Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
DOI:
https://doi.org/10.1609/aaai.v35i8.16859Keywords:
Learning on the Edge & Model Compression, (Deep) Neural Network Learning Theory, Learning TheoryAbstract
Deep networks are typically trained with many more parameters than the size of the training dataset. Recent empirical evidence indicates that the practice of overparameterization not only benefits training large models, but also assists – perhaps counterintuitively – building lightweight models. Specifically, it suggests that overparameterization benefits model pruning / sparsification. This paper sheds light on these empirical findings by theoretically characterizing the high-dimensional asymptotics of model pruning in the overparameterized regime. The theory presented addresses the following core question: ``should one train a small model from the beginning, or first train a large model and then prune?''. We analytically identify regimes in which, even if the location of the most informative features is known, we are better off fitting a large model and then pruning rather than simply training with the known informative features. This leads to a new double descent in the training of sparse models: growing the original model, while preserving the target sparsity, improves the test accuracy as one moves beyond the overparameterization threshold. Our analysis further reveals the benefit of retraining by relating it to feature correlations. We find that the above phenomena are already present in linear and random-features models. Our technical approach advances the toolset of high-dimensional analysis and precisely characterizes the asymptotic distribution of over-parameterized least-squares. The intuition gained by analytically studying simpler models is numerically verified on neural networks.Downloads
Published
2021-05-18
How to Cite
Chang, X., Li, Y., Oymak, S., & Thrampoulidis, C. (2021). Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 6974-6983. https://doi.org/10.1609/aaai.v35i8.16859
Issue
Section
AAAI Technical Track on Machine Learning I