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Abstract

Automatic material discovery with desired properties is a fun-
damental challenge for material sciences. Considerable atten-
tion has recently been devoted to generating stable crystal
structures. While existing work has shown impressive success
on supervised tasks such as property prediction, the progress
on unsupervised tasks such as material generation is still ham-
pered by the limited extent to which the equivalent geomet-
ric representations of the same crystal are considered. To ad-
dress this challenge, we propose EMPNN a periodic equivari-
ant message-passing neural network that learns crystal lattice
deformation in an unsupervised fashion. Our model equiva-
lently acts on lattice according to the deformation action that
must be performed, making it suitable for crystal generation,
relaxation and optimisation. We present experimental evalua-
tions that demonstrate the effectiveness of our approach.

1 Introduction
Discovering thermodynamic stable materials with desired
properties is a fundamental challenge for material sciences.
Considerable attention has recently been devoted to crys-
talline (crystal) material generation. Crystals are involved
everywhere in our modern society from metal alloys to
semiconductors. Contrarily to organic molecules which are
mostly composed of wide carbon chains with a limited vari-
ety of atoms, crystals are three-dimensional periodic struc-
tures composed of a wider variety of chemical bonds and
atoms. The periodic structure is often represented as a par-
allelepiped tiling, a.k.a crystal lattice or unit cell.

Within the broad aim of automated stable (crystal) ma-
terial discovery, various strategies mainly based on simula-
tion or Machine Learning (ML) can be explored. Simulation
allows the properties of a given structure to be predicted
by applying physics laws while ML consists of modelling
and predicting the physical properties. Notice that simula-
tion can also be used for material relaxation, i.e. modify-
ing a structure to improve its stability. The success of ML
has led to a paradigm shift in materials science. In partic-
ular, ML techniques are used for performing molecule de-
sign, modelling physical properties or at the early stage of
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material discovery. Recently, several works have been in-
troduced to manipulate crystal structures, e.g. (Ren et al.
2022; Long et al. 2021). Most notably, models based on
geometrically equivariant ML techniques such as Message
Passing Neural Networks (MPNNs) have shown good per-
formance in theoretical chemistry, in particular, on super-
vised tasks such as property predictions on both organic and
crystalline structures, e.g. (Xie et al. 2021; Klicpera, Becker,
and Günnemann 2022). However, the majority of existing
models are not fully equivariant, making them unsuitable
for unsupervised tasks such as generation or representation
learning. For example, the method from (Klicpera, Becker,
and Günnemann 2022) is only equivariant to SO(3) (rotation
group), making it not suitable for crystal lattice deformation
where the shape of the structure is unknown in advance. To
this end, some methods have been proposed to approximate
Density Functional Theory (DFT) simulation using MPNNs
for unsupervised tasks, e.g. (Ekström Kelvinius, Armiento,
and Lindsten 2022; Gibson, Hire, and Hennig 2022). They
rely on self-simulations to gather information about the in-
teraction forces of a few specific structures to perform gen-
eration. However, discovering new materials requires a con-
sequent amount of data to obtain out-of-distribution gener-
alization, i.e. knowledge needed to generalise to unknown
structures and perform arbitrary lattice deformation.

We propose EMPNN an equivariant MPNN that acts on
crystal lattice without any label from the interaction forces
and stress tensors. Previous works already showed the ad-
vantage of using MPNN acting on atomic position for both
organic molecules and crystals. But acting on crystal lat-
tices without explicit stress tensors remains a challenging
problem. Our model enforces a structuring bias adapted to
crystals using group actions incorporated by the equivari-
ance property of MPNN layers. To illustrate intuition, given
a pair of atoms, if we know their interaction force in a given
state, we can generalize this interaction to any other orienta-
tion as long as the state and the relative distance remain the
same. Hence, we can take advantage of this property, and
the equivariant representation to enhance the generalisation
capability. This allows our model to equivalently act on crys-
tal lattice according to the deformation action that needs to
be performed. We consider equivariance with respect to the
Euclidean group Euc(3) and SL3(Z) group. To the best of
our knowledge, our model is the first general framework that
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formulates an equivariant MPNN on the periodic structures.
To demonstrate the effectiveness of our model, we propose a
number of evaluation tasks to compare multiple equivariant
MPNNs and losses.

2 Related Works
Within the area of automatic stable material discovery, We
can identify three classes of related work according to the
molecular descriptors used to represent data.
Fingerprint. This class of methods uses handcrafted fea-
tures of the materials. They are based on fingerprint repre-
sentation that includes atomic positions and lattice parame-
ters (Ren et al. 2022). Additional information such as elec-
tronegativity, atomic radius or interatomic distances can also
be incorporated, e.g. (Kim et al. 2020; Nouira, Crivello,
and Sokolovska 2018). Those works mainly rely on Feed-
forward Neural Network (FFN) architectures to build Vari-
ational Autoencoder (Kingma and Welling 2013) or Gen-
erative Adversarial Networks (Goodfellow et al. 2014) to
achieve generation or optimization tasks. However, finger-
prints do not satisfy the uniqueness property, i.e. the same
crystal can have different representations. As FFNs are not
equivariant to permutation, alternative representations of the
same material can be processed differently. The same obser-
vation can be made for other group actions. Finally, existing
models don’t take into account periodicity.
Voxel. Offering a convenient way to represent data in 3-
dimensional space, voxels allow encoding lattice parameters
and atomic positions (Court et al. 2020; Kim, Lee, and Kim
2020; Noh et al. 2019; Long et al. 2021). However, voxel-
based representation is limited since input data are by nature
sparse and discontinuous in the space. Moreover, voxels do
not take into account periodicity, which can lead to an edge
effect. Finally, the aforementioned methods are not equiv-
ariant. As shown in section 4, there are multiple equivalent
representations of a given material. Therefore, a set of equiv-
alent representations may lead to inconsistent results. This is
a clear limitation of voxel-based representation models.
Graph-based Representation. Graph representation of ma-
terials can represent the local environment of each atom and
structure periodicity. Recent works suggested using Graph
Neural Networks (GNN) for materials (Xie et al. 2021).
MPNNs allow to process sparse data and can be designed
to be invariant or equivariant to many group actions. Most
of the existing works are equivariant to SO(3) (Klicpera,
Becker, and Günnemann 2022) thanks to a spherical ba-
sis that allows us to predict lattice properties and perform
simulations. However, these methods are not able to de-
form crystal lattices where the shape of the lattice is un-
known in advance. In addition, these works are equivari-
ant to subgroups of the Euclidian group but do not con-
sider other group actions such as SL3(Z). Several methods
have been proposed to approximate DFT simulation with
GNN. These methods work by learning interaction forces
and stress tensors to lower the total energy of a structure
with methods analogue to DFT calculation (Pickard and
Needs 2011; Ekström Kelvinius, Armiento, and Lindsten
2022; Gibson, Hire, and Hennig 2022; Cheon et al. 2020).

Figure 1: Periodic structure represented as a lattice (in dot-
ted lines). The multi-graph associated with a material (blue
arrow) can overlap on the adjacent repetition of the lattice
and a pair of nodes can have multiple connections.

These equivariant methods require a lot of additional infor-
mation about interaction forces, which are not always avail-
able. They mainly use self-simulations to gather data, but
only for a few specific structures. To discover new materials,
we need a lot of data and cannot rely on randomly generated
structures, as they lead in general to unstable structures.

3 Problem Setting
Crystalline materials can be defined as infinite point clouds.
A periodic structure can be represented as a network where
a group of points is repeated by a discrete translation, which
is is equivalent to parallelepiped tiling containing a cloud of
atoms as illustrated in Figure 1. A crystal can be described
as atomic positions xi ∈ [0, 1[3 with an associated feature
space F representing the chemical information of each atom
zi ∈ F and a lattice ρ ∈ GL3(R) representing the material
periodicity. The infinite point cloud generated by this repre-
sentation can be defined as follows:{(

ρ(xi + τ), zi
)
| τ ∈ Z3, 1 ≤ i ≤ n

}
⊆ R3 × F (1)

Where τ acts as a Z3 vector that translates the point cloud.
Equation 1 defines the space in which the atoms are located
as a torus. In fact, when atoms leave by one side of the lattice
they enter by the opposite side with the same orientation.
GL3(R) defines the shape of the lattice, i.e the periodicity.
F is the feature space that can encode chemical information
such as atomic number or charge. For crystal generation, we
need to define a model capable to deform the geometry of
a structure in order to minimize the total energy and hence
obtain a stable structure. Such actions are performed on the
material lattice ρ resulting in the updated lattice ρ′ and on
atomic positions xi resulting in the updated positions x′

i.{
ρ′ = hρ

x′
i = [xi + hi]

. (2)

We aim to predict the action h ∈ GL3(R) on the lattice and
the actions hi ∈ R3 on the atomic position. The atomic posi-
tions are brought back into the crystal lattice by truncation.
In the following, we introduce our model that learns arbi-
trary deformations on crystal lattices. We first explain, in
Section 4, why group actions are needed for materials, recall
the notion of equivariance, and define our group actions on
crystals while providing their properties. Finally, Section 5
gives an explicit description of our model along with equiv-
ariance results. Proofs and additional materials are provided
in an online ArXiv appendix1.

1https://arxiv.org/abs/2302.00485
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4 Equivariance and Group Actions
Crystals materials can be seen as an infinite cloud of atoms
as ⟨m⟩ ⊆ Rd × F . As such, equivalences between mate-
rials are defined by isometries, i.e. by the group action of
Euc(d) regardless of lattice generators2. As a crystal lat-
tice can have multiple space-tiling representations resulting
in an identical infinite atomic cloud, the SLd(Z) group ac-
tion is needed for paving. Consequently, the group G =
Euc(d) × SLd(Z) × Sn acts on the lattice without affect-
ing its properties. Sn is the permutation group that acts by
changing the numbering of atoms, where n is the number
of atoms. Please note that atoms are always in the same
place, but not with the same index. As chirality has an im-
pact on the properties of a chemical structure, the reflection
action should be excluded. The special Euclidean group that
doesn’t include reflection should be then considered. How-
ever, in this work, we consider Euc(d) that acts on the chi-
rality assuming that this limitation will not be problematic
with inorganic material. We consider crystals described by
an infinite cloud of atoms that is invariant under a discrete
subgroup L ⊆ Rd of maximal rank. For any choice of gen-
erators (τ1, . . . , τd) ∈ L, we consider the unique automor-
phism ρ ∈ GLd(R) that maps the canonical basis of Rd to
the generating basis of L to represent L.
Definition 1. The representation space of featured materials
MF is the disjoint union

∐
n∈N MF

n where:

MF
n =

{
(ρ, x, z) | ρ ∈ GLd(R), x ∈ [0, 1[n×d, z ∈ Fn

}
Chemical materials are represented in M = MN, with
atomic numbers as feature sequence z.
MF

n is an infinite set of triplet ρ, x, z that represent all
possible materials with n atoms. The atomic number has a
chemistry reference, e.g. 1 for hydrogen or 6 for carbon.
Definition 2. The infinite point cloud ⟨M⟩ associated to a
material M = (ρ, x, z) in MF

n is defined as:

⟨M⟩ =
{(

ρ · (xi+τ), zi
)
|τ ∈ Zd, 1 ≤ i ≤ n

}
⊆ Rd×F

The cloud ⟨M⟩ is invariant under the action of the lattice
L = ρ · Zd ⊆ Rd.

The Euc(d) group acts naturally on subsets of Rd and
two materials M and M ′ should be considered physically
identical if they span isometric point clouds. Let us write
M ∼ M ′ if there exists an isometry g ∈ Euc(d) such
that ⟨M ′⟩ = g · ⟨M⟩. Let ⟨MF ⟩ be the image of MF in
P(Rd×F ) under ⟨−⟩. The quotient space M/ ∼ of equiva-
lent materials is defined by the following universal diagram:

M ⟨M⟩/Euc(d)

M/∼

π∼
iso

Infinite point clouds can only be represented by non-intrinsic
representatives M ∈ MF . In the following, we describe
how the relation ∼ is related to group actions on MF . The

2A generator is a lattice property that defines pattern repetition

Figure 2: In definition 2 the point cloud is a space tiling (top
left corner). The actions from Euc(2) and SL2(Z) groups
commute and do not affect interatomic distances.

following proposition introduces the group actions that don’t
change the properties of materials, i.e. actions that lead to
producing equivalent materials.
Proposition 1. The following four actions on MF

n preserve
the equivalence class of material:
• Sn permutation group, acting by σ · (ρ, x, z) = (ρ, x ◦
σ−1, z ◦ σ−1)

• O(d) orthogonal group, acting by g · (ρ, x, z) = (g ·
ρ, x, z)

• E translation group3, acting by v · (ρ, x, z) =
(ρ, [x+ ρ−1v], z)

• Euc(E) = E ⋊ O(E) euclidian group, with the action
induced by those of E and O(d).

These actions are free and proper on MF
n . The point cloud

map ⟨−⟩ commutes with these actions4.
Performing modification by permutations and isometries

is not enough to get a faithful representation of MF / ∼.
Different choices of lattice L ⊆ Rd lead to different
primitive point clouds in [0, 1[d. The action of SLd(Z) on
GLd(R) describes all the possible choices of generators for
L. However, SLd(Z) cannot simply act by left multiplica-
tion on MF like Euc(d) without distorting the relative po-
sitions of atoms in the primitive cell ρ · [0, 1[d. We complete
Proposition 1 by specifying how to repave the space while
being equivalent to the structure we start with.
Proposition 2. The group SLd(Z) acts on MF by letting
for every change of lattice generators g:

g · (ρ, x, z) = (ρ · g−1, [gx], z)

where [gx]i denotes the unique element of [0, 1[d in the orbit
of gxi under Zd. Identifying the reference cell [0, 1[d with
the torus Td, the action of SLd(Z) on MF ≃ GLd(R) ×
(Td)n × Fn is free and proper. The point cloud map is in-
variant under the action of SLd(Z).

The reference cell is the base cell we use to pave the space
with L. It is a parallelepiped of atoms and L is the translation
that allows the parallelepiped moving to pave the space.

3The actions of E and Rd are equivalent, being simply inter-
twined by the isomorphism ρ : Rd → E. The action of E is more
natural, extending the action of O(d) to Euc(d) but the action of
Rd is more convenient in our representation space.

4Permutations acting trivially on ⟨M⟩.
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Proposition 3. The actions of Euc(d), Sn and SLd(Z) on
MF

n commute as shown in Figure 2.
Let G be the product of Euc(d)×Sn×SLd(Z). Proposi-

tions 1 and 2 imply that the quotient of MF under the action
of G is a well-formed topological space. This quotient is not
the space MF / ∼ of equivalent materials, because the lat-
tice associated with a material representation M ∈ MF is
not always a maximal symmetry subgroup of its point cloud.

Graph Equivariance Internal forces acting on a crystal
structure are equivariant to the aforementioned group ac-
tions. As the properties of a crystal depend on interatomic in-
teraction, equivariance could be then considered as the solu-
tion to obtain generalization capability. In this work, we take
advantage of the equivariance of the graph representation of
materials under G the product of Euc(d)×Sn × SLd(Z).
Definition 3. A neural network fθ : MF → Rk is said
invariant under G if for all g ∈ G:

fθ(g ·M) = fθ(M)

Definition 4. A neural network φθ : MF → MF ′
is said

equivariant under G if for all g ∈ G:

φθ(g ·M) = g · φθ(M)

5 Equivariant GNN for Materials
We now introduce our MPNN that performs arbitrary defor-
mation by reasoning on relative atomic distances and angles.
A spatial equivariance is enforced by the MPNN. We first
associate a graph with a material and then take advantage of
the local invariance (input quantities are themselves invari-
ant: distance, angle, etc.) and equivariance of the graph to
define equivariant actions on crystal lattices.
Definition 5. We call directed 2-graph Γ = (Γ0,Γ1,Γ2) a
triplet of sets together with applications:
• π1 : Γ1 → Γ0 × Γ0, written π1(γ) = (src(γ), tgt(γ))
• π2 : Γ2 → Γ0 × Γ0 × Γ0

We call Γ a directed 1-graph when Γ2 = ∅.
The aforementioned graphs are often called ”multi”-

graphs. Recall that π1 and π2 may not be injective. They
are called ”hyper”-graphs as well, because they generalise
1-graphs to dimensions ≥ 1 and ”directed” because we do
not assume any symmetry on Γ w.r.t vertice permutations.
Definition 6. Let M = (ρ, x, z) in MF

n be a material and
ci > 0 for 1 ≤ i ≤ n denotes cutoff distances. We define a
directed 2-graph Γ = ΓM,c by the graded components:
• Γ0 = {1, . . . , n}
• Γ1 =

{
(i, j, τ) ∈ Γ0×Γ0×Zd

∣∣ ||ρ(xj−xi+τ)|| < ci
}

• Γ2 =
{
(γ, γ′) ∈ Γ1 × Γ1

∣∣ tgt(γ) = src(γ′)
}

with obvious projections, i.e. with π1 : (i, j, τ) 7→ (i, j) and
π2 : (γ, γ′) 7→ (src(γ), tgt(γ), tgt(γ′)).

This graph construction includes many definitions of ma-
terial graphs, making it versatile and usable in most contexts
since a material graph is built from the local environment
of atoms. This definition includes a graph built from a con-
stant cutoff distance (i.e. ci is constant) and a graph built

from k nearest neighbour or built from chemical properties
as the covalent radii. Definition 6 generalizes to most of the
graphs defined in previous works (Jørgensen, Jacobsen, and
Schmidt 2018; Chen et al. 2019; Satorras, Hoogeboom, and
Welling 2021). The key feature of this construction is the
invariance of edges and triplets. As interatomic distances
and unoriented angles are invariants to Euc(d) and SLd(Z)
groups, any graph constructed from the local environment
of the atoms will be invariant. More details about graph con-
struction are in the appendix. We now introduce notations
needed to define our model.
Definition 7. Let consider M = (ρ, x, z) ∈ MF and Γ =
ΓM,c, we introduce the following notations:
• eτij = (xj−xi+τ) for edge vector in lattice coordinates,
• vτij = ρ(eτij) for the edge vector in physical space,
• rτij = ||vτij || for the physical edge length,
• θττ

′

ijk as the unoriented angle between vτij and vτ
′

jk

• Aττ ′

ijk as the area of the triangle xi, xj + τ and xk + τ ′

Let us also write eγ , vγ , rγ , θγγ′ ,Aττ ′

ijk for the same quanti-
ties when we do not need to make vertices explicit. Note that
rγ , θγγ′ and Aττ ′

ijk are natural Euclid invariants.

5.1 Gradient of the Invariant Geometry
To build vector fields of our equivariant MPNN, we take ad-
vantage of the gradient of the invariant geometry of crystal
graphs. For 0-chains, i.e. vertices i ∈ Γ0, the Euclid group
acts transitively on spatial coordinates such that Ii is triv-
ial (a point) and ri is a constant. For 1-chains, i.e. directed
edges γ ∈ Γ1, the only Euclid invariant is the length of the
associated vector. For Iγ = R and for γ : i

τ→ j, we let:
rγ(xγ) = rτij (3)

For 2-chains γ̄ = i
τ→ j

τ ′

→ k, we find more convenient to
define invariants as two vector lengths and the angle at their
common point, i.e. Iγ̄ = R3 with:

rγ̄ =
(
θττ

′

ijk , r
τ
ij , r

τ ′

jk

)
(4)

For a tangent vector at ρ ∈ GLd(R), we have:
∂vτij
∂ρ

= ρ · (xj − xi + τ) = ρ · eτij (5)

The differential edge distances with respect to ρ projects on
the source and image edge vectors eτij and uτ

ij respectively. It
is equal to 1 on the rank 1 linear map |uτ

ij⟩⟨eτij |. uτ
ij denotes

the normalized vector vτij such as uτ
ij = vτij/r

τ
ij .

∂rτij
∂ρ

= ⟨uτ
ij , ρ · eτij⟩ (6)

The angle differentials with respect to ρ are computed by as-
suming that the middle point is fixed (it is true up to a trans-
lation in the target space, which does not alter the angle).
ωττ ′

ijk denotes the unit normal vector to (vτij , v
τ
jk)

∂θττ
′

ijk

∂ρ
= ⟨ωττ ′

ijk × uτ ′

jkρ · eτ
′

jk⟩ − ⟨ωττ ′

ijk × uτ
ijρ · eτij⟩ (7)

The mixed product coincides with the determinant and is
invariant under cyclic permutations.
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5.2 Equivariant Message Passing Neural Network
We now introduce a general definition of our equivariant
MPNN based on vector fields. We formally define λ as the
vector field used in Equation10. It allows for defining how
the GNN acts on the crystal lattice.
Definition 8. To every edge γ ∈ Γ1 and every 2-region
γγ′ ∈ Γ2 we associate the infinitesimal lattice deformations
λγ̄ : Mγ̄ → gld defined by:
• λγ(Mγ̄) = |uγ ⟩⟨uγ |
• λγγ′(Mγ̄) = |uγ ⟩⟨uγ′ |+ |uγ′ ⟩⟨uγ |

The | − ⟩⟨− | is a notation in quantum physics to denote
the matrix obtained as the product of a column vector (|V ⟩
is V seen as a column) and a line vector (⟨W | is W seen as
line vector). In our case | − ⟩⟨− | with two vectors u, v ∈ Rd

we have |u ⟩⟨ v | = uv⊺. Alternatively, we can directly use
gradients of the geometric invariant such as:

• λγ(Mγ̄) =
∂rτij
∂ρ

• λγγ′(Mγ̄) =
∂rτij
∂ρ or ∂rτ

′
ik

∂ρ or
∂θττ′

ijk

∂ρ or
∂Aττ′

ijk

∂ρ

To ensure transversality with sod, λγ̄ for all γ̄ ∈ Γ is sym-
metric as equivariance means that the lattice is searched
among an equivalence class in GLd(R)/SOd.

An equivariant GNN that acts on materials is as follows:

Proposition 4. A neural network φθ : MF
n → MF ′

n , writ-
ten φθ : (ρ, x, z) 7→ ρ′ is decomposed as follows:

The generation of messages from the edges and the
triplets of the graph such as φm(k)

θ : Rf(k)×Γk → Rh(k)×Γk

mijτ = φm(1)

θ (zi, zj , ||vijτ ||) (8a)

mγ,γ′ = φm(2)

θ (zi, zj , zk, ||vγ ||, ||vγ′ ||, θγ,γ′) (8b)

The aggregation and update of the messages at each node
is φz(k)

θ : Rh(k)×Γk → Rh′(k)×Γk and φu
θ : Rz×Γ0 ×

Rh′(1)×Γ1 × Rh′(2)×Γ2 → Rz×Γ0

z′i =φu
θ (zi,

∑
γ∈Γ1(i)

φz(1)

θ (mγ),
∑

(γ,γ′)∈Γ2(i)

φz(2)

θ (mγγ′))

(9)

φρ(k)

θ is the weight of a vector field λγ̄ such as φρ(k)

θ :

Rf ′(k)×Γk → RΓk

ρ′ = exp

 1

|Γ1|
∑
γ∈Γ1

φρ(1)

θ (mγ) · λγ

 · ρ (10a)

ρ′ = exp

 1

|Γ2|
∑

(γ,γ′)∈Γ2

φρ(2)

θ (mγ ,mγ′ , θγγ′) · λγγ′

 · ρ

(10b)

φθ is equivariant under G = Euc(d)×Sn ×SLd(Z) if the
vector field λγ̄ is invariant to SLd(Z) and equivariant to
Euc(d) such as λγ̄(g ·M) = gλγ̄(M)g−1 for all g ∈ O(d),
as the translation doesn’t act on the crystal lattice.

From proposition 4, a GNN architecture acting on crystal
material that satisfies Equations 8-10 is equivariant.

(a) Overview of our model (b) EMPNN layer

Figure 3: (a) The EMPNN model comprises an embedding
layer, standard MPNN layers and EMPNN layers to perform
deformation. (b) A EMPNN layer is composed of an MPNN
with vector fields deforming the lattice ρ.

5.3 EMPNN for Crystal Lattice Deformation
To empirically evaluate our approach, we defined EMPNN
as a simple but effective GNN model that fits with Proposi-
tion 4. We chose to keep our model simple to facilitate the
comparison between multiple vector fields. The architecture
is illustrated in Figure 3. We slightly adapted equation 10 by
adding a first-order approximation of the matrix exponential
to both vector fields over the edges and the triplets. Further
details are given in Section B.2 of the appendix.

Loss functions The goal of a loss function is to reproduce
the shape and volume of the target crystal, i.e. φ(ρ̃ · h−1) =
g · ρ · h−1, g ∈ O(3) and h ∈ SL3(Z) (as Euc(3) acts on ρ
as O(3)). There exist multiple ways to define loss functions,
but all the definitions will have implicit bias. To evaluate this
bias, we use a classical loss function over the normalized
lattice parameters. Another approach is to compute a matrix
distance between the metric tensors. Both the lattice param-
eters and metric tensor losses are invariant to the euclidean
group but equivariant to SL3(Z). We tested the mean abso-
lute error (MAE) LParam

mae and the mean squared error (MSE)
LParam

mse of the normalized lattice parameters. We have also
tested the MAE Lρ

mae, the MSE Lρ
mse and the invariant Rie-

mannian metric Lρ
Riemann of the metric tensors. The loss ex-

pressions are available in the appendix.

6 Experiments
Our main goal is to show the capability of our EMPNN to
perform arbitrary crystal lattice deformation by improving
the total energy of crystal structures, i.e. the thermodynamic
stability. We rely on denoising of the crystal lattice as evalu-
ation task5. We considered datasets of stable crystals where
each structure is in local minima of formation energy. Ap-
plying a small random deformation to a structure leads to a
less stable one with a high energy level (as the energy in-
creases in all directions locally). We can then generate pairs
of stable and less stable structures that we used to teach our
model how to deform the less stable structure to obtain a
stable one. In general, denoising tasks are more insightful
than generative tasks as they show how a model acts on a

5Code and data are available at https://github.com/aklipf/pegnn
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loss Carbon-24 Mp-20 Perov-5
lengths angle energy lengths angle energy lengths angle energy

LParam
mae 0.696 8.390 -0.655 (62.5) 0.785 5.093 3.124 (51.7) 0.967 15.227 -3.426 (93.8)

LParam
mse 0.677 8.148 -0.413 (65.6) 0.710 4.752 5.485 (44.8) 0.983 15.437 -3.634 (93.8)

Lρ
mae 0.599 4.306 0.526 (62.5) 0.540 1.674 11.268 (40.7) 0.964 15.074 -1.518 (90.6)

Lρ
mse 0.655 5.563 2.432 (40.6) 0.683 2.645 10.964 (18.5) 0.974 15.047 -3.741 (93.8)

Lρ
Riemann 0.637 5.352 0.864 (43.8) 0.729 3.777 6.859 (51.7) 0.967 15.367 -3.088 (93.8)

Table 1: Metrics are defined as the average improvement of lattice parameters and the average improvement of total energy.
The metrics are calculated between noisy structure and denoised structure. The lengths are given in Å (angström), the angle
in degree (higher is better) and the energy in eV/atom (lower is better). The value between parenthesis is the percentage of
structure with lower energy. Energy is calculated with VASP(Kresse and Hafner 1993; Kresse and Furthmüller 1996; Kresse
and Furthmüller 1996) on a subset of 32 structures because of the high computational budget of DFT calculation.

crystal lattice. More specifically, external bias can be better
controlled when performing denoising. The chemical com-
position and atomic positions have an important impact on
the outcome. For example, binary and ternary compounds
with a light element are known to be significantly easier to
generate than ternary compounds without light elements or
quaternary compounds. Consequently, a generator may tend
to produce simple stable materials instead of a representative
sample. In this case, an improvement of the metrics may not
reflect lattice improvement. The quality of a crystal is also
more difficult to evaluate. Namely, if a generative model can
not produce some specific lattice shapes, quantitative met-
rics will struggle to measure the bias. Therefore, the perfor-
mance of a generator is not a good measure to evaluate the
performance of our model on arbitrary lattice deformation.

Evaluation metrics We introduce three evaluation metrics
defined as the average improvement of lattice parameters
and the total energy. Let us denote the lattice parameters by
abc ∈ R3 and αβγ ∈ R3 and the total energy by E ∈ R.
Given a parameter y, let ỹ be the noisy parameter and y′ the
denoised parameter. The metrics are defined as follows:

length =
1

3N

N∑
k=1

l1(ãbck, abck)− l1(abc′k, abck) (11)

angle =
1

3N

N∑
k=1

l1(α̃βγk, αβγk)− l1(αβγ′
k, αβγk)

(12)

energy =
1

N

N∑
k=1

E′
k − Ẽk (13)

Namely, the improvement could be geometrical, i.e. based
on lattice parameters or chemical, i.e. lowering of the for-
mation energy. Evaluating the formation energy is computa-
tionally expressive and only done on a small subset of the
test set.

Experimental setting and datasets We considered three
datasets of stable crystals for which we perform denois-
ing: Perov-5 (Castelli et al. 2012a,b), Carbon-24 (Pickard
2020) and Mp-20 (Jain et al. 2013). Perov-5 contains per-
ovskite (cubic) structures that have highly uniform shapes
but with different chemical compositions between struc-
tures. Carbon-24 is composed of carbon atoms having a

large variety of shapes. This dataset is used to evaluate the
performance of our EMPNN without negative bias in case
of a poor chemical encoding of atoms. Mp-20 is a subset
of the material project proposed in (Xie et al. 2021) that
has a large sample of shapes and chemical compositions. It
is the most representative of ordinary structures. We used
the same training, validation and test splits as (Xie et al.
2021). To train our model, we apply random deformations
on the lattices ρ as ρ̃ = exp(A)ρ with A ∼ N (0, σ). All
the conducted experiments, use grid search on hyperparame-
ters. More information about the experiments is given in the
supplementary materials. We conducted three experiments
to evaluate (1) the loss functions of Section 5.3, (2) the vec-
tor fields and (3) the reconstruction capability of our model.

Loss functions evaluation Table 1 shows the relationship
between geometrical and chemical metrics. The best energy
improvements are generally associated with the best lattice
error improvement. Based on lattice parameters comparison,
we obtain better performance of the loss functions. How-
ever, we may expect that this evaluation is biased. But since
energy-based metrics show similar results to geometry based
metrics, we conclude that the bias is negligible.

Force field evaluation We evaluated force field configura-
tions acting on the lattice. We first considered the edge infor-
mation: {|γ⟩⟨γ| ⊆ Γ1} and {rγ ⊆ Γ1}. Second, we consider
triplets information without angle and area: {|γ⟩⟨γ| ⊆ Γ2}
and {rγ , rγ′ ⊆ Γ2}. As geometrical information such as an-
gles can determine crystal properties, we include triplets in-
formation as unoriented angles and area: {|γ⟩⟨γ′| ⊆ Γ2}
and {|γ⟩⟨γ|, |γ⟩⟨γ′|sym ⊆ Γ2}. ∪, represents the union of
several vector fields and • denotes a wildcard that takes all
vector fields into account for a given n-graph. We also eval-
uate the benefits of symmetric matrices on the lattice as sug-
gested in Definition 8. Any matrix in GLd(R) can be seen
as the composition of a rotation and a symmetric matrix,
i.e. polar decomposition such as M = RS with R ∈ SOd

and S ∈ GLd(R)/SOd. As rotation doesn’t act on material
properties, then acting on the lattice with M is equivalent to
acting on the lattice with a symmetric matrix S. Forcing this
action to be a symmetric matrix may then lead to interest-
ing results. We conduct experiments with relaxed symmetry
constraint ”sym” when the symmetric vector fields are used.

As baselines, we first consider the (Feed-forward FF)
method proposed in (Xie et al. 2021) which is an invariant
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method Carbon-24 Mp-20 Perov-5
lengths angle lengths angle lengths angle

|•⟩⟨•|

{|•⟩⟨•| ⊆ Γ1} 0.084 1.266 0.115 1.437 0.290 5.487
{|γ⟩⟨γ| ⊆ Γ2} 0.056 0.596 0.053 0.283 0.287 5.209
{|•⟩⟨•| ⊆ Γ1} ∪ {|γ⟩⟨γ′| ⊆ Γ2} 0.063 0.454 0.063 0.270 0.296 5.733
{|•⟩⟨•| ⊆ Γ1} ∪ {|γ⟩⟨γ|, |γ⟩⟨γ′|sym ⊆ Γ2} 0.065 0.670 0.066 0.353 0.296 5.733
{|•⟩⟨•| ⊆ Γ1} ∪ {|•⟩⟨•| ⊆ Γ2} 0.065 0.725 0.066 0.420 0.296 5.765

∇

{rγ ⊆ Γ1} 0.075 1.183 0.102 1.479 0.259 4.654
{rγ , rγ′ ⊆ Γ2} 0.060 0.488 0.085 0.391 0.289 5.560
{rγ ⊆ Γ1} ∪ {rγ , rγ′ ⊆ Γ2} 0.101 1.232 0.101 0.541 0.292 5.514
{rγ ⊆ Γ1} ∪ {rγ , rγ′ ,Aγγ′ ⊆ Γ2} 0.087 1.093 0.106 0.717 0.265 4.990
{rγ ⊆ Γ1} ∪ {rγ , rγ′ , θγγ′ ⊆ Γ2} 0.107 1.283 0.088 0.617 0.293 5.550

∇sym

{rγ ⊆ Γ1} 0.083 1.307 0.064 0.816 0.281 5.134
{rγ , rγ′ ⊆ Γ2} 0.100 1.188 0.101 0.503 0.281 4.959
{rγ ⊆ Γ1} ∪ {rγ , rγ′ ⊆ Γ2} 0.097 1.375 0.098 0.672 0.226 3.188
{rγ ⊆ Γ1} ∪ {rγ , rγ′ ,Aγγ′ ⊆ Γ2} 0.099 1.328 0.124 1.160 0.285 5.457
{rγ ⊆ Γ1} ∪ {rγ , rγ′ , θγγ′ ⊆ Γ2} 0.100 1.289 -0.001 -0.007 0.291 5.617

feed forward (FF) -0.191 -5.277 -0.304 -3.304 0.303 6.438
DFT 0.164 5.442 0.345 5.648 0.150 -1.446

Table 2: Metrics are defined as the average improvement of lattice parameters. The experiment is split into five categories of
vector fields: from the ket-bra |•⟩⟨•|, from the gradient of invariant geometric without symmetric action ∇, the gradient with
symmetric action ∇sym, lattice predicted by a FF readout function and lattice obtained from a DFT calculation with VASP.

method aiming to predict lattice parameters (distances and
angles) using an invariant encoder with a simple FF. This al-
lows us to compare the performance of our model with an
invariant model. The second baseline (DFT) is a DFT cal-
culation that evaluates the stress tensor of the crystal and
optimizes its geometry. The configuration of the DFT cal-
culation is given in the supplementary materials. DFT is not
based on ML, as such, it is computationally heavy compared
to EMPNN. DFT is unsuited for generating crystals with-
out optimization techniques. So it cannot really be compared
with ML models (baselines and our model), but we chose to
use it to provide insight into the metrics.

Table 2 shows an enhanced denoising capability of our
model for most of the proposed variants. Including triplets
information improves the results when vector fields are
defined from the gradient of invariant geometry (Section
5.1). However, vector fields defined from edges information
achieved more consistent results than those defined from
triplets, especially on ket-bra. Our model outperforms FF
on Carbon-24 and Mp-20 with a significant improvement
of the lattice parameters but not on Perov-5 (although the
performance is very close). This suggests the importance of
equivariance. The FF is not capable to achieve fine-grained
deformation contrary based on vector fields. In fact, FF con-
verges much faster during the first training steps but cannot
improve the loss above a certain threshold. The only case
where FF outperforms our model is when the crystal shape
is extremely uniform, which is the case of Perov-5 where all
the structures are cubic. In Perov-5, the angle improvement
is not relevant as FF uses normalized lattice parameters. A
random model or a constant parameter will produce simi-
lar results. Regarding DFT, it improves the lattice parame-
ters on Carbon-24 and Mp-20 but not on Perov-5. This sug-
gests that the crystals before random deformation probably
remain close to local minima of the formation energy after
deformation on Carbon-24 and Mp-20, but not on Perov-5.

model carbon-24 mp-20
length angles length angles

EMPNN 0.200 3.199 0.174 1.965
baseline 0.469 13.693 0.534 6.324

Table 3: MAE between lattice parameters of the original cell
and the reconstructed cell (Å and degree).

Our methods can take advantage of the biased distribution
on Perov-5 while DFT is not capable of. Finally, comparing
multiple configurations of vector fields shows that ket-bra
works better on 1-graph while gradient-based vector fields
work better on 2-graph. Triplets vector fields obtain better
results with the area and angle information.
Reconstruction task evaluation. The reconstruction is
close to the generative task and aims to build a crystal lat-
tice from scratch. This cannot be performed with chemical
simulation techniques such as DFT. We start from the point
cloud as if it was in a cubic lattice of one Å on a side. From
this cubic lattice, the EMPNN performs the reconstruction.
The main hypothesis is that there is a single stable cell which
corresponds to the starting atomic positions. Our model con-
sistently outperforms the FF model as shown in Table 3.

7 Conclusion
We proposed a general equivariant MPNN framework for
material science by taking into consideration SL3(Z) group
action on crystal materials. In particular, our model uses
multiple vector fields to act on crystal lattices. We showed
the benefits of our model compared to equivariant baselines
that do not consider SL3(Z). We also compared different
loss functions and results with DFT calculation to give in-
sight into methods based on lattice reconstruction such as
those using auto-encoder.
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