Frequency Domain Disentanglement for Arbitrary Neural Style Transfer
DOI:
https://doi.org/10.1609/aaai.v37i1.25212Keywords:
CV: Low Level & Physics-Based Vision, CV: ApplicationsAbstract
Arbitrary neural style transfer has been a popular research topic due to its rich application scenarios. Effective disentanglement of content and style is the critical factor for synthesizing an image with arbitrary style. The existing methods focus on disentangling feature representations of content and style in the spatial domain where the content and style components are innately entangled and difficult to be disentangled clearly. Therefore, these methods always suffer from low-quality results because of the sub-optimal disentanglement. To address such a challenge, this paper proposes the frequency mixer (FreMixer) module that disentangles and re-entangles the frequency spectrum of content and style components in the frequency domain. Since content and style components have different frequency-domain characteristics (frequency bands and frequency patterns), the FreMixer could well disentangle these two components. Based on the FreMixer module, we design a novel Frequency Domain Disentanglement (FDD) framework for arbitrary neural style transfer. Qualitative and quantitative experiments verify that the proposed method can render better stylized results compared to the state-of-the-art methods.Downloads
Published
2023-06-26
How to Cite
Li, D., Luo, H., Wang, P., Wang, Z., Liu, S., & Wang, F. (2023). Frequency Domain Disentanglement for Arbitrary Neural Style Transfer. Proceedings of the AAAI Conference on Artificial Intelligence, 37(1), 1287-1295. https://doi.org/10.1609/aaai.v37i1.25212
Issue
Section
AAAI Technical Track on Computer Vision I