SafeLight: A Reinforcement Learning Method toward Collision-Free Traffic Signal Control

Authors

  • Wenlu Du New Jersey Institute of Technology
  • Junyi Ye New Jersey Institute of Technology
  • Jingyi Gu New Jersey Institute of Technology
  • Jing Li New Jersey Institute of Technology
  • Hua Wei New Jersey Institute of Technology
  • Guiling Wang New Jersey Institute of Technology

DOI:

https://doi.org/10.1609/aaai.v37i12.26729

Keywords:

General

Abstract

Traffic signal control is safety-critical for our daily life. Roughly one-quarter of road accidents in the U.S. happen at intersections due to problematic signal timing, urging the development of safety-oriented intersection control. However, existing studies on adaptive traffic signal control using reinforcement learning technologies have focused mainly on minimizing traffic delay but neglecting the potential exposure to unsafe conditions. We, for the first time, incorporate road safety standards as enforcement to ensure the safety of existing reinforcement learning methods, aiming toward operating intersections with zero collisions. We have proposed a safety-enhanced residual reinforcement learning method (SafeLight) and employed multiple optimization techniques, such as multi-objective loss function and reward shaping for better knowledge integration. Extensive experiments are conducted using both synthetic and real-world benchmark datasets. Results show that our method can significantly reduce collisions while increasing traffic mobility.

Downloads

Published

2023-06-26

How to Cite

Du, W., Ye, J., Gu, J., Li, J., Wei, H., & Wang, G. (2023). SafeLight: A Reinforcement Learning Method toward Collision-Free Traffic Signal Control. Proceedings of the AAAI Conference on Artificial Intelligence, 37(12), 14801-14810. https://doi.org/10.1609/aaai.v37i12.26729

Issue

Section

AAAI Special Track on Safe and Robust AI