarity cor-
rection method by constraining the difference in stationar-
ity between the data before and after model processing to
restore the non-stationary information, while consider the
temporal dependencies of the data.

Our contributions are summarized as

• We propose U-Mixer a new time series forecasting
framework that can capture local temporal patterns of
different levels and handle the temporal and channel in-
teractions separately.

• We propose a stationarity correction method that explic-
itly restores the non-stationarity information of data by
constraining the stationarity differences before and after
model processing, while ensuring temporal dependencies
within the data.

• U-Mixer adopts the Unet architecture to merge the low-
and high-level features, which enables more comprehen-
sive and richer representations of the data.

• We demonstrate the effectiveness and robustness of U-
Mixer through extensive experiments on various real-
world time series datasets.

Related Work
Time Series Prediction
Time series forecasting is the task to predict future values
for one or more variables based on a set of historical obser-
vations. Traditional statistical methods and machine learn-
ing methods have been widely used but struggle with com-
plex nonlinear patterns, although they are simple and inter-
pretable. In recent years, deep learning models have been
widely investigated for this task. Especially long short-term
memory (LSTM) (Hochreiter and Schmidhuber 1997), a
well-known variant of recurrent neural networks (RNNs), is
widely employed in time series forecasting. However, they
may suffer from vanishing or exploding gradients, limiting
their ability to capture long-term dependencies. Convolu-
tional Neural Networks (CNNs) (Zhao et al. 2023) have also
been adapted for this task, by extracting local patterns and
identify relevant features across different time steps. CNN-
based models have shown promising results in capturing
spatial and temporal dependencies within the data.

More recently, Transformer-based models (Zhou et al.
2021; Wu et al. 2021; Zhou et al. 2022) have gained atten-
tion in time series forecasting. Transformers leverage self-
attention mechanisms to effectively capture global depen-
dencies and long-range interactions within the data. They
have achieved state-of-the-art (SOTA) results in various time
series forecasting tasks. In contrast to expectations, recent
studies (Zeng et al. 2023) have revealed that even a basic
univariate linear model can outperform complex multivari-
ate Transformer models by a margin on widely-used long-
term prediction benchmarks. Despite the significant ad-
vancements in Transformer-based models, this unexpected
finding highlights the effectiveness of linear models. In this
paper, we introduce the Mixer architecture for time series
forecasting to fully utilize the performance of linear mod-
els, which is designed by stacking MLPs. And we combine

Mixer with the Unet architecture to integrate different levels
of features to build more comprehensive richer representa-
tions

Stationarization for Time Series Forecasting
Stationarization serves as a fundamental assumption for time
series analysis, allowing us to apply various models to ef-
ficiently capture patterns in the data and enhence the ro-
bustness of models. To stabilize time series data, tradi-
tional methods employ various preprocessing approaches,
such as differencing, to remove trends, seasonality, and non-
stationarity in the data. As for deep models, the presence of
non-stationarity and the accompanying variation in data dis-
tributions pose significant challenges to time series forecast-
ing. To address this, stationarization are commonly explored
and employed as a preprocessing step for deep model inputs
(Liu et al. 2022b). By transforming the data into a more sta-
tionary form, these methods aim to mitigate the difficulties
associated with non-stationarity and enable more effective
training and prediction with deep models. Normalization is
a widely adopted stationarization method, aiming to miti-
gate the negative effects of non-stationary features on the
learning process by transforming the data into a range that is
better aligned with the model.

While applying normalization can address the issue of
non-stationarity, it introduces a potential preblem (Kim
et al. 2021). Normalization can inadvertently remove non-
stationary information that may hold valuable insights for
predicting future values. Because normalization changes the
distribution of features, potentially hindering the model‘s
ability to capture the nuanced dynamics of the time series.
Some research (Kim et al. 2021; Liu et al. 2022b) explic-
itly return the information deleted through input normaliza-
tion to the model, eliminating the need for the model to re-
construct the original distribution, thereby reducing the dif-
ficulty of modeling. However, directly stationarizing time
series will damage the model’s capability of modeling spe-
cific temporal dependency. Therefore, we propose a station-
arity correction method by constraining the difference in sta-
tionarity between the data before and after model process-
ing. This method explicitly conveys statistical features of
data distribution while maintaining temporal dependencies
whthin the data.

Methodology
The architecture of U-Mixer is shown in Figure 1, and the
details are described in the following sections.

Notations
Define the historical data as X ∈ RC×L = {xi | i ∈ [1, L]}.
Here L means the length of the input sequence and C is the
number of channels (or variables). xi is a vector of dimen-
sion C at time step i. Let the ground truth future values be
Y ∈ RC×H = {xi | i ∈ [L+1, L+H]}. Here H means the
length of forecasting sequence. We focus on using a learning
modelM to analysisX and achieve predicting the values of
Y , and the process can be expressed as Ŷ = M(X). Ŷ
means the prediction results.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14256

Patch embedding

Unet encoder-decoder

Forecasting head

Normalization + Patching

Stationarity correction

Input time series

Prediction result

Figure 1: The architecture of U-Mixer, which consists of per-
patch embeddings, Unet encoder-decoder, stationarity cor-
rection and a forecasting head.

Normalization and Patch Embedding
The input dataX go through a normalization process, which
is: X = X−µin

σin
. Here µin and σin is the vectors composed

of the mean and variance of all channels in X , respectively.
Through this process, the range of data variation is adjusted
to a more suitable scale, contributing to enhanced stability
and performance of the model.

After normalization, X is divided into overlapping or
non-overlapping patches. Define the patch length as P and
the stride between two consecutive patches as S. We can
obtain the patch sequence Xp ∈ R(C×N)×P . Here N =

bL−PS c + 2 is the number of patches. b·c is floor function.
We repeat the last column of X S times and pad it to the
original sequence before patching.

Patches are mapped to the embeddingsXd ∈ R(C×N)×D,
where D is the latent space dimension. We use a linear pro-
jectionWval ∈ RP×D to learn the mapping relationship and
a additive position encoding Wpos ∈ R(C×N)×D to provide
the information about the relative position of patches. Thus,
Xd = XpWval + Wpos. Then Xd will be feeded into the
Unet encoder-decoder to capture the dependencies between
different patches and channels. Because model processing
will cause the distribution in the patches to change, here we
also need to record the mean µx, the variance σx and auto-
correlation matrix R(Xd) of Xd, so that the distribution of
the model‘s output will be restored in the subsequent sta-
tionarity correction operation.

Unet Encoder-decoder
As shown in Figure 2, U-Mixer introduces a novel time se-
ries prediction network that combines the Unet architecture
with the Mixer architecture.

Encoder

… …

M
er
ge

Encoder

Decoder

Decoder

Encoder Decoder

Figure 2: The Unet encoder-decoder of U-Mixer. Encoders
and decoders are both MLP blocks. The term ”Merge” refers
to the combining process of features from different levels.

U-Mixer adopts the encoder-decoder structure of Unet
with multiple levels. Encoders adopt a hierarchical structure,
progressively extracting features of low- and high-levels
from embeddingsXd. Each encoder is responsible for trans-
forming the input embeddings into high-dimensional repre-
sentations that captures key features and contextual informa-
tion. Define the input of encoders as:

Xin,i =

{
Xd i = 1
Xout,i−1 i ∈ (1,M]

(1)

Xin,i means the input of the i-level encoder, and M is the
number of levels. The output of encoders can be expressed
as:

Xout,i =Men,i(Xin,i), i ∈ [1,M] (2)
Xout,i is the output of the i-level encoder andMen,i refers
to the i-level encoder.

Decoders also adopt a hierarchical structure, progres-
sively analyzing representations generated by encoders.
Each decoder is responsible for generating the parsed repre-
sentations by analyzing the representations from the output
of the previous decoder. During the parsing process, each
decoder also need to consider the output of the same level
encoder to preserve and utilize the features of the same level.
This process is achieved through the skip connections at the
corresponding level. The input of decoders can be formal-
ized as:

Yin,i =

{
Yout,i+1 i ∈ [1,M)
Xout,i i =M

(3)

Yin,i means the input of the i-level decoder. The output of
decoders is defined as:

Yout,i =

{
Wy(Mde,i(Yout,i+1) +Mde,i(Yin,i)) i ∈ [1,M)
Mde,i(Xout,M) i = M

(4)
Yout,i is the output of the i-level decoder andMde,i refers

to the i-level decoder. Wy is a simple linear layer to merge
the features generated from the same level encoder and the
previous decoder.

For ease of description, the final output of the encoder-
decoder structure is defined as Yd ∈ R(C×N)×D = Yout,1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14257

T

MLP2
MLP2
MLP2
MLP2
MLP2
MLP2

T

MLP1
MLP1
MLP1
MLP1
MLP1

temporal
patches

L
ay

er
 n

or
m

L
ay

er
 n

or
m

Temporal interaction Channel interaction

(a) MLP block (Encoder / Decoder)

L
in

ea
r

L
in

ea
r

G
E

L
U

(b) MLP

Figure 3: The MLP block. (a) is the MLP block, which contains one temporal MLP layer and one channel MLP layer. (b) is the
specific structure of MLP, which consists of two fully-connected layers and a GELU nonlinearity.

MLP Block
Encoders and decoders are both MLP blocks, as shown in
Figure 3(a). MLP block contains two MLP layers, which are
used to implement temporary interaction and channel inter-
action, respectively. One MLP layer is first used to perform
interactions on the input data in the temporal dimension,
which contains several MLPs for independently processing
each channel. This process has no interactions between dif-
ferent channels to avoid affecting temporal interactions due
to differences in distribution between channels. After layer
normalization, the output is transposed. Another MLP layer
is used to perform interaction on the channel dimension. The
output is transposed back to its previous shape after layer
normalization. During the interaction process, we also em-
ploy skip connections to concatenate the input and output
features of MLP layers, reducing the information loss intro-
duced by feature transformation and providing a more com-
prehensive feature representation. An MLP consists of two
linear layers, a GELU activation function and a dropout, as
shown in Figure 3(b). As the core components of MLP, lin-
ear layers perform linear transformations on the inputs to
learn linear combinations of features. GELU achieves non-
linear mapping by applying a Gaussian error linear trans-
formation to the inputs, which is widely used in time series
forecasting. Dropout improves the model‘s robustness by re-
ducing the sensitivity of the network to specific features or
input patterns.

Stationarity Correction
Due to the removal of non-stationary information from the
input, the distribution of the data goes through a significant
shift. Existing methods for restoring the data distribution pri-
marily focus on statistical measures such as mean and vari-
ance, without considering the temporal dependencies within
the data. As a result, essential features like trends and sea-
sonal in the original data may be affected. Therefore, we
introduce a novel stationarity correction method that con-
straining the relationship between the stationarity of the time
series before and after model processing to rectify the data
distribution while preserving data dependencies.

The stationarity of time series is mainly characterized
by two aspects: the mean and the covariance. The mean
is mainly responsible for constraining the distribution from
the perspective of statistics, while covariance constrains the
distribution from the perspective of temporal dependencies.
The change in the mean of a data distribution is typically

achieved through global addition or subtraction operations
and does not affect the covariance. However, adjusting the
covariance can lead to changes in the data distribution’s
mean. Therefore, we first adjust the covariance of the data.
The covariance Cov(Xd, X

i
d) can represent the dependence

between the series Xd and its i lag series, which is not suf-
ficient to fully describe the temporal dependencies of the
entire time series. Therefore, we introduce autocorrelation
matrice to provide a more comprehensive constraint on the
time series dependencies.

Define R(Xd) ∈ RL×L = {Ri,j(Xd) | i, j ∈ [1, L]}
as the autocorrelation matrice of Xd, and Ri,j(Xd) =
Cov(Xi

d,X
j
d)√

σi
xσ

j
x

. Here Cov(·) is the computation of covariance.

Xi
d means the i lag series of Xd, and σid represents the vari-

ance of Xi
d. We perform an affine transformation on the

output of model Yd using matrix α, such that the autocor-
relation matrix R(αYd) approximates R(Xd). Here α =
[α1, α2, · · · , αL] ∈ R1×L is a matrix, and αi is a scalar. The
constraint betweenR(Xd) andR(αYd) can be expressed as:

Mα = ‖R(Xd)−R(αYd)‖2F (5)
Yd is a non-stationary time series, multiplying Yd by α will
result in the changes between data points in Yd being scaled
by a factor of α2. SoMα is equivalent to:

Mα = ‖R(Xd)− α2R(Yd)‖2F (6)
Here:

αi =

√√√√∑L
j=1Ri,j(Xd)Ri,j(Yd)∑L

j=1R
2
i,j(Xd)

(7)

According to the Wiener-Khinchin theorem (Cohen 1998),
we can accelerate the computation of αi by the Fast Fourier
Transform (FFT):

αi =

√√√√√∑L
j=1 F−1(F(Xi

d)F(X
j
d))F−1(F(Y id)F(Y

j
d))∑L

j=1 F−1(F(Xi
d)F(X

j
d))

2

(8)
The means of Xd and Yd need to be zero to satisfy the
Wiener-Khinchin theorem. Here Xi

d = Xi
d − µix and Y id =

Y id − µiy . µix and µiy are the means of Xi
d and Y id , respec-

tively. α is determined by Xd and Yd.
The output Yd can be update to Ŷd ∈ R(C×N)×D =

αYd +5µ, 5µ = µx − µy is used to adjust the difference
in mean between Yd and Xd.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14258

Models U-Mixer TimesNet ETSformer LightTS DLinear FEDformer Autoformer LSSL
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.317±2e−3 0.349±2e−3 0.338 0.375 0.375 0.398 0.374 0.400 0.345 0.372 0.379 0.419 0.505 0.475 0.450 0.477
192 0.369±2e−3 0.376±2e−3 0.374 0.387 0.408 0.410 0.400 0.407 0.380 0.389 0.426 0.441 0.553 0.496 0.469 0.481
336 0.395±3e−3 0.393±4e−3 0.410 0.411 0.435 0.428 0.438 0.438 0.413 0.413 0.445 0.459 0.621 0.537 0.583 0.574
720 0.443±2e−3 0.424±1e−3 0.478 0.450 0.499 0.462 0.527 0.502 0.474 0.453 0.543 0.490 0.671 0.561 0.632 0.596
Avg 0.381±2e−3 0.386±3e−3 0.400 0.406 0.429 0.425 0.435 0.437 0.403 0.407 0.448 0.452 0.588 0.517 0.533 0.532

E
T

T
m

2 96 0.178±2e−3 0.256±2e−3 0.187 0.267 0.189 0.280 0.209 0.308 0.193 0.292 0.203 0.287 0.255 0.339 0.243 0.342
192 0.243±3e−3 0.301±2e−3 0.249 0.309 0.253 0.319 0.311 0.382 0.284 0.362 0.269 0.328 0.281 0.340 0.392 0.448
336 0.331±1e−3 0.355±2e−3 0.321 0.351 0.314 0.357 0.442 0.466 0.369 0.427 0.325 0.366 0.339 0.372 0.932 0.724
720 0.434±3e−3 0.413±2e−3 0.408 0.403 0.414 0.413 0.675 0.587 0.554 0.522 0.421 0.415 0.433 0.432 1.372 0.879
Avg 0.291±3e−3 0.331±2e−3 0.291 0.333 0.293 0.342 0.409 0.436 0.350 0.401 0.305 0.349 0.327 0.371 0.735 0.598

E
T

T
h1

96 0.370±9e−4 0.390±1e−3 0.384 0.402 0.494 0.479 0.424 0.432 0.386 0.400 0.376 0.419 0.449 0.459 0.548 0.528
192 0.423±1e−3 0.421±1e−3 0.436 0.429 0.538 0.504 0.475 0.462 0.437 0.432 0.420 0.448 0.500 0.482 0.542 0.526
336 0.470±2e−3 0.442±2e−3 0.491 0.469 0.574 0.521 0.518 0.488 0.481 0.459 0.459 0.465 0.521 0.496 1.298 0.942
720 0.500±3e−3 0.473±4e−3 0.521 0.500 0.562 0.535 0.547 0.533 0.519 0.516 0.506 0.507 0.514 0.512 0.721 0.659
Avg 0.440±3e−3 0.432±3e−3 0.458 0.450 0.542 0.510 0.491 0.479 0.456 0.452 0.440 0.460 0.496 0.487 0.777 0.664

E
T

T
h2

96 0.290±4e−3 0.335±3e−3 0.340 0.374 0.340 0.391 0.397 0.437 0.333 0.387 0.358 0.397 0.346 0.388 1.616 1.036
192 0.366±4e−3 0.386±2e−3 0.402 0.414 0.430 0.439 0.520 0.504 0.477 0.476 0.429 0.439 0.456 0.452 2.083 1.197
336 0.423±2e−3 0.428±2e−3 0.452 0.452 0.485 0.479 0.626 0.559 0.594 0.541 0.496 0.487 0.482 0.486 2.970 1.439
720 0.446±2e−3 0.445±3e−3 0.462 0.468 0.500 0.497 0.863 0.672 0.831 0.657 0.463 0.474 0.515 0.511 2.576 1.363
Avg 0.381±4e−3 0.399±3e−3 0.414 0.427 0.439 0.452 0.602 0.543 0.559 0.515 0.437 0.449 0.450 0.459 2.311 1.259

E
le

ct
ri

ci
ty 96 0.151±2e−4 0.240±1e−3 0.168 0.272 0.187 0.304 0.207 0.307 0.197 0.282 0.193 0.308 0.201 0.317 0.300 0.392

192 0.163±1e−3 0.250±1e−3 0.184 0.289 0.199 0.315 0.213 0.316 0.196 0.285 0.201 0.315 0.222 0.334 0.297 0.390
336 0.179±1e−3 0.264±1e−3 0.198 0.300 0.212 0.329 0.230 0.333 0.209 0.301 0.214 0.329 0.231 0.3383 0.317 0.403
720 0.210±1e−3 0.294±1e−3 0.220 0.320 0.233 0.345 0.265 0.360 0.245 0.333 0.246 0.355 0.254 0.361 0.338 0.417
Avg 0.176±1e−3 0.294±1e−3 0.192 0.295 0.208 0.323 0.229 0.329 0.212 0.300 0.214 0.327 0.227 0.338 0.313 0.401

Tr
af

fic

96 0.451±3e−3 0.280±3e−3 0.593 0.321 0.607 0.392 0.615 0.391 0.650 0.396 0.587 0.366 0.613 0.388 0.798 0.436
192 0.458±2e−3 0.277±2e−3 0.617 0.336 0.621 0.399 0.601 0.382 0.598 0.370 0.604 0.373 0.616 0.382 0.849 0.481
336 0.477±2e−3 0.278±2e−3 0.629 0.336 0.622 0.396 0.613 0.386 0.605 0.373 0.621 0.383 0.622 0.337 0.828 0.476
720 0.520±3e−3 0.288±2e−3 0.640 0.350 0.632 0.396 0.658 0.407 0.645 0.394 0.626 0.382 0.660 0.408 0.854 0.489
Avg 0.477±3e−3 0.281±2e−3 0.620 0.336 0.621 0.396 0.622 0.392 0.625 0.383 0.610 0.376 0.628 0.379 0.832 0.471

W
ea

th
er 96 0.160±8e−4 0.198±9e−4 0.172 0.220 0.197 0.281 0.182 0.242 0.196 0.255 0.217 0.296 0.266 0.336 0.174 0.252

192 0.203±9e−4 0.239±1e−3 0.219 0.261 0.237 0.312 0.227 0.287 0.237 0.296 0.276 0.336 0.307 0.367 0.238 0.313
336 0.252±1e−3 0.276±1e−3 0.280 0.306 0.298 0.353 0.282 0.334 0.283 0.335 0.339 0.380 0.359 0.395 0.287 0.355
720 0.326±1e−3 0.328±1e−3 0.365 0.359 0.352 0.288 0.352 0.386 0.345 0.381 0.403 0.428 0.419 0.428 0.384 0.415
Avg 0.235±1e−3 0.260±1e−3 0.259 0.287 0.271 0.334 0.261 0.312 0.265 0.317 0.309 0.360 0.338 0.382 0.271 0.334

E
xc

ha
ng

e 96 0.087±2e−4 0.206±1e−4 0.107 0.234 0.085 0.204 0.116 0.262 0.088 0.218 0.148 0.278 0.197 0.323 0.395 0.474
192 0.171±2e−4 0.295±1e−4 0.226 0.344 0.182 0.303 0.215 0.359 0.176 0.315 0.271 0.380 0.300 0.369 0.776 0.698
336 0.285±1e−4 0.389±2e−4 0.367 0.448 0.348 0.428 0.377 0.466 0.313 0.427 0.460 0.500 0.509 0.524 1.029 0.797
720 0.578±2e−4 0.574±2e−4 0.964 0.746 1.025 0.774 0.831 0.699 0.839 0.695 1.195 0.841 1.447 0.941 2.283 1.222
Avg 0.280±2e−4 0.366±2e−4 0.416 0.443 0.410 0.427 0.385 0.447 0.354 0.414 0.519 0.500 0.613 0.539 1.121 0.798

Improvement — 14.8% 7.7% 19.1% 14.3% 24.3% 18.5% 19.4% 13.8% 20.8% 16.0% 29.2% 20.8% 62.3% 45.6%
1st Count 56 3 3 0 0 2 0 0

Table 1: Comparing U-Mixer with SOTA benchmarks on large-scale real-world time-series datasets in long-term forecasting.

Instance Normalization and Learning Objective
We flatten Ŷd into Ŷp ∈ RC×(L+H) by a linear layer. Then
we use instance normalization to mitigate the distribution
shift effect between the input X and forecasting result. So
the output of U-Mixer is Ŷ ∈ RC×H = Ŷp[:, τ]×σin+µin,
τ = L : L + H . We choose L1 Loss function to measure
the discrepancy between the prediction and the ground truth,
and the loss is propagated back from the outputs across the
entire model. Compared to the commonly used MSE loss
function in time series forecasting tasks, L1 loss function is
less sensitive to outliers, which allows the model to achieve
more robust performance. The loss of our model is:

LU−Mixer =
1

C

C∑
i=1

|Y [i, :]− Ŷ [i, :]| (9)

Experiments
Datasets
We evaluate U-Mixer mainly on six large-scale real-world
time-series datasets in long-term forecasting. (1) Electricity
transformer temperature (ETT) (Wu et al. 2021) data con-
tains the power load features and oil temperature collected
from electricity transformers, consisting of seven features.
Following the same protocol as Informer (Zhou et al. 2021),
we split the data into four datasets: ETTh1, ETTh2, ETTm1,
and ETTm2. (2) Electricity Consuming Load (ECL) (Wu
et al. 2021) data contains the hourly electricity consumption
of 321 customers from 2012 to 2014. (3) Traffic (He et al.
2022) data is a collection of hourly data from California De-
partment of Transportation and describes the occupancy rate
of different lanes measured by different sensors on San Fran-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14259

Models U-Mixer TimesNet N-HiTS N-BEATS ETS. LightTS FED. Stationary Pyra. In. LogTrans Re. LSTM TCN
Y

ea
rl

y SMAPE 13.317±2e−3 13.387 13.418 13.436 18.009 14.247 13.728 13.717 15.530 14.727 17.107 16.169 176.040 14.920
MASE 3.006±1e−2 2.996 3.045 3.043 4.487 3.109 3.048 3.078 3.711 3.418 4.177 3.800 31.033 3.364
OWA 0.786±2e−4 0.786 0.793 0.794 1.115 0.827 0.803 0.807 0.942 0.881 1.049 0.973 9.290 0.880

Q
ua

rt
. SMAPE 9.956±2e−4 10.100 10.202 10.124 13.376 11.364 10.792 10.958 15.449 11.360 13.207 13.313 172.808 11.122

MASE 1.156±3e−3 1.182 1.194 1.169 1.906 1.328 1.283 1.325 2.350 1.401 1.827 1.775 19.753 1.360
OWA 0.873±1e−4 0.890 0.899 0.886 1.302 1.000 0.958 0.981 1.558 1.027 1.266 1.252 15.049 1.001

O
th

er
s SMAPE 4.858±3e−4 4.891 5.061 4.925 7.267 15.880 4.954 6.302 24.786 24.460 23.236 32.491 186.282 7.186

MASE 3.195±1e−2 3.302 3.216 3.391 5.240 11.434 3.264 4.064 18.581 20.960 16.288 33.355 119.294 4.677
OWA 1.015±1e−4 1.035 1.040 1.053 1.591 3.474 1.036 1.304 5.538 5.879 5.013 8.679 38.411 1.494

A
vg

. SMAPE 11.740±1e−3 11.829 11.927 11.851 14.718 13.525 12.840 12.780 16.987 14.086 16.018 18.200 160.031 13.961
MASE 1.575±1e−2 1.585 1.613 1.599 2.408 2.111 1.701 1.756 3.265 2.718 3.010 4.223 25.788 1.945
OWA 0.845±1e−4 0.851 0.861 0.855 1.172 1.051 0.918 0.930 1.480 1.230 1.378 1.775 12.642 1.023

Table 2: Comparing U-Mixer with SOTA benchmarks on M4 datasets in short-term forecasting.

cisco highway. (4) Exchange (Lai et al. 2018) data collects
the panel data of daily exchange rates from 8 countries rang-
ing from 1990 to 2016. (5) Weather (Nie et al. 2023) data
is recorded 21 meteorological indicators collected every 10
minutes from the Weather Station of the Max Planck Bio-
geochemistry Institute in 2020. (6) M4 (Wu et al. 2023) is a
dataset for the short-term forecasting, which involve 6 sub-
sets: M4-Yearly, M4-Quarterly, M4-Monthly, M4-Weakly,
M4-Daily, and M4-Hourly. We divide all datasets into train-
ing, validation and testing sets according to the chronologi-
cal order by the ratio of 6:2:2 for ETT dataset and 7:1:2 for
the other datasets.

Model Configuration and Metrics
U-Mixer is implemented through Pytorch and trained on an
Nvidia A40 GPU (48GB). The following model configura-
tion is used by default for long-term forecasting: Input se-
quence length L = 96, patch length P = 16, stride S =
8, forecasting sequence length H ∈ {96, 192, 336, 720},
the number of levels M = 3, and batch size is set to
16. For short-term forecasting the model configuration is:
patch length P = 8, stride S = 4, and batch size is set
to 32. The model training runs 10 epochs, and optimiza-
tion is performed by Adam. To enhance the reproducibil-
ity of the implemented results, we fix random seeds. We
employ mean square error (MSE) and mean absolute error
(MAE) for long-term forecasting evaluation. Following the
N-BEATS (Oreshkin et al. 2019), we also employ the sym-
metric mean absolute percentage error (SMAPE), mean ab-
solute scaled error (MASE) and overall weighted average
(OWA) for short-term forecasting.

SOTA Benchmarks
We compare U-Mixer with the following 16 SOTA meth-
ods from five different categories: (1) RNN-based mod-
els: LSTM (Hochreiter and Schmidhuber 1997) and LSSL
(Gu, Goel, and Ré 2022). (2) MLP-based models: LightTS
(Zhang et al. 2022) and DLinear (Zeng et al. 2023). (3)
CNN-based models: TCN (Bai, Kolter, and Koltun 2018)
and TimesNet (Wu et al. 2023). (4) Transformer-based
models: LogTrans (Li et al. 2019), Reformer (Kitaev,
Kaiser, and Levskaya 2020), Informer (Zhou et al. 2021),

Models U-Mixer w/o UE w/o SC

ETTh2 MSE 0.381 0.405 0.400
MAE 0.399 0.427 0.421

Weather MSE 0.235 0.252 0.254
MAE 0.260 0.285 0.287

M4
SMAPE 11.740 11.817 11.808
MASE 1.575 1.582 1.587
OWA 0.845 0.857 0.853

Table 3: Results of ablation study on ETTh2, Weather and
M4 datasets.

Pyraformer (Liu et al. 2021), Autoformer (Wu et al. 2021),
FEDformer (Zhou et al. 2022), Non-stationary Transformer
(Liu et al. 2022b), and ETSformer (Woo et al. 2022). (5)
Decomposition-based models: N-BEATS (Oreshkin et al.
2019) and N-HiTS (Challu et al. 2023).

Overall Comparison
Table 1 presents the long-term forecasting performance
measured by MSE and MAE, and Table 2 shows the short-
term forecasting performance measured by SMAPE, MASE,
and OWA. We can observe that U-Mixer balances short- and
long-term forecasing well and achieves the best short- and
long-term forecasting performance. Out of the 64 long-term
forecastings made on 8 datasets, we achieve the best results
in 56 cases and brings 14.5%/7.7% improvements on MSE/-
MAE to the existing best results. For short-term forecast-
ing on the M4 dataset, we achieve nearly all optimal out-
comes. Specially, we found that RNN-based methods exhib-
ites significantly poorer performance. For long-term fore-
casting, there is not a substantial difference among MLP-
based, CNN-based, and Transformer-based methods. Apart
from our model, the Decomposition-based methods demon-
strates a leading position in short-term prediction.

Ablation Study
To better evaluate the Unet encoder-decoder (UE) and sta-
tionarity correction (SC), we conduct supplementary exper-
iments with ablation consideration. Here w/o UE and w/o
SC are variants of U-Mixer. In w/o UE, we set the Unet
encoder-decoder level M = 0. In w/o SC, we remove the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14260

Electricity

Traffic

 ETTh1

ETTh2

GroundTruth
Prediction0.50

0.25
0.00

-0.25

-0.50

-0.75

-0.8

-1.0

-1.2

-1.4

-1.6

-1.00

0

3

2

1

-1

2

1

0

-1

0 25 50 75 100 125 150 175 200

25 50 75 100 125 1500 25 50 75 100 125 150 175 200 0 175 200

0 25 50 75 100 125 150 175 200

Figure 4: Visualization of forecasting results on multiple
datasets by U-Mixer.

stationarity correction process. We set the batch size as 16,
input sequence length as 96, horizon in {96, 192, 336, 720}
and use the same parameter setting in all ablation experi-
ments. The average results are shown in Table 3. All met-
rics of w/o UE and w/o SC are significantly worsed than
U-Mixer. The complete U-Mixer can obtain the best results,
demonstrating removing any components of it will affect the
effect. The Unet encoder-decoder and stationarity correction
are necessary and effective.

Showcases
To further show the forecasting performance of U-Mixer,
we visualize the results on ETTh1, Electricity, ETTh2, and
Traffic datasets. As shown in Figure 4, the ETTh2 and Traf-
fic datasets exhibit more clear periodicity patterns, which
our method can efficiently forecasting the ground truth. This
demonstrates the strong capability of U-Mixer in capturing
period. In contrast, the patterns of ETTh1 and Electricity are
relatively less obvious. Our method manages to capture their
periodicity to a reasonable extent, and also makes certain
forecastings on their trend. It is verified the robustness of
U-Mixer performance among various data characteristics.

Parameter Sensitivity
We choose the perform the sensitivity analysis of U-Mixer
on ETTm2 and Exchange datasets by varying the number
of level M and the patch length P . As shown in Figure 5,
it can be concluded that our model is not highly sensitive to
parameterM . Overall, the optimal results are achieved when
M is set to 3. Additionally, with an increase in M , the train-
ing time of the model also increases. Therefore, we choose
M = 3 as the parameter for our model. For the parameter P ,
we can tell our model exhibits a higher sensitivity to param-
eter P on the ETTm2 dataset, while the sensitivity is lower

Figure 5: Performance comparison on varying.

on the Exchange dataset. The value of P also influences the
training time. When P is set to 8 or 16, the training time is
relatively shorter, with the outcome of P = 16 surpassing
that of P = 8. Consequently, we set P = 16 as the desig-
nated value.

Conclusion

In this paper, we study the non-stationarity challenge in
time series forecasting task and propose a novel forecasting
model U-Mixer. We combine the Unet and Mixer architec-
ture to capture the local dependencies between patches and
channels separately of different levels to obtain the compre-
hensive representations of time series. More importantly, we
propose a stationarity correction method to handle the dis-
tribution shift caused by non-stationarity while preserving
the temporal dependencies. Our model demonstrates state-
of-the-art short- and long-term forecasting performance on
six real-world datasets, and the overall superiority of various
experiments further verifies the effectiveness and robustness
of it.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14261

Acknowledgements
Supported by the National Natural Science Foundation of
China (NSFC) Joint Fund with Zhejiang Integration of In-
formatization and Industrialization under Key Project (Grant
No.U22A2033) and NSFC (Grant No.62072281).

References
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271.
Challu, C.; Olivares, K. G.; Oreshkin, B. N.; Ramirez, F. G.;
Canseco, M. M.; and Dubrawski, A. 2023. NHITS: Neu-
ral Hierarchical Interpolation for Time Series Forecasting.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, 6989–6997.
Cohen, L. 1998. The generalization of the Wiener-Khinchin
theorem. In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP’98 (Cat. No. 98CH36181), volume 3, 1577–1580.
IEEE.
Fukushima, K. 1980. Neocognitron: A self-organizing neu-
ral network model for a mechanism of pattern recogni-
tion unaffected by shift in position. Biological cybernetics,
36(4): 193–202.
Gu, A.; Goel, K.; and Ré, C. 2022. Efficiently Modeling
Long Sequences with Structured State Spaces. In The Inter-
national Conference on Learning Representations (ICLR).
He, H.; Zhang, Q.; Bai, S.; Yi, K.; and Niu, Z. 2022. CATN:
Cross attentive tree-aware network for multivariate time se-
ries forecasting. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 4030–4038.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.-H.; and Choo, J.
2021. Reversible instance normalization for accurate time-
series forecasting against distribution shift. In International
Conference on Learning Representations.
Kitaev, N.; Kaiser, L.; and Levskaya, A. 2020. Reformer:
The Efficient Transformer. In International Conference on
Learning Representations.
Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Modeling
long-and short-term temporal patterns with deep neural net-
works. In The 41st international ACM SIGIR conference on
research & development in information retrieval, 95–104.
Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.;
and Yan, X. 2019. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing. Advances in neural information processing systems, 32.
Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A. X.; and Dust-
dar, S. 2021. Pyraformer: Low-complexity pyramidal atten-
tion for long-range time series modeling and forecasting. In
International conference on learning representations.
Liu, T.; Ma, X.; Li, S.; Li, X.; and Zhang, C. 2022a. A stock
price prediction method based on meta-learning and vari-
ational mode decomposition. Knowledge-Based Systems,
252: 109324.

Liu, Y.; Wu, H.; Wang, J.; and Long, M. 2022b. Non-
stationary Transformers: Exploring the Stationarity in Time
Series Forecasting.
Ma, X.; Zhao, T.; Guo, Q.; Li, X.; and Zhang, C. 2022.
Fuzzy hypergraph network for recommending top-K prof-
itable stocks. Information Sciences, 613: 239–255.
Nie, Y.; H. Nguyen, N.; Sinthong, P.; and Kalagnanam, J.
2023. A Time Series is Worth 64 Words: Long-term Fore-
casting with Transformers. In International Conference on
Learning Representations.
Oreshkin, B. N.; Carpov, D.; Chapados, N.; and Bengio, Y.
2019. N-BEATS: Neural basis expansion analysis for inter-
pretable time series forecasting. In International Conference
on Learning Representations.
Tolstikhin, I. O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.;
Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.;
Uszkoreit, J.; et al. 2021. Mlp-mixer: An all-mlp architec-
ture for vision. Advances in neural information processing
systems, 34: 24261–24272.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Woo, G.; Liu, C.; Sahoo, D.; Kumar, A.; and Hoi, S. 2022.
Etsformer: Exponential smoothing transformers for time-
series forecasting. arXiv preprint arXiv:2202.01381.
Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; and Long, M.
2023. TimesNet: Temporal 2D-Variation Modeling for Gen-
eral Time Series Analysis. In International Conference on
Learning Representations.
Wu, H.; Xu, J.; Wang, J.; and Long, M. 2021. Autoformer:
Decomposition transformers with auto-correlation for long-
term series forecasting. Advances in Neural Information
Processing Systems, 34: 22419–22430.
Zeng, A.; Chen, M.; Zhang, L.; and Xu, Q. 2023. Are trans-
formers effective for time series forecasting? In Proceedings
of the AAAI conference on artificial intelligence, volume 37,
11121–11128.
Zhang, F.; Guo, T.; and Wang, H. 2023. DFNet: Decomposi-
tion fusion model for long sequence time-series forecasting.
Knowledge-Based Systems, 277: 110794.
Zhang, T.; Zhang, Y.; Cao, W.; Bian, J.; Yi, X.; Zheng, S.;
and Li, J. 2022. Less is more: Fast multivariate time se-
ries forecasting with light sampling-oriented mlp structures.
arXiv preprint arXiv:2207.01186.
Zhao, T.; Ma, X.; Li, X.; and Zhang, C. 2023. MPR-
Net:Multi-Scale Pattern Reproduction Guided Universality
Time Series Interpretable Forecasting. arXiv:2307.06736.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceedings of
the AAAI conference on artificial intelligence, volume 35,
11106–11115.
Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; and Jin, R.
2022. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. In International
Conference on Machine Learning, 27268–27286. PMLR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14262

