Equivariant Message Passing Neural Network for Crystal Material Discovery

Authors

  • Astrid Klipfel Univ. Artois, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France Univ. Artois, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France
  • Zied Bouraoui Univ. Artois, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France
  • Olivier Peltre Univ. Artois, UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France
  • Yaël Fregier Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France
  • Najwa Harrati Univ. Artois, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France
  • Adlane Sayede Univ. Artois, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens, France

DOI:

https://doi.org/10.1609/aaai.v37i12.26673

Keywords:

General

Abstract

Automatic material discovery with desired properties is a fundamental challenge for material sciences. Considerable attention has recently been devoted to generating stable crystal structures. While existing work has shown impressive success on supervised tasks such as property prediction, the progress on unsupervised tasks such as material generation is still hampered by the limited extent to which the equivalent geometric representations of the same crystal are considered. To address this challenge, we propose EPGNN a periodic equivariant message-passing neural network that learns crystal lattice deformation in an unsupervised fashion. Our model equivalently acts on lattice according to the deformation action that must be performed, making it suitable for crystal generation, relaxation and optimisation. We present experimental evaluations that demonstrate the effectiveness of our approach.

Downloads

Published

2023-06-26

How to Cite

Klipfel, A., Bouraoui, Z., Peltre, O., Fregier, Y., Harrati, N., & Sayede, A. (2023). Equivariant Message Passing Neural Network for Crystal Material Discovery. Proceedings of the AAAI Conference on Artificial Intelligence, 37(12), 14304-14311. https://doi.org/10.1609/aaai.v37i12.26673

Issue

Section

AAAI Special Track on AI for Social Impact