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Abstract

There are many news articles reporting the obstacles con-
fronting poverty-stricken households in access to public tran-
sits. These barriers create a great deal of inconveniences for
these impoverished families and more importantly, they con-
tribute a lot of social inequalities. A typical approach ad-
dressing the issue is to build more transport infrastructure
to offer more opportunities to access the public transits es-
pecially for those deprived communities. Examples include
adding more bus lines connecting needy residents to railways
systems and extending existing bus lines to areas with low
socioeconomic status. Recently, a new strategy is proposed,
which is to harness the ubiquitous ride-hailing services to con-
nect disadvantaged households with the nearest public trans-
portations. Compared with the former infrastructure-based so-
lution, the ride-hailing-based strategy enjoys a few exclusive
benefits such as higher effectiveness and more flexibility.
In this paper, we propose an optimization model to study how
to integrate the two approaches together for equity-promotion
purposes. Specifically, we aim to design a strategy of allo-
cating a given limited budget to different candidate programs
such that the overall social equity is maximized, which is de-
fined as the minimum covering ratio among all pre-specified
protected groups of households (based on race, income, etc.).
We have designed a linear-programming (LP) based rounding
algorithm, which proves to achieve an optimal approximation
ratio of 1 − 1/𝑒. Additionally, we test our algorithm against a
few baselines on real data assembled by outsourcing multiple
public datasets collected in the city of Chicago. Experimental
results confirm our theoretical predictions and demonstrate
the effectiveness of our LP-based strategy in promoting social
equity, especially when the budget is insufficient.

Introduction
We consider the last-mile problem in public transportation.
There are roughly 20% of households that are at or below the
federal poverty line lack access to a car, and the percentage
can get as high as 33% among the low-income African and
Latino population (Berube, Deakin, and Raphael 2006). For
these impoverished families: On the one hand, they rely on
the public transportation as the only travel option for daily
activities such commuting to work, shopping, etc.; on the
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other hand, many of them live relatively far away from pub-
lic transits and need to walk a long distance to even the
nearest bus and/or metro stops. The difficulty in access to
public transport creates a great deal of trouble and inconve-
nience for these poverty-stricken families and contributes to
many social inequalities (DeGood and Schwartz 2016). One
recent example is the radically unequal access to COVID-19
vaccines in the early stage of rollout in 2021, where it had
been widely reported that vaccination rate of Black People
was greatly lagging behind that of White counterparts, and
one of the main causes was the obstacle in access to public
health providers (Blackstock and Blackstock 2021; Stolberg
2021; Abcarian 2021; Jones 2021).

The traditional way to improve the access to public tran-
sits includes creating more bus lines connecting needy res-
idents to railway systems, extending existing bus lines to
deprived communities, and increasing the frequency and ser-
vice hours of transit providers, to name a few. Recently, local
officials are weighing the option of integrating the popular
ride-hailing services offered by Uber and Lyft to the exist-
ing toolkit to combat the last-mile problem (Jin, Kong, and
Sui 2019; Kong, Zhang, and Zhao 2020). One example is to
establish an auxiliary subsidized program to allocate reim-
bursed ride-hailing trips to needy households to help them
access to the near transit stations. Compared with the tradi-
tional solutions, ride-hailing services enjoy benefits such as
more flexibility and mobility (can be requested via mobile
apps upon needed) and a lower cost in general. Additionally,
ride-hailing-based program can help effectively target needy
households, especially when they sparsely and remotely scat-
ter over a large area where traditional means are either cost
prohibitive or ineffective.

There are a few challenging issues in the last-mile problem,
including how to craft eligibility to identify the set of quali-
fied needy households, how to set subsidizing guidelines for
ride-hailing services for people under different spatial and
financial conditions, how to design routes and schedules of
new bus lines, and how to split limited budget to different ap-
proaches. For policy-related issues, existing literatures have
already proposed a few answers. For example, DeGood and
Schwartz (2016) outlined eligibility spatial criteria among
other financial factors as follows: walking distance to the
nearest bus lines should fall between [0.25, 3.5] miles and to
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the nearest railway station between [0.5, 3.5] miles.1 They
also proposed detailed suggestions on setting tailored sub-
sidizing policy for needy households based on the income
level and the household size.

In this paper, we consider a non-policy-related question
of optimizing budget allocation: Given a limited budget, a
set of established qualified households, and a collection of
well-defined promotion programs (e.g., a set of new bus lines
with full information regarding the operational cost, routes
and schedules, a comprehensive subsidizing framework of
ride-hailing trips), how to design a best strategy of allocating
the limited fund to different proposed programs to maxi-
mize the social equity? There are several different metrics
for the social equity; one example is the min coverage ratio
among all pre-specified protected groups based on sensitive
information like race and ethnicity, which is commonly used
in fairness- and equity-related promotions (Ma, Xu, and Xu
2020; Nanda et al. 2020; Hosseini et al. 2022).

We formalize our problem, called Equity Promotion in
Public Transportation (EPPT), as follows. Suppose we have
a set 𝐼 of qualified needy households, where each 𝑖 has the
following three kinds of information: (1) spatial attributes
such as the living location, walking distances to the nearest
bus lines and the nearest railway station; (2) financial factors
including income level and household size, and (3) basic
demographics such as race and ethnicity. Assume we are
offered a total fund 𝐵 for a given time window (e.g., one
year or one quarter). We have a collection 𝐽 of candidate
bus lines to open, where each bus line 𝑗 is characterized as
an operational cost 𝑐 𝑗 and a subset 𝑆 𝑗 ⊆ 𝐼 denoting the set
of target households covered,2 and where {𝑆 𝑗 | 𝑗 ∈ 𝐽} can
be possibly overlapping. Each target household 𝑖 ∈ 𝐼 can
be covered either by a candidate bus line 𝑗 ∈ 𝐽 if 𝑆 𝑗 ∋
𝑖 or by being enrolled into the ride-hailing-based welfare
program, where the latter will induce a cost 𝑐𝑖 determined by
𝑖’s spatial and financial traits. Suppose we have a collection
of protected groups G = {𝑔}, where each group 𝑔 ⊆ 𝐼 is
a subset of target households sharing specific demographics
(e.g., Black, White, and Asian). Note that all information of
{𝐼, 𝐽, 𝐵, {𝑐𝑖 , 𝑐 𝑗 , 𝑆 𝑗 |𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽},G = {𝑔}} is given as part of
the input. In order to better expose the technical challenges in
our problem, we present two versions of a budget allocation
strategy, as follows.

Deterministic version of a budget allocation strategy. For
each bus line 𝑗 ∈ 𝐽, let 𝑥 𝑗 = 1 indicate that 𝑗 is to open;
for each qualified household 𝑖 ∈ 𝐼, let 𝑥𝑖 = 1 indicate that
𝑖 should be enrolled into the ride-hailing program. Thus,
a deterministic budget allocation plan can be captured as
a binary vector x ∈ {0, 1} |𝐽 |+|𝐼 | , and it is called feasible
if
∑
𝑗∈𝐽 𝑐 𝑗𝑥 𝑗 +

∑
𝑖∈𝐼 𝑐𝑖𝑥𝑖 ≤ 𝐵, i.e., the total cost is within

the given budget. For each needy household 𝑖 ∈ 𝐼, let 𝑦𝑖 :=
min(1, 𝑥𝑖+

∑
𝑗:𝑆 𝑗 ∋𝑖 𝑥 𝑗 ), which indicates if 𝑖 is covered (𝑦𝑖 = 1)

1Here upper bounds are set to ensure a high utilization of limited
funds, which can benefit more people that live relatively closer to
the existing public system than those far away.

2Here we view bus lines with the same route but different sched-
ules and/or frequencies as distinct since they can incur different costs
and cover varied-sized sets of needy households.

or not. Observe that 𝑦𝑖 = 0 (𝑖 is not covered) iff 𝑥𝑖 = 𝑥 𝑗 = 0
for all 𝑗 with 𝑆 𝑗 ∋ 𝑖, which means 𝑖 is not added to the ride-
hailing program, either none of bus lines covering 𝑖 is open.
The coverage ratio of group 𝑔 on x can be then expressed as∑
𝑖∈𝑔 𝑦𝑖/|𝑔 |, where |𝑔 | refers to the cardinality of group 𝑔.

The resulting objective of the social equity can be computed
as min𝑔∈G

∑
𝑖∈𝑔 𝑦𝑖/|𝑔 |.

Randomized version of a budget allocation strategy. Let
Φ = {𝜙𝑘 |1 ≤ 𝑘 ≤ 𝐾} be a collection of all possible feasible
deterministic strategies as described above.3 A randomized
budget allocation strategy ALG then can be captured as a
distribution D over Φ such that ALG will sample and run a
strategy from Φ following distribution D. For each house-
hold 𝑖 ∈ 𝐼, let random variable𝑌𝑖 = 1 indicate that 𝑖 is covered
in ALG (and 𝑌𝑖 = 0 otherwise). For each group 𝑔 ∈ G, the
expected coverage ratio under ALG then can be expressed
as E[∑𝑖∈𝑔 𝑌𝑖/|𝑔 |], where the expectation is taken over D,
the random choice taken by ALG. The final objective of the
social equity can be computed as min𝑔∈G E[∑𝑖∈𝑔 𝑌𝑖/|𝑔 |].
Deterministic vs. randomized strategies. (1) Note that any
deterministic strategy can be cast as a special randomized
one. This suggests that by expanding the focus from de-
terministic to randomized, we (the algorithm designer) can
potentially land at a better strategy in terms of achieving a
larger objective value, while how much extra value we can
gain really depends on the specific problem. As Example 1
shows, some randomized strategy can far outperform the
optimal deterministic on some instances of our model. (2)
Randomized strategies make more sense in the context of
promoting equity in public transits compared with determin-
istic ones. In most practical scenarios, local governments can
secure only a limited budget that can cover a small portion
of impoverished households. In this case, any deterministic
budget-allocation strategy could benefit only a small fixed
set of targets and inevitably leave far more vulnerable house-
holds unaffected, which could cause more social injustices.
In contrast, randomized strategies can potentially impact a far
larger deprived population. Also, they are easy to implement
in practice, e.g., by randomly sampling a set of targets every
time and then recruiting them to the ride-hailing program,
and/or by alternatively operating different bus lines based on
monthly/quarterly schedules.

Preliminaries and Main Contributions
Throughout this paper, we denote [𝑛] = {1, 2, . . . , 𝑛} for a
generic positive integer 𝑛; we use OPT to denote both of an
optimal strategy and the corresponding performance, and the
same for ALG, which denotes both a generic algorithm and
its performance.

Approximation ratio (AR). For NP-hard combinatorial op-
timization problems, a powerful framework is called approx-
imation algorithms, where we aim to design an efficient al-
gorithm (polynomial running time) with a guaranteed perfor-
mance from the optimal. Consider a maximization problem

3Note that the number 𝐾 of all possible feasible strategies is
upper bounded by 2 |𝐼 |+|𝐽 | .
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like EPPT as studied here. Let ALG be an approximation
algorithm (possibly randomized) and OPT denote an opti-
mal algorithm with no running-time constraint and its per-
formance. We say ALG achieves an approximation ratio of
𝜌 ∈ [0, 1] if E[ALG] ≥ 𝜌 · OPT for all possible input in-
stances.

Connection to Budgeted Maximum Coverage Problem
(BMCP). To the best of our knowledge, BMCP is the model
closest to ours, which is a generalization of the classical
Maximum Coverage Problem. The basic setting is as follows.
We have a ground set of 𝐼 and a collection S = {𝑆 𝑗 | 𝑗 ∈ 𝐽}
of subsets of 𝐼, where each subset 𝑆 𝑗 indexed by 𝑗 ∈ 𝐽 is
associated with a cost 𝑐 𝑗 > 0. Suppose we are given a total
budget 𝐵, and we aim to identify a sub-collection, denoted
by 𝐽′ ⊆ 𝐽, to maximize the total coverage | ∪ 𝑗∈𝐽 ′ 𝑆 𝑗 | subject
to the budget constraint, i.e.,

∑
𝑗∈𝐽 ′ 𝑐 𝑗 ≤ 𝐵. BMCP and

its related variants are well studied in theoretical computer
science community (Cohen and Katzir 2008; Khuller, Moss,
and Naor 1999), and most of them can be solved via a greedy-
based framework with an optimal approximation ratio of
1 − 1/e ∼ 0.632 (Feige 1998). Note that BMCP can be cast
as a special case of our problem EPPT when it has only one
single protected group and offers no any ride-hailing-based
program, which suggests that EPPT admits no approx-ratio
better than 1 − 1/e unless P=NP. The lemma below further
highlights the difference between BMCP and EPPT.
Lemma 1. For BMCP, any optimal randomized strategy
can be realized by a deterministic one. In contrast, there
exists some instance of EPPT where an optimal randomized
strategy can strictly beat an optimal deterministic.

The lemma above suggests that expanding the set of strat-
egy choices from deterministic to randomized will offer no
extra power for BMCP but will possibly do for EPPT. The
difference is mainly due to the fact that the objective func-
tion of BMCP is linear (thus, linearity of expectation can be
applied), whereas that of EPPT is nonlinear.4

Proof. We prove the first claim for BMCP. Consider a given
instance of BMCP with a ground set of 𝐼 and a given budget
𝐵. Let OPT𝑅 be an optimal randomized strategy that is char-
acterized by the following distribution over the collection
Φ = {𝜙𝑘 |𝑘 ∈ [𝐾]} of all feasible deterministic strategies:
OPT𝑅 will run 𝜙𝑘 with probability 𝑞𝑘 with

∑
𝑘∈[𝐾 ] 𝑞𝑘 = 1.

For each element 𝑖 ∈ 𝐼 and each deterministic strategy 𝑘 , let
𝑌𝑖𝑘 = 1 indicate that 𝑖 is covered in 𝜙𝑘 and𝑌𝑖𝑘 = 0 otherwise.
Thus,

∑
𝑖∈𝐼 𝑌𝑖𝑘 captures the coverage of strategy 𝜙𝑘 . Observe

that

E[OPT𝑅] =
∑︁
𝑘∈[𝐾 ]

(∑︁
𝑖∈𝐼
𝑌𝑖𝑘

)
·𝑞𝑘 ≤ max

𝑘∈[𝐾 ]

(∑︁
𝑖∈𝐼
𝑌𝑖𝑘

)
= OPT𝐷 ,

where OPT𝐷 denotes the performance of an optimal deter-
ministic. The claim for EPPT can be seen on Example 1. □

Example 1. Consider a toy example of EPPT, where G =

{𝑔1, 𝑔2} with 𝑔1 = {𝑎}, 𝑔2 = {𝑏} and 𝐼 = {𝑎, 𝑏}. Let 𝐽 = ∅
4Actually, the first part of statement of Lemma 1 can be gen-

eralized to any optimization problem where the objective function
can be expressed as a linear function of decision variables.

(no bus lines to open) and covering households 𝑎 and 𝑏 via
the ride-hailing program each incur a unit cost that is equal
to the budget, i.e., 𝑐𝑎 = 𝑐𝑏 = 𝐵 = 1. We can verify that
for any deterministic strategy can achieve an equity being
0 since it can cover only one household in one group; thus,
OPT𝐷 = 0. Consider such a randomized strategy that is to
cover only 𝑎 or 𝑏 via the ride-hailing program each with
probability 1/2. Then it achieves an expected equity of 1/2,
which suggests that E[OPT𝑅] ≥ 1/2 > OPT𝐷 = 0.

Main Contributions and Techniques
In this paper, we consider a technical issue of promoting the
social equity by optimizing the budget allocation to different
candidate welfare programs assisting deprived households
in access to the public transits. In all technical sections, we
assume WLOG that the cost associated with each program
is no more than 1 with 𝐵 ≥ 1 by scaling down all costs such
that maxℓ∈𝐼∪𝐽 𝑐ℓ = 1. Our main technical result is stated as
follows.
Theorem 1. [Section ] There exists a linear-programming
(LP) based rounding strategy (RAS) that achieves an optimal
approximation ratio of 1−1/e for EPPT, which uses a budget
no more than 𝐵 in expectation and no more than 𝐵 + 1 for
any realization.
Remarks on Theorem 1. (1) Note that our problem EPPT
captures BMCP as a special case; thus, no algorithm (in-
cluding randomized) can achieve an approx-ratio better than
1 − 1/e, which suggests the optimality RAS in terms of
approx-ratio. (2) As stated in Theorem 1, our strategy is fea-
sible in budget under expectation, though no always. This is
inconsequential and can be mitigated technically. Note that
the total absolute overflow of the budget is 1, which repre-
sents the max cost associated with any candidate programs.
By decomposing or splitting a given program into several
copies (e.g., replacing a bus line operating 12 hours a day by
12 bus lines sharing the same route but operating one hour
only a day), we can significantly reduce the max cost incurred
by any candidate welfare programs. Another note is that our
input setting is positioned on a given time window (e.g., one
quarter or a year). Thus, we expect to run our randomized
strategy repeatedly stretching over a long period covering
multiple units of the time window considered here. The fact
that our strategy is feasible in the budget under expectation
suggests its feasibility in the long run, making it somewhat
acceptable in practice.

We implement RAS and compare it against several natural
baselines on real data that is assembled by integrating multi-
ple real datasets from different public sources. Experimental
results confirm our theoretical predictions and demonstrate
the effectiveness of our LP-based randomized strategy (RAS)
in promoting social equity in public transportation, especially
when the budget is small. This highlights the practical value
of our proposed strategy in improving social equity since
the lack of fund for the public infrastructure is widely re-
ported and is prevalent across the USA; see, e.g., (APTA
2021; Mawad 2021; Freemark 2021). Furthermore, the re-
sults suggest the great complementary value brought by the
ride-hailing-based program to the traditional bus-line-based
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when the budget is insufficient.

Technical challenges. The main technical challenge in our
problem is partially due to the non-linear objective function
of maximizing the overall social equity that is quantified as
the minimum (expected) coverage ratio among all protected
groups. One the one hand, as shown in Example 1, ran-
domized strategies can be substantially more powerful than
deterministic ones on the objective studied here; on the other
hand, the design and analysis of a randomized algorithm
are more technically challenging in general compared with
that of a deterministic, requiring to craft and add appropriate
random bits based on the specific input structure. Note that
the introduction of ride-hailing welfare program does not
add any new technical challenges to the problem,5 though it
could mean a lot in practice in terms of promoting the social
equity; see experimental results of the impact on the equity
brought by the ride-hailing program in Section 12.

One of the main technical contributions in the paper is to
propose a weighted version of Dependent Rounding (DR),
where the original version of DR was introduced by Gandhi
et al. (2006) that is to round a vector in a fractional bipartite-
matching polytope to an integral that is required to lie in the
same polytope and satisfy a few properties. One specific fea-
ture imposed on the final rounded solution in (Gandhi et al.
2006) is that the unweighted sum of variables incident to
every vertex should remain invariant before and after round-
ing. In our case, we need to ensure the weighted sum of all
variables has a gap as small as possible between the original
fractional and the final rounded integral solutions. To solve
this challenge, we craft a more delicate weighted version of
DR; see Algorithm 1.

Other related work. There are a few works that have con-
sidered resource allocation in online setting under different
contexts; see, e.g., equity promotion in vaccination (Xu and
Xu 2022), ride-hailing resource allocation (Lesmana, Zhang,
and Bei 2019), online resource-allocation problems with lim-
ited choices in the long-chain design (Asadpour, Wang, and
Zhang 2020), and online fair division problem (Aleksandrov
et al. 2015). Another research line has studied matching pol-
icy design and simulation in integrating the ride-hailing and
public transits (Basu et al. 2018; Boone, Steinberger, and
Wafa 2018; Shen, Zhang, and Zhao 2018; Stiglic et al. 2018;
Yan, Levine, and Zhao 2019). However, these studies haven’t
considered the objective of promoting the overall social eq-
uity as here.

An LP-based Rounding Algorithm
Recall that the introduction of ride-hailing-based program
brings no technical challenge to EPPT; see discussions in
“Technical challenges.” For the ease of exposition, we con-
sider an input instance of EPPT with the bus-lines-based
program only by treating to cover each household via ride-
hailing trips as a special one-one bus line covering the spe-
cific household only. Consider an optimal randomized strat-

5We can actually view covering a household 𝑖 by the ride-hailing
program alternatively as a virtual new bus line 𝑗 ′ with cost 𝑐 𝑗′ = 𝑐𝑖
and coverage 𝑆 𝑗′ = {𝑖}.

egy OPT.6 For each target household 𝑖 ∈ 𝐼, let 𝑦𝑖 be the
probability that 𝑖 is covered in OPT. For each candidate bus
line 𝑗 ∈ 𝐽, let 𝑥 𝑗 be the probability that 𝑗 is set to open in
OPT. Consider the Linear Program (LP) below.

max min
𝑔∈G

(∑︁
𝑖∈𝑔

𝑦𝑖/|𝑔 |
)
, (1)∑︁

𝑗∈𝐽
𝑐 𝑗𝑥 𝑗 ≤ 𝐵, (2)

𝑦𝑖 ≤ min
(
1,

∑︁
𝑗:𝑆 𝑗 ∋𝑖

𝑥 𝑗

)
, ∀𝑖 ∈ 𝐼 (3)

0 ≤ 𝑦𝑖 , 𝑥 𝑗 ≤ 1 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽. (4)
Lemma 2. The optimal value of LP (1) is a valid upper bound
for the performance of an optimal randomized strategy.

Proof. We can verify that Objective (1) captures the exact
performance of OPT (i.e., the min expected coverage ratio
among all protected groups). To prove our claim, it suffices
to show that the strategy {𝑥 𝑗 , 𝑦𝑖} of OPT is feasible to all
constraints there. For each 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝐼, let 𝑋 𝑗 = 1 and
𝑌𝑖 = 1 indicate 𝑗 is set to open and 𝑖 is covered in OPT, re-
spectively. Thus, E[𝑋 𝑗 ] = 𝑥 𝑗 and E[𝑌𝑖] = 𝑦𝑖 for every 𝑗 and
𝑖. Since OPT can be viewed as a certain randomization over
all feasible deterministic strategies,

∑
𝑗∈𝐽 𝑐 𝑗𝑋 𝑗 ≤ 𝐵. Thus,

E[∑ 𝑗∈𝐽 𝑐 𝑗𝑋 𝑗 ] ≤ 𝐵, which leads to Constraint (2). Note that
for each 𝑖 ∈ 𝐼, 𝑌𝑖 ≤ 1 and 𝑌𝑖 ≤

∑
𝑗:𝑆 𝑗 ∋𝑖 𝑋 𝑗 . Taking expec-

tation on both sides, we get Constraint (3). Constraint (4) is
valid since {𝑥𝑖 , 𝑦 𝑗 } are all probability values. □

Based on an optimal solution to LP (1), we design a strat-
egy, denoted by RAS (Algorithm 1), which is built on ran-
domized dependent rounding. Let x∗ = (𝑥∗

𝑗
) be part of the

optimal solution of LP (1). The main idea is to apply a se-
ries of rounding procedures to transform x∗ to a random
binary vector X∗ ∈ {0, 1} |𝐽 | such that the expected total
cost

∑
𝑗∈𝐽 𝑐 𝑗E[𝑋∗𝑗 ] is as small as possible (ideally no more

than 𝐵), while each household 𝑖 ∈ 𝐼 can get covered with a
probability as large as possible.

The overall picture of our rounding procedure is as fol-
lows. During each step, we identify two remaining fractional
values in x∗ if any, and “twist” the two values together follow-
ing one of the two directions randomly, and in each direction,
one fractional value will be rounded up and the other will
be down. We carefully design the rounding procedure such
that it has Properties (P1), (P2), (P3), and (P4) as outlined in
Lemma 3, which is vital to the performance of the random-
ized strategy RAS in Algorithm 1. Generally, (P1) suggests
that at least one fractional value in x∗ will be rounded in each
step and thus, RAS will terminate after at most |𝐽 | steps.7;
(P2) says that the expectation on each variable remains the
same throughout the rounding process; (P3) implies that the
total budget on the final rounded solution could get an over-
flow by at most 1; and (P4) indicates negative correlation
over any subset of variables.

6Throughout this paper, we use the two terms “strategy” and
“algorithm” interchangeably.

7More precisely, RAS will stop after at most ⌈|𝐽 |/2⌉ steps.
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Algorithm 1: A Randomized Allocation Strategy (RAS) for Equity Promotion in Public Transportation.
Input: An input instance of Equity Promotion in Public Transportation (EPPT): {𝐼, 𝐽, 𝐵, {𝑐 𝑗 , 𝑆 𝑗 | 𝑗 ∈ 𝐽},G = {𝑔}}.
Output: A randomized budget-allocation strategy denoted by a binary vector X ∈ {0, 1} |𝐽 | with 𝑋 𝑗 = 1 indicating to
open bus line 𝑗 ∈ 𝐽 and 𝑋 𝑗 = 0 otherwise.

1 Solve LP (1) and let x∗ = {𝑥∗
𝑗
| 𝑗 ∈ 𝐽} be part of the optimal solution. Set X = x∗, i.e., 𝑋 𝑗 = 𝑥∗𝑗 for all 𝑗 ∈ 𝐽.

2 while 1 do
3 if there exists two fractional values in X, say, 0 < 𝑋𝑝 , 𝑋𝑞 < 1, then
4 compute 𝛼 := max{𝜖 > 0 : 𝑋𝑝 + 𝜖 ≤ 1, 𝑋𝑞 − 𝑐𝑝 · 𝜖/𝑐𝑞 ≥ 0}; 𝛽 := max{𝜖 > 0 : 𝑋𝑝 − 𝜖 ≥ 0, 𝑋𝑞 + 𝑐𝑝 · 𝜖/𝑐𝑞 ≤ 1};
5 with probability 𝛽/(𝛼 + 𝛽), update 𝑋𝑝 ← 𝑋𝑝 + 𝛼, 𝑋𝑞 ← 𝑋𝑞 − 𝑐𝑝 · 𝛼/𝑐𝑞;
6 with probability 𝛼/(𝛼 + 𝛽), update 𝑋𝑝 ← 𝑋𝑝 − 𝛽, 𝑋𝑞 ← 𝑋𝑞 + 𝑐𝑝 · 𝛽/𝑐𝑞 .
7 else if there exists one single fractional value 0 < 𝑋 𝑗 < 1 in X, then
8 with probability 𝑋 𝑗 , set 𝑋 𝑗 ← 1; and with probability 1 − 𝑋 𝑗 , set 𝑋 𝑗 ← 0.
9 else

10 Break.
11 end
12 end

Lemma 3. RAS in Algorithm 1 satisfies the following prop-
erties in each rounding step: (P1) At least one fractional
value is rounded to either 0 or 1; (P2) The expectation on
each value keeps invariant after rounding; (P3) The total
cost remains the same if two fractional values are involved
and will get increased by at most 1 if only one value gets
involved; (P4) For any subset S ⊆ 𝐽, E[∏ 𝑗∈S (1− 𝑋 𝑗 )] will
never get increased.

We present the proof of (P1), (P2), and (P3) here and leave
that of (P4) to Appendix.

Proof. Consider two cases. Case 1: There exists two frac-
tional values in X, say 0 < 𝑋𝑝 , 𝑋𝑞 < 1. Following the defi-
nition of 𝛼 and 𝛽, we see that the two updating procedures,
𝑋𝑝 ← 𝑋𝑝 + 𝛼, 𝑋𝑞 ← 𝑋𝑞 − 𝑐𝑝 · 𝛼/𝑐𝑞 and 𝑋𝑝 ← 𝑋𝑝 − 𝛽,
𝑋𝑞 ← 𝑋𝑞 + 𝑐𝑝 · 𝛽/𝑐𝑞 , both will end up with at least one
integral value on either 𝑋𝑝 or 𝑋𝑞 . Let 𝑋 ′𝑝 and 𝑋 ′𝑞 be the
rounded value in the end. We see

E[𝑋 ′𝑝 |𝑋𝑝 , 𝑋𝑞] = (𝑋𝑝 + 𝛼) ·
𝛽

𝛼 + 𝛽 + (𝑋𝑝 − 𝛽) ·
𝛼

𝛼 + 𝛽 = 𝑋𝑝;

E[𝑋 ′𝑞 |𝑋𝑝 , 𝑋𝑞] =
(
𝑋𝑞 −

𝑐𝑝𝛼

𝑐𝑞

)
· 𝛽

𝛼 + 𝛽 +
(
𝑋𝑞 +

𝑐𝑝𝛽

𝑐𝑞

)
· 𝛼

𝛼 + 𝛽
= 𝑋𝑞 .

Thus, we conclude that the expectations of the two values
both remain unchanged after rounding. Observe that for each
updating procedure, the total cost remains the same:

(𝑋𝑝 + 𝛼) · 𝑐𝑝 + (𝑋𝑞 −
𝑐𝑝𝛼

𝑐𝑞

)
· 𝑐𝑞 = 𝑋𝑝 · 𝑐𝑝 + 𝑋𝑞 · 𝑐𝑞;

(𝑋𝑝 − 𝛽) · 𝑐𝑝 + (𝑋𝑞 +
𝑐𝑝𝛽

𝑐𝑞

)
· 𝑐𝑞 = 𝑋𝑝 · 𝑐𝑝 + 𝑋𝑞 · 𝑐𝑞 .

Now consider Case 2: There exists one single fractional
values in X, say 0 < 𝑋 𝑗 < 1. Let 𝑋 ′

𝑗
be the value after

being rounded. According to our procedure, we see that 𝑋 ′
𝑗
∈

{0, 1}. Furthermore, E[𝑋 ′
𝑗
|𝑋 𝑗 ] = 𝑋 𝑗 · 1 = 𝑋 𝑗 . Note that in

this case the total cost will get increased by at most 𝑐 𝑗 ≤ 1

(recalled that we assume WLOG that 𝑐 𝑗 ≤ 1 for all 𝑗 ∈
𝐽). □

We are ready to prove the main Theorem 1. For ease of
exposition, we restate Theorem 1 in the lemma below.
Lemma 4. For the randomized strategy RAS, (1) it uses a
total budget no more than 𝐵 in expectation; (2) it uses a total
budget no more than 𝐵 + 1 for any realization; and (3) it
achieves an approx-ratio at least of 1 − 1/e.

Proof. Let {𝑥∗
𝑗
, 𝑦∗
𝑖
} be an optimal solution to LP (1). We

prove Claim (1) first. Let X∗ = (𝑋∗
𝑗
) the final rounded binary

vector output by RAS. Property (P2) in Lemma 3 suggests
that E[𝑋∗

𝑗
] = 𝑥∗

𝑗
for every 𝑗 ∈ 𝐽 since we initialize X =

x∗ = (𝑥∗
𝑗
). Thus, the expected total cost on X∗ should satisfy

E[∑ 𝑗∈𝐽 𝑐 𝑗𝑋
∗
𝑗
] = ∑

𝑗∈𝐽 𝑐 𝑗𝑥
∗
𝑗
≤ 𝐵, where the last inequality is

due to Constraint (2). For Claim (2): Note that the case when
there is only one fractional value involved in the rounding
could happen at most once in RAS, which implies that the
total cost can get inflated by at most 1.

Now we show Claim (3). For each 𝑖 ∈ 𝐼, let𝑌 ∗
𝑖
= 1 indicate

that 𝑖 is covered in the final strategy X∗ and𝑌 ∗
𝑖
= 0 otherwise.

Let S𝑖 = { 𝑗 : 𝑆 𝑗 ∋ 𝑖}, which denotes the set of indices of bus
lines that cover 𝑖. We can verify that𝑌 ∗

𝑖
= 1−∏ 𝑗∈S𝑖 (1−𝑋∗𝑗 ),

and E[∏ 𝑗∈S𝑖 (1 − 𝑋∗𝑗 )] ≤
∏
𝑗∈S𝑖 (1 − 𝑥∗𝑗 ) (by repeatedly

applying (P4) in Lemma 3). Thus,

E[𝑌 ∗𝑖 ] = 1 − E
[ ∏
𝑗∈S𝑖

(1 − 𝑋∗𝑗 )
]

≥ 1 −
∏
𝑗: 𝑗∈S𝑖

(1 − 𝑥∗𝑗 )
(
(P4) in Lemma 3

)
≥ 1 −

∏
𝑗: 𝑗∈S𝑖

e−𝑥
∗
𝑗 = 1 − e−

∑
𝑗∈S𝑖 𝑥

∗
𝑗 . (5)

Note that by Constraint (3), 𝑦∗
𝑖
≤ min

(
1,
∑
𝑗∈S𝑖 𝑥

∗
𝑗

)
. Con-

sider these two cases. Case (1):
∑
𝑗∈S𝑖 𝑥

∗
𝑗
≥ 1. Then

E[𝑌 ∗𝑖 ] ≥ 1 − e−
∑

𝑗∈S𝑖 𝑥
∗
𝑗 ≥ 1 − 1/e ≥ (1 − 1/e) · 𝑦∗𝑖 ,
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Table 1

Level 1 Level 2 Level 3

0.30458125 0.51861131 0.17680744

Population 
by Level of 

Poverty

Level 3
17.68%

Level 2
51.86%

Level 1
30.46%

0.30458125 0.51861131 0.17680744

Population 
by Level of 

Poverty

Level 3

Level 2
51.86%

Level 1

Population 
by Race

Other
5.7%
Asian
6.8%

American Indian
10.5%

Black
29.2%

White
47.7%

1

Figure 1: The household distributions used in our exper-
iments. Top: the distribution of households by races, i.e.,
White, Black, American Indian, Asian, and some other
ethic background. Bottom: the distribution of households
by poverty levels.

which is due to Inequality (5) and the fact 𝑦∗
𝑖
≤ 1. Case (2):∑

𝑗∈S𝑖 𝑥
∗
𝑗
≤ 1. In this case, 𝑦∗

𝑖
≤ ∑

𝑗∈S𝑖 𝑥
∗
𝑗
≤ 1. Observe that

E[𝑌 ∗𝑖 ] ≥ 1−e−
∑

𝑗∈S𝑖 𝑥
∗
𝑗 ≥ (1−1/e)·

( ∑︁
𝑗∈S𝑖

𝑥∗𝑗

)
≥ (1−1/e)·𝑦∗𝑖 ,

where the second inequality follows from the fact that func-
tion (1− e−𝑥)/𝑥 is decreasing over 𝑥 ∈ (0, 1]. Summarizing
the two cases above, we conclude that E[𝑌 ∗

𝑖
] ≥ (1−1/e) · 𝑦∗

𝑖
.

Note that the (expected) performance of RAS satisfies

E[RAS] = min
𝑔∈G

E
[∑︁
𝑖∈𝑔

𝑌 ∗𝑖 /|𝑔 |
]
≥ (1 − 1/e) ·min

𝑔∈G

∑︁
𝑖∈𝑔

𝑦∗𝑖 /|𝑔 |

= (1 − 1/e) · LP (1) ≥ (1 − 1/e) · OPT,

where LP (1) and OPT denote the optimal value of LP (1)
and the performance of an optimal randomized strategy, and
where the last inequality is due to Lemma 2. □

Experimental Results
Our experiments involve quite a few datasets that were col-
lected in the city of Chicago. For each dataset, we cite it as
a reference pointing to the public link. Additionally, we of-
fer more details in Appendix about how we use them in our
experiments. All experiments are conducted on a PC with
2GHz Quad-Core Intel Core i7 processor and 8GB main
memory.

Experiment Setup

Data preprocessing. We focus on needy households that are
far away from the public transits, that is between 0.5 and
3.5 miles away form the nearest train stations and between
0.25 and 3.5 miles away from the nearest bus stations (De-
Good and Schwartz 2016). We identify a total number of
17,875 target households based on data from the Chicago
Metropolitan Agency for Planning (CMAP 2019) and the
public transportation data by the Chicago Data Portal (CDP

2022). For each needy household, we set a poverty level
following the guideline based on the income level estima-
tion information provided by the Department of Health and
Human Services (ASPE 2022). We separate all target house-
holds into three groups: the first is at or above 200% level
of the poverty line (Group Level 1), the second group is be-
tween 185% and 200% of the line (Group Level 2), while the
third is at or below 175% (Group Level 3). A recent survey
showed that the average cost for a ride-hailing trip is about
$25.37 (Salas 2019), and accordingly, we set the subsidy in
the ride-hailing program as $10, $15, and $20 per ride for
Group Level 1, 2, and 3, respectively. We assign each house-
hold a random race following the distribution recorded by
the official US Census in Chicago, 2022 (Review 2022); see
Figure 1 (Top).

The set of candidate bus routes is generated as follows. We
cluster all needy households with the travel distance no more
than 0.25 miles and then set a bus stop right in the center.
After filtering out those impractical stations that are more
than 3.5 miles away from any others, we have 649 candidate
bus stops in total. Recall that each candidate bus line is for
connecting residents with the nearest public transits. Thus,
each route should end at either a metro station or a bus stop.
Following this principle, we create 20 candidate bus routes
with proper length, that is with 10-18 stops and no more
than 0.75 miles between any two stops. For each bus route,
we set the operating expense per vehicle revenue hour to
$140 based on information offered by the Chicago Transit
Authority (Carter 2019). We create two schedules for each
bus route, one with the full-day and the other with the half-
day working schedule.8

Algorithms. Suppose we have a total budget 𝐵 and a col-
lection 𝐽 of candidate bus lines (which could potentially
include those one-one virtual bus lines representing to cover
a household via the ride-hailing program in case the latter is
considered). In addition to the LP-based algorithm proposed
in this paper (RAS), we implement two baselines as follows.
(a) Greedy: Always select the bus line 𝑗 ∈ 𝐽 that maximizes
the marginal gain of equity based on the current budget al-
location (break ties arbitrarily), and repeat this procedure
until the budget 𝐵 is exhausted or all target households are
covered; (b) Uniform: Select a bus line from 𝐽 uniformly at
random once at a time, and repeat this procedure until the
budget 𝐵 is exhausted or all target households are covered; As
for randomized algorithms of RAS and Uniform, we run each
1000 times and take the average as the final performance. We
compare the performance of each algorithm against the opti-
mal value to the benchmark LP (1) and compute that ratio as
the final approximation ratio achieved. We also compute the
95% confidence interval for each algorithm’s performance
to show the potential robustness.

Computational complexity of RAS. The running time of
RAS consists of two parts: Solving LP (1) and the rounding
procedure. Theoretically, the running time to solve LP (1) can
be as low as 𝑂∗ (𝑁2+1/6 log(𝑁/𝛿)) (Cohen, Lee, and Song

8We assume that the half-day working schedule can serve only
half of the households on the route.
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(a) Approximation ratios with the bus-line-
based program only.
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(b) Approximation ratios when the ride-
hailing-based program added.
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(c) Comparison between before and after
adding the ride-hailing-based program.

Figure 2: Experimental results on real datasets collected in Chicago: The total number of budgets 𝐵 takes values from
{5, 7.5, ..., 20} (million dollars).

2021), where 𝛿 is the relative accuracy and 𝑁 = |𝐼 | + |𝐽 |
with 𝐼 and 𝐽 being the total number of households and bus
lines, respectively. As for the rounding procedure, RAS is
guaranteed to eliminate at least one fractional value from the
vector X of size |𝐽 | each round and thus, it takes𝑂 ( |𝐽 |) time.
Therefore, theoretically, the dominant part of the running
time is to solve the benchmark LP (1).

Results and Discussions
We run our experiments in two cases: the first is with bus-
lines-based program only; the second is to add ride-hailing
program and consider the two programs together. In our ex-
periments, we aim to make a plan for one quarter with a total
of budget of 𝐵 ∈ {5, 7.5, 10, . . . , 20} (million dollars).

Figure 2a shows results in the first case when the bus-
lines-based program is the only choice. The approximation
ratios of RAS always stay above the theoretical lower bound
of 1 − 1/e ∼ 0.632 (plotted in red line) as shown in The-
orem 1. As the total budget increases, all three algorithms’
approximation ratios are increasing and approaching 1. This
can be seen as follows: the more budget we have, the more
capability each algorithm has to cover as many households
as possible in each protected group, which leads to a higher
equity as a result. Greedy can outperform RAS at some
larger budgets since in that case, there is less need in opti-
mizing the budget allocation among different approaches as
RAS is designed for. Note that Greedy does not have any
theoretical guarantees, which can perform arbitrary bad on
some worst-scenario instance (since Greedy is determinis-
tic, and as Example 1 shows, any deterministic achieves an
approximation ratio of zero).

Figure 2b shows the results in the second case when both
bus-lines-based and ride-hailing-based programs are consid-
ered. Our algorithm RAS dominates the other two baselines
when the total budget is capped by 10 million dollars. This
highlights the superiority of the LP-based rounding algo-
rithm when budget is limited, which is commonly observed
in reality. As reported in (KHARA 2022), “the needed in-
vestment for public transit in U.S. is a far cry from the current
numbers that have finally been passed.”

Figure 2c demonstrates the high potentials of the ride-
hailing program in promoting equity among protected groups
when budget is relatively small. In the case of scarcity of
public funds, the approach of covering needy households
via ride-hailing trips prove to be far more efficient than the
traditional one through opening new bus lines. This is due
to the fact that the ride-hailing-based approach enjoys more
flexibility and a higher utilization rate of budget when the
funds are insufficient. When budget becomes more abundant,
it seems a better choice to consider the traditional approach
only since the advantage of ride-hailing trips diminishes.

Conclusion
In this paper, we propose a theoretical model to promote
equity in public transportation by optimizing budget allo-
cation over different approaches of improving the access to
public transits for needy households. We design an LP-based
rounding algorithm and prove that it achieves an optimal
1 − 1/e approximation ratio. Additionally, we test our algo-
rithm against a few natural baselines on real datasets, and
experimental results confirm our theoretical predictions and
highlight the effectiveness in promoting the social equity
among households with low socioeconomic status.

Our work opens a few new directions. The first is to in-
troduce more constraints to the model reflecting practical
restrictions in the real world to make our model one step
closer to reality. One example is to consider adding area-
based capacity to the ride-hailing program, which is due to
the limited availability of ride-hailing drivers in that area. We
expect any newly added constraints could bring significant
technical challenges in algorithmic design and analysis. The
second is to parallelize the current algorithm such that it can
be implemented and deployed more efficiently.
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