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Abstract

Arbitrary neural style transfer has been a popular research
topic due to its rich application scenarios. Effective disen-
tanglement of content and style is the critical factor for syn-
thesizing an image with arbitrary style. The existing meth-
ods focus on disentangling feature representations of con-
tent and style in the spatial domain where the content and
style components are innately entangled and difficult to be
disentangled clearly. Therefore, these methods always suf-
fer from low-quality results because of the sub-optimal dis-
entanglement. To address such a challenge, this paper pro-
poses the frequency mixer (FreMixer) module that disentan-
gles and re-entangles the frequency spectrum of content and
style components in the frequency domain. Since content and
style components have different frequency-domain character-
istics (frequency bands and frequency patterns), the FreMixer
could well disentangle these two components. Based on the
FreMixer module, we design a novel Frequency Domain Dis-
entanglement (FDD) framework for arbitrary neural style
transfer. Qualitative and quantitative experiments verify that
the proposed method can render better stylized results com-
pared to the state-of-the-art methods.

Introduction
Style transfer, which aims to generate an image Ics ap-
plying the style s of image Is to the content c of image
Ic (Efros and Freeman 2001; Drori, Cohen-Or, and Yeshu-
run 2003; Frigo et al. 2016; Elad and Milanfar 2017), has
attracted significant research attention. Recent works have
shown that the key point of synthesizing a stylized image
is how to disentangle the content and style from the im-
age. According to the different constraints, mainstream ap-
proaches for learning content-style disentanglement include
loss constraints (Gatys, Ecker, and Bethge 2016; Johnson,
Alahi, and Fei-Fei 2016), global mean and variance con-
straints (AdaIN) (Huang and Belongie 2017) and adversarial
constraints (Kotovenko et al. 2019; Chen et al. 2021). Re-
cently, some works (Park and Lee 2019; Yao et al. 2019; Wu
et al. 2021; Liu et al. 2021; Deng et al. 2022) introduced
the spatial attention mechanism to learn point-wise weights
for content and style, respectively. Although these methods
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Figure 1: The disentanglement and re-entanglement of con-
tent and style in the frequency domain. The subscripts c and
s represent that current node is from the content image Ic
and style image Is, respectively. f denotes the feature map
of the convolutional layer. F /F̃ stands for the original/disen-
tangled frequency spectrum. K is the global frequency ker-
nel. All f , F , F̃ and K have the same spatial size.

have significantly improved the performance in neural style
transfer, they still suffer from problems such as local dis-
tortions, weak generalization and inflexibility because of the
innate entanglement of content and style in the spatial do-
main. Specifically, the content and style components closely
coexist in the image patch and are difficult to disentangle,
which leads to the effects of loss of detailed contents or bro-
ken structure in the stylized images.

The image/feature map can be transformed into the fre-
quency domain where the low-frequency bands describe the
smoothly changing parts and the high-frequency bands are
related to the rapidly changing parts (Chen et al. 2019),
and we call this property as Frequency Separable Prop-
erty (FSP). It is also well known that in signal process-
ing, some signal characteristics are easy to analyze in the
frequency domain but challenging to explore in the spatial
domain. Recently, several works try to apply FSP to solve
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problems in different fields. (Chen et al. 2019) proposed
to store and process the feature maps that change slowly at
lower spatial resolution to reduce the computation cost. In
de-raining fields, there is a priori knowledge following FSP
that the object structure information is always homologous
with the high-frequency bands while the rain streaks are re-
lated to the low-frequency bands in the image (Perona and
Malik 1990; Fu et al. 2011, 2017). (Yang and Soatto 2020)
changed the image’s appearance without altering semantic
information to perform the domain alignment via swapping
the low-frequency between two images. Frequency Domain
Image Translation (FDIT) (Cai et al. 2021) preserves the
identity of the reconstruction image via the high-frequency
consistency. All of these works reflect that analyzing the im-
age feature in frequency domain is more effective than in
the spatial domain, which inspires us to separate the content
and style components for arbitrary neural style transfer in
the frequency domain.

In this paper, we propose the Frequency Domain Disen-
tanglement (FDD) approach for arbitrary neural style trans-
fer. As shown in Figure 1, the key point is to transform
the spatial features f∗ encoded by the pre-trained VGG-19
into the frequency domain via the fast Fourier transform al-
gorithm (FFT) (Cooley and Tukey 1965), where the con-
tent and style components can be naturally disentangled and
re-entangled because of their different frequency-domain
characteristics. In this paper, we propose a novel module
called frequency mixer (FreMixer), which is conceptually
simple and computationally efficient. FreMixer consists of
the global frequency kernels to disentangle and re-entangle
the content and style components. The basic idea behind the
FreMixer module is to learn the different frequency patterns
for content and style. By stacking FreMixer modules, FDD
can learn different frequency kernels K∗ to disentangle de-
tail content information and unique style. Then, the reinte-
grated frequency spectrum is transformed into the spatial do-
main via the inverse fast Fourier transform (IFFT). Our work
demonstrates that the disentanglement of content and style
in the frequency domain is more straightforward than in the
spatial domain.

We conduct extensive experiments to verify the effective-
ness of the proposed method. Different from previous works
that mainly present the standard stylization, we conduct ex-
periments with additional settings including progressive and
extrapolative stylization, (and cross-datasets style transfer,
progressive content interpolation, bidirectional stylization
in the Appendix) to show that our method can success-
fully disentangle content and style in the frequency domain.
For better understanding of our method, we also visual-
ize the learnable frequency-domain kernels to show differ-
ent frequency-domain characteristics between content and
style components. Quantitative and qualitative experimen-
tal results on different datasets demonstrate that our method
achieves significant performance improvements compared
to the SOTA methods. To our best knowledge, we are the
first to explore content-style disentanglement for the arbi-
trary neural style transfer from a frequency perspective. We
believe our work will provide new insights to the commu-
nity.

Related Work
Arbitrary Neural Style Transfer
Before applying the convolutional neural networks (CNNs)
to style transfer, the researchers has explored a related field
called image-based artistic rendering (IB-AR) (Kyprianidis
et al. 2012). Due to the limitations of IB-AR, such as flexi-
bility, style diversity and the disability of disentangling the
content structure and style texture, the arbitrary neural style
transfer (ANST) (Jing et al. 2019) was proposed to tackle
these problems. To our best knowledge, the early work
(Gatys, Ecker, and Bethge 2016) is the first work that uses
CNN to synthesize the image with the different styles. The
work demonstrates that the response of feature maps from a
pre-trained CNN encoder can represent the content informa-
tion, and the statistical distributions can represent the style
pattern. Huang et al. proposed a novel adaptive instance nor-
malization (AdaIN) layer to produce the stylized features by
aligning the mean and variance between the content features
and style features in a global manner (Huang and Belongie
2017). (Chen et al. 2021) introduced contrastive loss and
adversarial loss to force the model to learn style-to-style
relations and human-aware style information. Recently, at-
tention mechanism shows the great strength in style trans-
fer. For example, (Park and Lee 2019) proposed a style-
attentional network (SANet) to transfer the style according
to the spatial distribution of the content image. (Liu et al.
2021) proposed adaptive attention normalization (AdaAttN)
which integrates the advantages of AdaIN and SANet to
adaptively perform attentive normalization on a per-point
basis. Some works (Wu et al. 2021; Deng et al. 2022) intro-
duce cross-attention transformers to stylize the content fea-
ture sequence according to the style feature sequence. How-
ever, all of the above methods conduct style transfer in the
spatial domain, where the content and style cannot be dis-
entangled well due to the worse separation property of the
spatial domain. In contrast, we propose to explore content-
style disentanglement in the frequency domain, as it has bet-
ter separable property.

Applications of Frequency Separable Property
FSP is a commonly used technique in different fields. (Chen
et al. 2019) clam that the convolutional feature maps are
mixture of information at different frequencies and propose
to factorize the feature maps into two categories with dif-
ferent frequency bands. The lower frequency bands are pro-
cessed at lower spatial-resolution CNN layer to reduce the
computation complexity. In de-raining field, (Fu et al. 2017)
employ a priori image domain knowledge via focusing on
the high-frequency information during the training stage,
which forces the model to learn the structure information
of the rain. In the domain adaptation segmentation task, in
order to generate the training data similar with the target do-
main, (Yang and Soatto 2020) propose the spectral transfer
to map a source image to a target domain by simply swap-
ping the low-frequency component between source image
and target image. In the image-to-image translation, due to
the absence of preserving the identity of the source domain,
the previous methods are struggling for “over-adapt to the
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Figure 2: An overview of the Frequency Domain Disentanglemen (FDD) framework. (a) displays the overall architecture, which
mainly contains a pre-trained encoder, a series of FreMixer modules, and a decoder. The content loss Lc and the style loss Ls

force the model to learn the content information and reference style pattern. (b) and (d) illustrate the detailed structure of the
proposed FreMixer module and the decoder unit, respectively. The decoder block (DB) is a cascade of several decoder units.
(c) and (e) depict the contrastive loss and adversarial loss that are used to learn the style-to-style relations and render a more
realistic stylized image.

reference domain” and distorting the structural information.
To force the model to maintain the structure of the object, the
recent work Frequency Domain Image Translation (FDIT)
computes the reconstruction loss regulating the frequency
consistency to preserve the identity in the frequency domain.
The FSP-based methods achieve significant improvements
and inspire us to conduct arbitrary neural style transfer from
the frequency perspective.

Methodology
We first describe the overall framework, then introduce the
details of FreMixer module and the loss function for training
the network.

Overview of the FDD Framework
As shown in Figure 2, the content image Ic and the style im-
age Is are fed into the proposed network to render the styl-
ized image Ics. We adopt an encoder-decoder style architec-
ture network, which contains a frozen encoder Enc, a series
of FreMixer modules and a decoder Dec. We employ the
pre-trained VGG-19 (Simonyan and Zisserman 2014) as the
encoder to extract features f1:4

c and f1:4
s on Ψ1:4 (ReLu2 1,

ReLu3 1,ReLu4 1,ReLu5 1) layers, respectively:

f1:4
∗ = Enc(I∗) = Ψ1:4(I∗), (1)

where ∗ represents the symbol c or s. The lth FreMixer mod-
ule FMl produces the stylized feature by disentangling and
re-entangling the content and style in the frequency domain:

f l
cs = FMl(f l

c, f
l
s), (2)

where l ∈ (1, 2, 3, 4). Following IEST (Chen et al. 2021),
f3
cs and f4

cs are jointly fed into the 3rd decoder block DB3

to fully exploit the high-level semantics:

f̂3
cs = f3

cs + UpSample(f4
cs), (3)

where UpSample denotes the nearest interpolation layer
which up-samples the input feature f4

cs to the same shape
of f3

cs. In order to take full advantage of the multi-stage styl-
ized features, f i

cs and the output of decoder block DBi+1 are
jointly fed into DBi:

f̂ i
cs = f i

cs +DBi+1(f̂ i+1
cs ), (4)

where i ∈ (1, 2). With multi-stage stylized features, we can
render the stylized image Ics with the decoder Dec as:

Ics = Dec(f̂1
cs, f̂

2
cs, f̂

3
cs). (5)

Fast Fourier Transform (FFT)
To make the paper self-contained, we briefly describe the
basic concepts here. Firstly, we present the definition and
conjugate symmetric property of discrete Fourier trans-
form (DFT), which is particularly critical for the proposed
FreMixer module. Let x[n], n ∈ [0, N − 1] be the original
signal with the length of N. The 1-D DFT is formulated as:

X[k] =

N−1∑
n=0

x[n]e−j2πkn/N , (6)

where j =
√
−1 is the imaginary unit. As is well known,

DFT has the conjugate symmetric property, i.e., X[N−k] =
X∗[k]. Thus, the half of X[k], k ∈ [0, ⌈N/2⌉] is sufficient to
recover the original signal. The complexity of evaluating 1-
D DFT naively is O(n2) and FFT (Cooley and Tukey 1965)
reduces the complexity to O(nlogn).

Because 2-D FFT is often executed by performing 1-D
FFT in the horizontal direction and vertical direction, 1-D
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FFT can be extended to 2D signals like a gray image. Let
x[m,n], m ∈ [0,M − 1], n ∈ [0, N − 1] be a 2D signal, it
can be converted to frequency domain by 2-D DFT:

X[u, v] =
M−1∑
m=0

N−1∑
n=0

x[m,n]e−j2π(um
M + vn

N ). (7)

2D DFT also maintain the conjugate symmetric property
X[M − u,N − v] = X∗[u, v]. The description of the in-
verse FFT (IFFT) is skipped for the sake of brevity.

Frequency Mixer Module
The proposed FreMixer module generates the stylized fea-
ture by disentangling and re-entangling the content and style
in the frequency domain.

Frequency Transfer: We perform 2-D FFT along the spa-
tial dimensions to convert the spatial feature maps into fre-
quency domain:

F∗ = F(f∗), (8)

where ∗ represents the symbol c or s, F(·) represents the
2-D FFT operation, and F∗ ∈ CC×H×W stands for the fre-
quency spectrum of f∗.

Disentangling: We introduce learned frequency kernels
K∗ ∈ CC×H×W which play the role of a global depth-wise
convolution layer to disentangle the content and style fre-
quency patterns from F∗:

F̃∗ = F∗ ⊙K∗, (9)

where ⊙ means Hadamard product, F̃∗ are the disentangled
frequency spectrums of content and style from Fc and Fs. F̃c

preserves the content information of Ic, and F̃s contains the
style information of Is. Figure 6 shows different characteris-
tics of Kc and Ks, and Figure 7 visualizes the corresponding
image of F̃c and F̃s.

Re-entangling: After disentangling the content and style
frequency pattern, these two frequency spectrums are re-
combined by element-wise addition operation:

Fcs = F̃c + F̃s. (10)

Inverse Frequency Transfer: The frequency spectrum
Fcs is transferred to the stylized feature fcs in the spatial
domain by 2-D IFFT:

fcs = F−1(Fcs), (11)

where F−1(·) is the 2-D IFFT operation. Pytorch (Paszke
et al. 2019) implementation of the FreMixer module is in-
cluded in the supplementary material.

Because the feature map f∗ ∈ RC×H×W is a real signal, the
complex tensor F∗ is conjugate symmetric. Thus, we can reduce
the computation cost by using the half of F∗ to preserve the full
information. When taking only the half of F∗, the parameters of
K∗ are reduced from C ×H ×W to C ×H × ⌈W/2⌉.

Loss Function
As shown in Figure 2, the overall loss function is the
weighted summation of content loss Lc, style loss Ls, con-
trastive loss Lcl and adversarial loss Ladv:

Ltotal =λ1Lc + λ2Ls + λ3Lcl + λ4Ladv, (12)

where the weighted hyper-parameters {λ1, λ2, λ3, λ4} are
set to {2, 1, 0.15, 5} in this study.

Content Loss: Similar to (Mahendran and Vedaldi 2015),
Euclidean distance between the VGG-19 features of the con-
tent image Ic and stylized image Ics is used to reconstruct
the content of Ic:

Lc =
3∑

i=2

∥Ψi(Ics)−Ψi(Ic)∥2, (13)

where Ψi represents the i-th layer of the pre-trained VGG-
19 network.

Style Loss: We also employ the style loss Ls to match the
mean µ and standard deviations σ of VGG-19 features of
the style image Is and stylized image Ics, in the same way
as used in AdaIN (Huang and Belongie 2017):

Ls =
4∑

i=0

∥µ(Ψi(Ics))− µ(Ψi(Is))∥2

+ ∥σ(Ψi(Ics))− σ(Ψi(Is))∥2.

(14)

Style Contrastive Loss: We introduce the contrastive loss
to learn the relation between the stylized images. It pulls the
adjacent stylized images closer, in which the image shares
the same style with each other, and pushes away the stylized
images with different styles:

Lcl = −log(
exp(P (Ics)

TP (I+
cs)/τ)

exp(P (Ics)TP (I+
cs)/τ)+

∑
exp(P (Ics)TP (I−

cs)/τ)
),

(15)
following (Chen et al. 2021), P is the projection networks,
τ = 0.2 is the temperature parameter controlling push and
pull force. Two styled images Ics and I+cs are the positive pair
with the same style but different contents. Similarly, Ics and
I−cs are the negative pairs with different styles in the mini-
batch. More details can be referred to (Chen et al. 2021).

Adversarial Loss: Generative Adversarial Networks
(GAN) is a popular generative model, and we use it to
learn more “realistic” style patterns from the style image
set. As shown in Figure 2, we introduce the multi-scale
discriminator Di, i ∈ (1, 3) (Park et al. 2019) to distinguish
True/False between Is and Ics:

Ladv =
3∑

i=1

E[log(Di(Is))] + E[log(1−Di(Ics))] (16)

Experiments
In this section we conduct extensive experiments to evaluate
the effectiveness of the proposed method. Firstly, we intro-
duce the implementing details. Secondly, we make qualita-
tive and quantitative comparisons with other SOTA meth-
ods. Thirdly, ablation studies with different settings are con-
ducted to explore the effects of the components in our model.
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4.13/2.09 6.29/2.47  5.76/2.11 6.52/7.55  5.05/3.21  5.54/3.31  7.44/3.93  7.06/5.85  7.31/2.37

Style Content Ours CCPL StyTr2 IEST AdaAttn ArtFlow-WCT ArtFlow-AdaIN AAMS AdaIN

Figure 3: Comparison with other SOTA methods in arbitrary image style transfer. The first two columns show the style and
content images. The rest of the columns show the stylized images of different methods. Lc and Ls are calculated for each
stylized sample, with red and blue texts marking the best and second best, respectively.

Implementing Details
We use MS-COCO (Lin et al. 2014) as the content image
set and use WikiArt (Phillips and Mackintosh 2011) as the
style image set. During the training stage, all input images
are first resized to 512 × 512 and then randomly cropped
regions of size 256 × 256. Adam (Kingma and Ba 2014)
with the learning rate of 0.0001 is used as the optimizer. We
set the batch size to be 8 and train the proposed model with
160K iterations.

Comparison with SOTA Methods
We choose several SOTA methods as the benchmarks, in-
cluding CCPL (Wu et al. 2022), StyTr2 (Deng et al. 2022),
IEST (Chen et al. 2021), AdaAttN (Liu et al. 2021), Art-
Flow (An et al. 2021), AAMS (Yao et al. 2019) and
AdaIN (Huang and Belongie 2017).

Qualitative Comparison: In Figure 3, we compare the
stylized results of the proposed method and SOTA methods.
It should note that all test images were excluded from the
training data and all SOTA methods are reproduced by the
officially open-sourced codes and pre-trained models.

The results show that only considering the global mean
and variance alignment at the features level results in signif-
icantly corrupted content in AdaIN. Because AAMS only
focuses on the main edge region, the most detail texture
are lost. Although ArtFlow achieves better stylized results,
the repetitive patterns (3rd and 8th rows) and loss of con-
tent details (2nd and 4th rows) are still frequent. Compared
to the latest SOTA methods such as CCPL, StyTr2, IEST,
and AdaAttN, our method can preserve more structure in-
formation (5th and 8th rows) and content details (6th and
7th rows) with the similar stylization degree. In overview,
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Method Ours CCPL StyTr2 IEST AdaAttN ArtFlow-WCT ArtFlow-AdaIN AAMS AdaIN

SSIM↑ 0.51 0.43 0.46 0.37 0.46 0.44 0.36 0.32 0.25

Lc ↓ 7.91 9.15 10.37 9.36 10.60 8.80 10.51 11.04 11.03

Ls ↓ 2.40 3.49 2.53 4.22 3.11 4.42 4.53 7.31 2.94

T256(ms/img)↓ 10.7 7.4 23.7 10.2 18.1 78.6 77.9 789.7 7.0
T512(ms/img)↓ 35.1 23.7 136.8 35.1 58.5 206.7 206.0 817.2 23.1
User study↑ 1102 251 191 143 113 92 43 39 26

Table 1: Quantitative comparisons between the proposed method and other SOTA methods in terms of SSIM, Lc and Ls,
inference time, and user study. T256 represents the average inference time of 256 × 256 images.

Style Content Full model Spatial version w/o multi-stage w/o 𝑓!"# in Eq. (3)

Figure 4: Ablation study on spatial-domain disentanglement(4th col.), multi-stage strategy (5th col.), and the highest-level
semantics (6th col.). Zoom-in for better view.

Method SSIM↑ Lc ↓ Ls ↓
Full model 0.51 7.91 2.40

Spatial version 0.39 11.51 2.33

w/o multi-stage 0.44 8.93 3.20

w/o f4
cs in Eq. (3) 0.50 8.35 2.52

Table 2: Quantitative results for ablation study.

benefiting from clearer content and style disentanglement
in the frequency domain, our proposed method can render
the photo-realistic stylized image while preserving content
structure information very well.

Quantitative Comparison: We further conduct quantita-
tive comparison in terms of the SSIM, Lc, Ls, and inference
time to demonstrate the superiority of the proposed method.
For the first three metrics, we compute the average values
of 2000 random stylized samples. For the inference time, all
the models are tested on a single NVIDIA Tesla V100-32G
with batch size 1. We run the model 2000 times and average
the inference time.

-SSIM: SSIM is widely used to measure the structural
similarity between two images. Following ArtFlow (An
et al. 2021), we use it to measure the performance of the
structural information preservation. As shown in Table 1, we
achieve the best SSIM score, which demonstrates that the
proposed method can preserve more structural information.

-Lc, Ls: Following StyTr2 (Deng et al. 2022), we calcu-
late Lc and Ls based on Equation (13) and Equation (14).

Intuitively, the lower the value, the better the source content
and style are preserved. The Table 1 shows that the proposed
method achieves both the best scores.

-Inference time: As shown in Table 1, our method
achieves faster or similar inference speed compared with
the latest SOTA benchmarks such as StyTr2, IEST, and
AdaAttN. Although CCPL and AdaIN are a little faster than
our method, the quality of their styled images is sacrificed.
Our methhod achieves a better trade-off between the speed
and the stylized image quality.

-User study: We invite 10 participants and randomly
choose 200 samples for each participant. Each participant
will be asked to choose his/her favorite result for each sam-
ple. We collect 2000 votes and show the votes in Table 1.

Ablation Study
As shown in Figure 4 and Table 2, we present ablation stud-
ies on spatial-domain disentanglement, multi-stage strat-
egy, and the highest-level semantics. Full model contains
all modules introduced in the section of Methodology. Spa-
tial version replaces the FreMixer module with a standard
3×3 convolutional layer to disentangle the content and style,
which is widely used in previous works. The result of Spa-
tial version (the 4th col in Figure 4) shows that the content
of the style image is mixed into the stylized image. Addi-
tionally, since the stylized results contain part of the style
image, Table 2 shows SSIM and Lc of Spatial version are
the worst despite of the slightly lower Ls. It demonstrates
that its disentanglement of content and style in spatial do-
main is sub-optimal which results in the structural distortion
in the stylized results. In w/o multi-stage, only f3

cs and f4
cs
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<------------------------------------------------------Progressive stylized stage---------------------------------------------------> <------Extrapolative stylized stage------>

Figure 5: Progressive and extrapolative stylization. I(c1, s1) is the combination of content c1 and style s1.

(a) 𝐾! (b) 𝐾"

Figure 6: Visualization of the learnable frequency-domain
kernels Kc (a) and Ks (b). All present kernels are learned
by the proposed method. Zoom-in for better view.

are fed into the Decoder. We can observe that texture de-
tails are significantly lost despite the similar stylization is
achieved. It concludes that shallow frequency features are
essential to keep more detail information of the source con-
tent image while rendering photo-realistic stylized images.
When removing the highest-level frequency feature in w/o
f4
cs in Eq.(3), Lc and Ls are both slightly worse than the

ones of the Full model in Table 2. Therefore, the highest-
level frequency feature can also improve the quality of the
stylized results.

Progressive and Extrapolative Stylization
We explore progressive and extrapolative stylization to
achieve varying degrees of stylization by adjusting the style
weights α and β of two images:

F̃s = αs1 + βs2 = αFs ⊙Ks + βFc ⊙Ks, (17)

where F̃s is a combination of style frequency spectrum of
content image and style image. As shown in Figure 5, when
α + β = 1, the source content image is progressively styl-
ized, when β > 1, the source content image is over-stylized.
The results demonstrate that the proposed method success-
fully disentangle content and style into independent compo-
nents to control stylization.

Visualization of Kernels Kc and Ks

To analyze the frequency-domain characteristics of content
and style, we visualize the learnable frequency-domain ker-
nels Kc and Ks of the FreMixer module in Figure 6. We can

So
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𝑐,
𝑠)
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t 𝐼
(𝑐
)

St
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e
𝐼(
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Figure 7: Visualization of the content and style components.

observe that Kc and Ks have significantly different charac-
teristics. In specific, Kc is similar to a band-pass or high-
pass filter, while Ks is distributed from the low frequency
band to the high frequency band. It demonstrates that our
method can learn the different frequency pattern for content
and style in the frequency domain.

Visualization of the Content and Style Components
Compared with ArtFlow (An et al. 2021), we not only vi-
sualize the content I(c) but also visualize style I(s) in the
image space to demonstrate the effective disentanglement in
frequency domain in Figure 7. For a source image I(c, s),
we reconstruct its content I(c) and style I(s) by setting the
frequency spectrum of style or content to 0, respectively.
I(c) preserves the original structure of the source image
while removing the most style character. On the contrary,
I(s) contains the distinct style character (e.g., colors and
textures) while effacing the structure information. Figure 7
shows that the proposed method can clearly disentangle con-
tent and style in the frequency domain.

Conclusion
We propose a novel FreMixer module, which consists of
the learned frequency kernels to disentangle and re-entangle
the content and style components from a frequency perspec-
tive. As the different frequency-domain characteristics of the
content and style components (e.g., frequency bands and fre-
quency patterns, see Figure 6) in the frequency domain, the
proposed method could disentangle these two components
more clearly and render the higher-quality stylized results
(see Figure 3). Benefiting from the computationally efficient
mechanism of the FreMixer, the speed of our FDD frame-
work is comparable to SOTA approaches (see Table 1). The
extensive experiments demonstrates the effectiveness of the
proposed method and we believe our work will provide new
insights to the community.
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