Equity Promotion in Public Transportation
DOI:
https://doi.org/10.1609/aaai.v37i10.26403Keywords:
PEAI: Bias, Fairness & Equity, APP: Transportation, PRS: Optimization of Spatio-Temporal Systems, PRS: SchedulingAbstract
There are many news articles reporting the obstacles confronting poverty-stricken households in access to public transits. These barriers create a great deal of inconveniences for these impoverished families and more importantly, they contribute a lot of social inequalities. A typical approach addressing the issue is to build more transport infrastructure to offer more opportunities to access the public transits especially for those deprived communities. Examples include adding more bus lines connecting needy residents to railways systems and extending existing bus lines to areas with low socioeconomic status. Recently, a new strategy is proposed, which is to harness the ubiquitous ride-hailing services to connect disadvantaged households with the nearest public transportations. Compared with the former infrastructure-based solution, the ride-hailing-based strategy enjoys a few exclusive benefits such as higher effectiveness and more flexibility. In this paper, we propose an optimization model to study how to integrate the two approaches together for equity-promotion purposes. Specifically, we aim to design a strategy of allocating a given limited budget to different candidate programs such that the overall social equity is maximized, which is defined as the minimum covering ratio among all pre-specified protected groups of households (based on race, income, etc.). We have designed a linear-programming (LP) based rounding algorithm, which proves to achieve an optimal approximation ratio of 1-1/e. Additionally, we test our algorithm against a few baselines on real data assembled by outsourcing multiple public datasets collected in the city of Chicago. Experimental results confirm our theoretical predictions and demonstrate the effectiveness of our LP-based strategy in promoting social equity, especially when the budget is insufficient.Downloads
Published
2023-06-26
How to Cite
Pramanik, A., Xu, P., & Xu, Y. (2023). Equity Promotion in Public Transportation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(10), 11890-11898. https://doi.org/10.1609/aaai.v37i10.26403
Issue
Section
AAAI Technical Track on Philosophy and Ethics of AI