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Abstract

Traffic signal control is safety-critical for our daily life.
Roughly one-quarter of road accidents in the U.S. happen at
intersections due to problematic signal timing, urging the de-
velopment of safety-oriented intersection control. However,
existing studies on adaptive traffic signal control using re-
inforcement learning technologies have focused mainly on
minimizing traffic delay but neglecting the potential expo-
sure to unsafe conditions. We, for the first time, incorporate
road safety standards as enforcement to ensure the safety of
existing reinforcement learning methods, aiming toward op-
erating intersections with zero collisions. We have proposed
a safety-enhanced residual reinforcement learning method
(SafeLight) and employed multiple optimization techniques,
such as multi-objective loss function and reward shaping
for better knowledge integration. Extensive experiments are
conducted using both synthetic and real-world benchmark
datasets. Results show that our method can significantly re-
duce collisions while increasing traffic mobility.

Introduction
Traffic congestion has become increasingly costly. For ex-
ample, on average, American drivers lost 26 hours in traf-
fic jams even in 2020 under the pandemic situation, which
already includes a drop from 73 hours in 2019 (INTRIX
2021). The American Transportation Research Institute es-
timates that congestion costs the U.S. freight sector $74.1
billion annually, of which $66.1 billion is from urban ar-
eas (Glover 2020). Intersections, especially in the urban
area, are where the aforementioned congestion problems
happen every single day. Signalized intersections are one of
the most common bottleneck road types in urban environ-
ments. Thus, Traffic Signal Control (TSC) plays a vital role
in urban traffic management (McElroy and Taylor 2007).

To improve the mobility of vehicles in a city, Reinforce-
ment Learning (RL), a widely adopted method for control
problems, has been applied to TSC research and has proven
to be effective (Genders and Razavi 2016; Zheng et al. 2019;
Chen et al. 2020; Wei et al. 2021). The biggest advantage of
RL is that it directly learns how to take the next action by
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observing the feedback (rewards) from the environment af-
ter previous actions and continuously explores the possible
cases. By setting mobility-related rewards like vehicle delay,
RL-based TSC methods can learn to adjust the traffic signals
to accommodate the real traffic demand and hence achieve
better than human performance to make traffic move faster.

However, TSC must consider both traffic mobility and
traffic safety. A small mistake in traffic signals can cause
significant loss of life and property. According to the Fed-
eral Highway Administration, more than 50 percent of the
combined fatal and injury crashes occur at or near intersec-
tions (Coben 2006). Moreover, crashes at signalized inter-
sections occupy about one–third of all intersection fatali-
ties, including a large proportion that involves red-light run-
ning (Himes et al. 2017) and improper left turns (Le et al.
2018), which could be reduced through well-designed sig-
nal timing plans. This motivates the study of safety rules in
the traditional transportation field.

Conventional transportation research has extensively
studied the safety effects associated to signal timing. In
particular, previous works (Anjana and Anjaneyulu 2015;
Wong, Sze, and Li 2007) analyzed the contributory factors
for traffic crashes and found red-light violations, yellow-
light time changes, and left-turn phases are critical for traffic
safety. Other works (Essa and Sayed 2019; Persaud, Lord,
and Palmisano 2002) predicted the safety risk through re-
gression models and Bayesian methods and provided author-
itative equations and rules (Urbanik et al. 2015) as domain
knowledge to help traffic engineers determine the signal tim-
ing in practice.

Some RL-based TSC methods attempted to address the
safety concerns. They usually incorporate safety into the re-
ward and combine it with mobility-related rewards (Khamis
and Gomaa 2014; Gong et al. 2020; Wei et al. 2018). Unfor-
tunately, this often results in highly sensitive performance
w.r.t. the setting and inevitably leads to a long learning pro-
cess. In other words, finding the appropriate rewards of traf-
fic mobility and safety for RL models requires not only the
ad-hoc tuning of various reward factors but also a long time
of exploration to learn the safe actions. The tuning pro-
cess can be avoided by Inverse Reinforcement Learning (Ng,
Russell et al. 2000) where the reward signal is learned by the
RL agent, but still it would require a large volume of data to
learn the reward for safety, large enough to cover various
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unsafe cases which are difficult to obtain. The long training
time is painful especially since accidents caused by actions
of traffic signals are rare during training, RL methods have
to explore a large number of cases to learn the safety rules.
Moreover, even the well-learned model might not obey the
safety rules in practice.

Therefore, can we better incorporate safety rules and im-
prove RL to address both traffic safety and mobility require-
ments? Such a safety-enhanced RL model is a critical step
closer to the real-world deployment of RL-based TSC meth-
ods. In this work, we step toward this goal and show that
frequent traffic crashes can be avoided through carefully de-
signed RL-based TSC methods. By investigating the avail-
able domain safety rules, we formulate a safety model ac-
cordingly to decide if a TSC action is unsafe. Next, we in-
corporate the safety model as add-on safety modules into the
RL model with systematic analysis. More precisely, we in-
tegrate it into the different parts of the RL design, includ-
ing the state, action, reward and loss function. A safety-
enhanced RL approach, SafeLight , which utilizes residual
learning (Johannink et al. 2019), is then proposed. We ana-
lyze the pros and cons of each design choice for the safety
modules and conduct experiments on both synthetic and
real-world datasets from existing benchmarks. Results show
that our methods can be easily integrated into existing works
and achieve superior performance under both safety and mo-
bility measures.

In summary, the contributions of this work are as follows:
• We reveal that current RL-based methods can impose

safety concerns. Compared with conventional non-RL meth-
ods, the occurrences of collisions are higher in both syn-
thetic and real-world benchmark datasets.

• We provide a systematic analysis of possible integration
of domain safety rules and propose SafeLight . Through test-
ing on two RL models with different designs, we verify that
our residual-based method can be incorporated into existing
RL models, or most RL methods in general, to enhance their
safety to near zero-collision level.

• We evaluate our proposed methods on multiple datasets.
Results show that SafeLight achieves over 99 percent re-
duction in collisions than the backbone RL model and about
30 percent lower average waiting time than the Fixed-time
control. The excellent performance of our proposed method
holds under different environment settings.

Related Works
RL-Based TSC Methods
There have been many research works concentrated on im-
proving traffic mobility using RL algorithms. This is largely
because they can adapt to real-time traffic, which directly
evolves in complex and unpredictable circumstances, such
as real geometric road conditions and unexpected accidents
and congestion (Khattak 1991) (Wang, Djahel, and McMa-
nis 2014). Those that claim the state-of-the-art performance
in TSC can be roughly categorized into two groups: 1) Deep
Q-Network (DQN) based RL algorithms (Mnih et al. 2015)
where the neural network is used to decide the action taken
by an RL agent, and 2) Actor-Critic Network based RL

algorithms (Mnih et al. 2016) where an extra neural net-
work is used to estimate the state advantages. Among the
first group, a Double DQN (DDQN) with a dual-agent al-
gorithm (Van Hasselt, Guez, and Silver 2016) is proposed
to obtain a stable traffic signal control policy. The work
of (Zhang et al. 2021) extends the DDQN algorithm using
the forgetful experience mechanism and the lenient weight
training mechanism to speed up training. A Dueling DDQN
(3DQN) model (Liang et al. 2019) is proposed with pri-
oritized experience replay to further improve the sampling
efficiency. In the second group, Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017), which follows the ad-
vantage actor-critic paradigm, is employed in the work of
(Ault, Hanna, and Sharon 2019) to achieve a smooth and
monotonic learning curve. However, these RL methods only
improve mobility without considering safety concerns.

There are a few RL-based works that consider mul-
tiple objectives, including safety. To be deployed in the
real world, traffic signals must provide both mobility and
safety (Koonce and Rodegerdts 2008). In (Khamis and Go-
maa 2014), a multi-agent RL method with a synthetic re-
ward is proposed to optimize multiple objectives, i.e., reduc-
ing trip waiting time, total trip time, junction waiting time
and collision risks. The main issues of this method are: (1)
the weights of the rewards for different objectives need to
be determined by domain experts; and (2) the convergence
may not be guaranteed. Instead of using synthetic rewards,
some works (Jin and Ma 2015; Gong et al. 2020) consider
modeling the synthetic value function or synthetic Q-values
(i.e., the synthetic expected long-term reward) for improv-
ing both mobility and safety. This method is also known as
multi-objective RL (MORL), which learns different value
functions independently and then makes the decision based
on the synthetic Q-values. Compared to synthetic reward-
based models, MORL methods guarantee to converge. The
main concern is that the traffic safety risk estimation in their
framework requires detailed labeled traffic crash data in the
study area, which is usually not available for most roads.

Safe Reinforcement Learning

In high-stakes domains like transportation, safety is par-
ticularly important, thus researchers are paying attention
to both long-term reward and safety violation avoidance.
Based on the survey paper (Garcıa and Fernández 2015),
two main strategies for Safe Reinforcement Learning are
considered: one is the modification of the optimality crite-
rion and the other is the modification of the exploration pro-
cess to avoid unsafe situations. The former, for example in
the work (Di Castro, Tamar, and Mannor 2012), uses con-
strained criterion to maximize the return while keeping other
expected measures within some certain bounds; while the
latter takes advantage of external knowledge, such as teacher
advice (Geramifard 2012). Others (Thomas, Luo, and Ma
2021) (Alshiekh et al. 2018) propose Safe Reinforcement
Learning by planning ahead a short time into the future to
anticipate safety violations before they occur. Safe RL is a
promising path toward applying RL to safety-critical prob-
lems yet has not been applied to TSC.
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Background
This section will describe preliminary knowledge about re-
inforcement learning (RL). Moreover, background knowl-
edge about current safety rules and standards in the trans-
portation field will be introduced.

Reinforcement Learning
An RL agent learns decisions through interactions with the
environment that is modeled as a Markov Decision Process
(MDP), defined as a tuple (S,A, P,R, γ), where S denotes
a state space, A denotes an action space, P : S × A× S →
[0, 1] denotes transition probabilities between states, R de-
notes a reward function, and γ ∈ [0, 1] is a discount factor.
Specifically, at each time period t, the agent observes a state
st ∈ S and takes an action at ∈ A, which is determined by
the policy π : S → A. Then, the next state st+1 is reached
with a transition probability T (st+1|st, at), and the agent
receives a reward rt ∈ R. The action-value function Qπ is
defined to evaluate how good it is for an agent to pick the ac-
tion at based on policy π in state st. It is expressed as the ex-
pected cumulative reward: Qπ(s, a) = E[

∑∞
i=t γ

irt+i|st =
s, at = a]. The objective of an RL agent is to learn the opti-
mal policy π∗ for maximizing Qπ(s, a).

TSC as an MDP
When RL is applied in TSC, the signalized intersection en-
vironment is commonly modeled as the following MDP.

State Space The controller receives a representation of the
current intersection state. In literature, different factors are
considered in the state space definition, e.g., the number of
stopped vehicles, the number of approaching vehicles (i.e.,
queue length), the average speed of approaching vehicles,
and the maximum of the vehicle waiting time. Some papers
also use the vehicle positions with the help of advanced sens-
ing capabilities. The state space can be any subset of the
above sensing data, among which queue length is the one
commonly used in most existing works.

Action Space Based on the state, the controller chooses an
action (i.e., signaling decision) to take. There are two ma-
jor types of action space in TSC: cyclic and acyclic action
spaces. In the cyclic setting, the control action is defined as
a cycle — a complete sequence of signal phases with com-
puted duration. As shown in Figure 1, the cycle has four
phases in the order of (ϕ2, ϕ6), (ϕ1, ϕ5), (ϕ4, ϕ8), (ϕ3, ϕ6).
The RL agent interacts with the environment cycle by cycle,
adaptively adjusting a phase duration in the cycle by either
increasing or decreasing its current duration. In the acyclic
setting, the control action is defined as a phase p. Each time
the agent chooses a phase p from all possible phases as its
action ati to take at the current state. In this setting, the exe-
cution time of each action, ∆t, is fixed.

Reward Function After taking an action, the traffic con-
troller receives a reward to indicate how good the signaling
decision was. The reward function is one important signal to
guide the RL agent toward the well-defined objective, e.g.,
improving mobility. Vehicle delay, waiting time, intersection

Figure 1: Illustration of the cyclic action space.

throughput, and queue length can also be used in the reward
function.

Domain Strategy on Safety
Safety strategies from the transportation domain are in the
form of logical rules and traffic guidelines from authori-
ties. Safety around an intersection is affected by many fac-
tors, including signal control, intersection geometry, traf-
fic demand/volume, driving behavior, etc. Among all fac-
tors, signal control is the crucial one that traffic engineers
take charge of. Transportation authorities like the Insti-
tute of Transportation Engineers (ITE) offer authoritative
domain equations for calculating signal timing parameters
with safety aspects in consideration. In addition, the Depart-
ment of Transportation also provides safety-conscious de-
sign standards (FHWA 2009; Wolshon, Pande et al. 2016;
Lockwood 1997; Koonce and Rodegerdts 2008). In this sub-
section, we use the left-turn phasing in the domain design
standards as an example to illustrate the potential safety con-
cerns. For other standards like yellow change and red clear-
ance interval, we refer to (Urbanik et al. 2015).

Logical Rules for Left-turn Phasing As is shown in Fig-
ure 2, left-turn phasing in practice often operates in the
following modes: protected-only, where left-turn drivers
have the exclusive right of the way, permitted-only, where
left-turn drivers may yield to the opposing vehicles, and
protective-permitted which is the combination of the afore-
mentioned two. Many studies have shown that permitted-
only and protective-permitted operations can reduce delay
while having a negative impact on safety. To ensure safety,
it is possible to adjust the left-turn phasing mode by inte-
grating domain rules or guidelines. Several left-turn phasing
guidelines in the Federal Signal Timing Manual (Koonce
and Rodegerdts 2008) could be used to build our safety
model, which determines if a left-turn phasing mode is
unsafe under certain conditions. For example, based on
the guidelines, if the 85% percentile speed (Koonce and
Rodegerdts 2008) of opposing traffic is greater than 45 mph,
then the permitted left-turn phasing mode is unsafe. More
details of the logical rules used in our design can be found
in the Appendix.

Note that there are different safety rules or guidelines on
left-turn phasing. In this paper, we refer to the guidelines
suggested by the Federal Signal Timing Manual (Koonce
and Rodegerdts 2008), and other guidelines could also be
similarly integrated into our proposed framework.
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Figure 2: Illustration of protected, permitted and protective-
permitted left-turn phasing mode with 3 approaching lanes.
For protective-permitted mode, the protected and permitted
left turn phases coexist in one cycle.

Proposed Approach
This section introduces the RL model and the proposed
safety-module integration framework SafeLight with a com-
prehensive discussion of the pro and cons of its variations.

RL Model
We implement our proposed safety-module integration ap-
proach based on an existing RL model (Liang et al. 2019)
that has the state-of-the-art performance. In this model, sens-
ing devices, such as vehicle-tracking cameras, are assumed
to track the position and speed of vehicles within a cer-
tain sensing radius. The raw traffic data is pre-processed
to image-alike matrices by segmenting the intersection
into same-size square-shape cells with a two-value vector
⟨position, speed⟩ of the vehicles if any. To showcase that
SafeLight is independent of RL design settings, both cyclic
actions from (Liang et al. 2019) and acyclic actions from an-
other benchmark RL model (Ault, Hanna, and Sharon 2019)
are tested in our experiments. The reward function is the cu-
mulative vehicle waiting time between the actions measured
from the point of time when the vehicles have entered the in-
tersection until the start of the green light. 3DQN is chosen
as the RL algorithm.

Safety Module Integration: SafeLight
The proposed SafeLight for integration, see Figure 3, is de-
scribed here. The safety modules include a safety model,
πH(s), which takes the current traffic condition as input and
verifies whether an action is unsafe. To avoid the turn crash
in our example case, the safety model consists of the logical
rules abstracted from the left-turn phasing guidelines. For in-
stance, if a left turn is permitted but not protected and the foe
vehicles are approaching the junctions at a faster speed, then
the left turn should be switched to protected mode. More
details can be seen in the Appendix.

We describe below how the safety modules can be inte-
grated into different parts of a general RL framework.

SafeLight-Act A safety module can be integrated into RL
by directly influencing the actions. Inspired by the residual
RL method (Johannink et al. 2019), where the final action
comes from the action learned from an RL agent and the
action from a human-designed controller, in our setting, the
action from the RL agent is filtered by the safety model as
shown in Figure 3(b) with a mark of 1. Instead of directly
learning a safe action, the learned action is corrected when-
ever a potential safety issue is detected by the safety guide-
lines. Such supervision is partial (a minimum interference
only if the action is unsafe). For example, when the action
given by RL includes a permitted left turn and it is deter-
mined unsafe, the permitted left turn signal will turn red,
prohibiting all left-turn movements.
ANALYSIS Pros: First, it decouples the goal of improving
mobility and safety. The RL model is only for improving
mobility, while the safety module is only used as a proac-
tive measure for any safety concern and corrects the RL
agent only if necessary. This is especially effective when
there are only a few conflicting movements, e.g., nighttime.
Moreover, the safety module can be easily built upon the RL
model with minimal modifications to the RL model. Last,
the final executed action filtered by the safety module can
guarantee safety since the safe action is not learned by the
RL agent. Cons: It highly depends on the current volume
of conflicting vehicles. If the RL agent is corrected by the
safety module frequently, the training process will fluctuate
immensely and be hard to converge.

SafeLight-Loss The safety module can also be integrated
into the loss function, which becomes multi-task learning. In
multi-task learning, where the performance relies on mul-
tiple optimization objectives, the standard approach is to
train a model that can minimize a loss function including
multiple terms L(., ., λ) parameterized by a vector λ, corre-
sponding to different optimizing tasks (Kokkinos 2017; Za-
mir et al. 2018). Simple average or weighted sum are two
common methods to balance different terms: L(., ., λ) =∑

i λiLi(., .). We leverage such knowledge to build upon
the existing RL model layering up one more optimizing task,
i.e., minimizing collisions, into the loss function as shown in
the equation below.

J = λ1

∑
s

P(s)[Qtarget(s, a)−Q(s, a; θ]2 + λ2∆,

∆ = DKL(Â(πH(s))||A(s, a; θ))

where Qtarget = r+γQ(s′, argmaxa′(Q(s′, a′; θ)), θ−) is
generated by double Q-learning algorithm and A(s, a; θ) =
Q(s, a) − V (s) is the advantage function. The first term
of the loss function is from the backbone RL algorithm
(3DQN), by which the parameters can be updated by the
Mean Square Error (MSE) of the target network and online
network. ∆ denotes the second term as illustrated in Fig-
ure 3(b) with a mark of 2, advocating safer actions through
minimizing the gap between the actual action and the related
safe action. Specifically, the Kullback-Leibler (KL) diver-
gence (Hershey and Olsen 2007) of the normalized advan-
tages over the action space and the desired safe advantage
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Figure 3: RL framework with four possible ways of integrating safety modules in action, state, reward function, and loss
function. Note that the RL model could be in any form, while this figure only illustrates one example model adopted from (Liang
et al. 2019).

distribution inferred by the safety model πH(s) is measured.
The normalized advantages reflect the agent’s current pref-
erence over the actions and can be used as a measure of how
far it is to the desired safe action. Note that when the action
from the RL agent is safe (i.e., no collisions occur), the value
of the second term in the loss function will be zero.
ANALYSIS Pros: The merit comes from the idea of multi-
task learning, with one model optimized towards two ob-
jectives. Cons: Such integration needs to fine-tune the co-
efficient factor of the two optimization objectives in the loss
function for each intersection-specific scenario. Domain sci-
entists in the transportation field still have to develop an un-
derstanding of the backbone RL algorithm before being able
to set the coefficients reasonably.

SafeLight-R A safety module can be integrated into the
reward function. Similar to the idea of reward shaping (Ng,
Harada, and Russell 1999), the domain knowledge is trans-
formed as additional rewards to guide the RL agent to in-
corporate human expertise. We consider a general form of
reward shaping, i.e., the additive form formally defined as
r′ = r+F , by adding a safety-related numeric reward value.
In our approach, we take the same strategy as how we inte-
grate it into the loss function, shown in Figure 3(b) with a
mark of 4. Once an unsafe action is confirmed by the safety
model, a desired safe advantage distribution is formulated.
Then the difference between the true advantage distribution
over the action space and the desired safe advantage distri-
bution can be measured using the KL divergence and used
as an extra numeric reward value denoting the penalty for
deviating from desired safe standard, i.e.,

R̃(Sk, ak) = R(Sk, ak) + λDKL(Â(πH(s))||A(s, a; θ))

ANALYSIS. Pros: Owning to the reward-driven property of
RL, modifying the reward is an effective and straightforward
way to help the RL agent find an optimal solution consider-
ing both objectives. Cons: It may suffer from reward shap-

ing, where the performance highly relies on the design of the
reward function. Since the estimated policy from DNN does
not have a one-to-one mapping to the multiobjective reward,
there is no theoretical proof for convergence.

SafeLight-S&R and SafeLight-S&Loss A safety mod-
ule can be integrated into the state. The safety model can
be embedded into an m-dimensional latent space via a layer
of Multi-Layer Perceptron, as shown in the middle of Fig-
ure 3(b) with a mark of 3. We define it as Embed(πH) =
σ(πHWe + be) where We and be are weight matrix and bias
vector to learn, and σ is ReLU function. This embedding is
then incorporated into the Q network via concatenation to
serve as an additional feature. Such feature-rich input can
be combined with SafeLight-Loss or SafeLight-R to further
boost the performance.
ANALYSIS. Pros: It is a feature-rich method. The safety
model is processed to a feature and encoded into the state
representation. If used properly, we may obtain a per-
formance gain since all DNN methods require a well-
developed input representation. Cons: It must be combined
with SafeLight-Loss or SafeLight-R methods. Otherwise,
without a safety-aware performance measure during train-
ing, the RL model cannot learn from this safety embedding.

Experiments
In this section, we conduct experiments to answer the fol-
lowing research questions1:
• RQ1: Compared with state-of-the-arts, would the Safe-
Light outperform under both mobility and safety measures
(i.e., reducing collisions without noticeably compromising
mobility)?
• RQ2: Can SafeLight maintain the same level of perfor-
mance under different RL designs (i.e., cyclic and acyclic

1The source codes are publicly available from
https://gitlab.com/wenlu057/traffic-safety.git.
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(a) the synthetic intersection (b) Intersection located at
Bachemer Str.,Cologne, Germany

Figure 4: (a) the intersection geometry for synthetic bench-
mark dataset. (b) the real and complex intersection geometry
for a real-world benchmark dataset.

actions)?
• RQ3: Is SafeLight flexible to be integrated into different
backbone RL models (i.e., 3DQN and IPPO)?

Evaluation Environment
The experiments are conducted in the microscopic traffic
simulator, SUMO, under time-variant traffic flow.

Intersection Modeling We perform experiments on a syn-
thetic intersection (Liang et al. 2019) and a real-world inter-
section (Mei et al. 2022; Ault and Sharon 2021) with var-
ious settings. The synthetic intersection in Figure 4(a) has
four approaches and twelve one-way vehicular movements.
The real-world dataset is built based on the intersection at
Cologne, Germany, as shown in Figure 4(b). Real traffic flow
is adopted into the simulated environment. The intersection
has 8 approaching lanes. In both intersections, the permit-
ted left turn and U-turn are allowed. The setup of SUMO
simulation environment assumes: (1) accurate vehicle detec-
tion, which is often available in practice via cameras or other
sensors; (2) same deceleration rate, which can be modified
based on needs and (3) permitted left turn in the timing plan.

Collision Data The collisions are generated by deliber-
ately tuning up the probability that causes vehicles to ig-
nore conflicting vehicles already in the intersection to mimic
the aggressive driving behaviors, which are the root cause
of any collisions (Hamdar, Mahmassani, and Chen 2008).
Using the generated collision data instead of the real-world
collision data is more beneficial since (1) we can obtain a
much larger collision dataset so that the sample is not bi-
ased; (2) unlike uncomfortable braking and predicted safety
risk score, the number of collisions under this stress testing
is the most straightforward indicator of safety hazards.

Comparison Methods
We compare the performance of our approach with two RL
methods that address safety under the same evaluation met-
rics to verify the effectiveness of our algorithm. Addition-
ally, we compare against two baseline methods: the back-
bone RL model and the Fixed-time controller.
• Fixed-time (Koonce and Rodegerdts 2008): The lights are
controlled solely on preset timings.
• Backbone RL(3DQN) (Liang et al. 2019): The backbone
RL model minimizes delay without considering safety.
• Synthetic Reward (Syn-R ) (Khamis and Gomaa 2014):
This method uses a synthetic reward defined as R(s, a) =

w1R1(s, a) + w2R2(s, a). It includes two terms, each asso-
ciated with an objective.
• Synthetic Value (Syn-Q ) (Gong et al. 2020): The linearly
weighted sum of Q-values for the two objectives is used to
obtain a synthetic Q function.

Experiment Result
Here, we present the experimental results on two benchmark
datasets (synthetic and real-world), two RL designs (cyclic
and acyclic action spaces), and two backbone RL models
(3DQN and PPO) to verify the effectiveness and generaliz-
ability of our proposed SafeLight . Both evaluation and train-
ing results are shown.

Evaluation Metric We evaluate the performance on both
mobility and safety and answer the above research ques-
tions. The average waiting time, throughput, and the number
of stop vehicles are chosen as the performance measure for
mobility. The number of collisions that happened within one
simulation time frame is selected as the safety measure.

Results of Evaluation Performance (RQ1) Figure 5
summarizes the key performance under three different set-
tings (synthetic dataset and cyclic action space, real-world
dataset and cyclic action space, real-world dataset and
acyclic action space). We have the following observations:
• Though maintaining relatively better mobility, Backbone
RL(3DQN) has the highest rate of collisions, even worse
than the Fixed-time control method in all settings, which
verifies our viewpoint that existing RL-based work imposes
safety issues and thus needs safety design. Syn-Q is better
at reducing collisions but increases the average waiting time
compared with Backbone RL(3DQN) .
• All the SafeLight methods consistently outperform Back-
bone RL(3DQN) in reducing collisions, while showing dif-
ferent performances in reducing the waiting time. SafeLight-
Act achieves 93.94% and 86% fewer collisions on synthetic
and real-world datasets, respectively. SafeLight-R outper-
forms others on the synthetic setting in terms of the collision
rates, with a 99.32% improvement in safety.
• We also noticed that embedding the safety model into the
state does not seem to bring a boost in performance. This
is similar to supervised learning, in which adding an addi-
tional feature without adding any labeling information will
not guide the model learning.
• We especially paid attention to whether a safe action now
may lead to future unsafe action in SafeLight-Act , since in-
tervention is made when the action of RL agent is deter-
mined as unsafe. Through prudent analysis, we found there
are two cases in the consecutive states after the intervention:
no opposing through movement vehicles or endless ones. In
the former case, left-turn drivers will grant the right of the
way. In the latter case, left turns are always prohibited, and
left-turn drivers will have the green in the subsequent pro-
tected left-turn phase. Neither of them will result in an un-
safe state.
• We observed the cases where SafeLight-R avoided col-
lisions while SafeLight-Act caused collisions. Although by
construction, SafeLight-Act should be able to prevent all the
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Figure 5: Performance Evaluation w.r.t Traffic Mobility and Safety. The SafeLight methods are marked in red and other baseline
methods are marked in other colors as circles. The blue line in each figure encloses the best performance area. At least 3
SafeLight methods are within the best performance area in all 3 settings.

collisions, through collision visualization, we found colli-
sions occurred in one case where the left-turn vehicle was
entering the intersection during the green light and the op-
posing through vehicle was also driving in during the yellow
light. In another case, a vehicle entered the intersection dur-
ing the yellow light and was still in it when the yellow was
switched to red; thus, the opposing vehicle conflicted with
that vehicle. The SafeLight-Act cannot eliminate the above
two cases (i.e., a collision involving a yellow phase).

Convergence during Training The convergence curves
of RL methods are shown in Figure 6. Compared with Back-
bone RL(3DQN) , SafeLight-Act can quickly converge to
lower average waiting times and maintain strong safety per-
formance throughout the training. This is reasonable since
this method directly corrects the unsafe learned action. Al-

though the reward is delayed under SafeLight-Act , from the
results we can still observe that occasional intervention does
not hurt the learning much.

Study of Action Generalizability (RQ2) As discussed in
earlier sections, there are two types of action spaces in TSC,
i.e., cyclic and acyclic actions. Here, we investigate whether
our design could generalize to different action settings.

In general, the acyclic action space increases collisions,
which is one of the reasons why most existing real-world
traffic signals operate in a cyclic manner. Among all the
methods, SafeLight-Loss and SafeLight-Act perform rela-
tively well under both the cyclic and acyclic action settings.
In comparison, the Syn-R can perform well in the cyclic set-
ting but fail to minimize collisions in the acyclic setting. The
performance gap in different settings attributes to the ad-hoc
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Figure 6: The training processes of SafeLight and other baseline methods under 3 different environment settings. The best per-
formance considering both safety and mobility in 3 settings are SafeLight-R , SafeLight-Act , and SafeLight-Act , respectively.
The fastest to reach optimum in 3 settings are SafeLight-R , SafeLight-Loss , and SafeLight-Act , respectively.

tuning of two reward factors, which verifies that the perfor-
mance is sensitive to individual settings.

Study of Model Generalizability (RQ3) To verify that
the proposed SafeLight can maintain superior performance
under different backbone RL models. We adopt another RL
model, IPPO, from the benchmark (Ault and Sharon 2021)
to evaluate the performance in the same synthetic environ-
ment as the previous experiment. The state space is defined
as the queue length plus the max waiting time per lane. The
action is defined as acyclic. The reward function is defined
as the same as the state space. Table 1 shows the evaluation
results. We can see that SafeLight can still outperform other
baseline methods in terms of minimizing collisions.

Conclusion
In this work, we address the safety concern of current RL
methods. By exploiting domain knowledge on safety, we
propose a safety-enhanced reinforcement learning method
that integrates a safety module into the underlying RL
model. Our proposed method is compared with other base-
line models under various benchmark datasets to show its
effectiveness. We demonstrate that our model also has good
generalizability under different settings, which is critical for
real-world deployment with constantly changing traffic de-
mands. We share our pathway for finding a way to enforce
safety which can be a guideline for future study.

Our proposed model could be utilized for more specific
domain safety rules, including yellow and red timing. In the
future, we will extend our method to more transportation
rules toward a safer RL-based TSC method.

Mobility Safety
Backbone RL Methods Average

Delay
collisions

SafeLight-Act 16.57 0.2
SafeLight-Loss 13.07 3.8

SafeLight-R 16.60 0.0
IPPO Syn-R 20.02 0.8

Syn-Q 25.47 7.3
3DQN 10.66 24.5

Fixed-time 27.38 7.0

Table 1: Evaluation performance on IPPO. Evaluation result
is based on average value of 10 runs.
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