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Abstract

Deep networks are typically trained with many more param-
eters than the size of the training dataset. Recent empiri-
cal evidence indicates that the practice of overparameteriza-
tion not only benefits training large models, but also assists
– perhaps counterintuitively – building lightweight models.
Specifically, it suggests that overparameterization benefits
model pruning / sparsification. This paper sheds light on these
empirical findings by theoretically characterizing the high-
dimensional asymptotics of model pruning in the overparam-
eterized regime. The theory presented addresses the follow-
ing core question: “should one train a small model from the
beginning, or first train a large model and then prune?”. We
analytically identify regimes in which, even if the location of
the most informative features is known, we are better off fit-
ting a large model and then pruning rather than simply train-
ing with the known informative features. This leads to a new
double descent in the training of sparse models: growing the
original model, while preserving the target sparsity, improves
the test accuracy as one moves beyond the overparameteriza-
tion threshold. Our analysis further reveals the benefit of re-
training by relating it to feature correlations. We find that the
above phenomena are already present in linear and random-
features models. Our technical approach advances the toolset
of high-dimensional analysis and precisely characterizes the
asymptotic distribution of over-parameterized least-squares.
The intuition gained by analytically studying simpler models
is numerically verified on neural networks.

1 Introduction
Large model size and overparameterization in deep learn-
ing are known to improve generalization performance
(Neyshabur et al. 2017), and, state-of-the-art deep neural
networks (DNNs) can be outrageously large. However, such
large models are not suitable for certain important applica-
tion domains, such as mobile computing (Tan et al. 2019;
Sandler et al. 2018). Pruning algorithms aim to address the
challenge of building lightweight DNNs for such domains.
While there are several pruning methods, their common goal
is to compress large DNN models by removing weak con-
nections/weights with minimal decline in accuracy. Here, a
key empirical phenomenon is that it is often better to train
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and prune a large model rather than training a small model
from scratch. Unfortunately, the mechanisms behind this
phenomenon are poorly understood especially for practical
gradient-based algorithms. This paper sheds light on this by
answering: What are the optimization and generalization dy-
namics of pruning overparameterized models? Does gradi-
ent descent naturally select the good weights?
Contributions: We analytically study the performance of
popular pruning strategies. First, we analyze linear models,
and then, generalize the results to nonlinear feature maps.
Through extensive simulations, we show that our analytical
findings predict similar behaviors in more complex settings.
(a) Distributional characterization (DC): The key innova-
tion facilitating our results is a theoretical characterization of
the distribution of the solution of overparameterized least-
squares. This DC enables us to accurately answer “what
happens to the accuracy if X% of the weights are pruned?”.
(b) Benefits of overparameterization: Using DC, we ob-
tain rigorous precise characterizations of the pruning perfor-
mance in linear problems. Furthermore, we use, so called
“linear gaussian equivalences", to obtain sharp analytic pre-
dictions for nonlinear maps, which we verify via extensive
numerical simulations. By training models of growing size
and compressing them to fixed sparsity, we identify a novel
double descent behavior, where the risk of the pruned model
is consistently minimized in the overparameterized regime.
Using our theory, we uncover rather surprising scenarios
where pruning an overparameterized model is provably bet-
ter than training a small model with the exact information of
optimal nonzero locations.
(c) Benefits of retraining: An important aspect of pruning
is retraining the model using the favorable nonzero locations
identified during the initial training. We show that retraining
can actually hurt the performance when features are uncorre-
lated. However, it becomes critical as correlations increase.
Importantly, we devise the DC of the train→prune→retrain
process (see Figs. 2 and 4 and the discussion around Def. 5
for details), and, we demonstrate that it correctly captures
the pruning performance of random features that are known
to be good proxies for understanding DNN behavior (Jacot,
Gabriel, and Hongler 2018).

We anticipate that our techniques towards establishing the
DC of the overparameterized problems might be useful, be-
yond the context of pruning, in other statistical inference
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Figure 1: We train sparse ResNet-20 models
on the CIFAR-10 dataset with varying width
(i.e. # of filters) and sparsity targets. The
solid and dashed lines are test and training
errors respectively. The shaded region high-
lights the transition to zero training error.

tasks that require careful distributional studies.

1.1 Prior Art
This work relates to the literature on model compression and
overparameterization in deep learning.
Neural network pruning: Large model sizes in deep
learning have led to a substantial interest in model prun-
ing/quantization (Han, Mao, and Dally 2015; Hassibi and
Stork 1993; LeCun, Denker, and Solla 1990). DNN pruning
has a diverse literature with various architectural, algorith-
mic, and hardware considerations (Sze et al. 2017; Han et al.
2015). The pruning algorithms can be applied before, dur-
ing, or after training a dense model (Lee, Ajanthan, and Torr
2018; Wang, Zhang, and Grosse 2020; Jin et al. 2016; Oy-
mak 2018) and in this work we focus on after training. Re-
lated to over-parameterizarion, (Frankle and Carbin 2019)
shows that a large DNN contains a small subset of favor-
able weights (for pruning), which can achieve similar per-
formance to the original network when trained with the same
initialization. (Zhou et al. 2019; Malach et al. 2020; Pensia
et al. 2020) demonstrate that there are subsets with good test
performance even without any training and provide theoret-
ical guarantees. However, these works do not answer why
practical gradient-based algorithms lead to good pruning
outcomes. Closer to us, (Li et al. 2020) derives formulas for
predicting the pruning performance of over-parameterized
least-squares without proofs. In contrast, we provide prov-
able guarantees, and, also obtain DC for more complex prob-
lems with general design matrices and nonlinearities.
Benefits of overparameterization: Studies on the opti-
mization and generalization properties of DNNs demon-
strate that overparameterization acts as a catalyst for learn-
ing. (Arora, Cohen, and Hazan 2018; Neyshabur, Tomioka,
and Srebro 2014; Gunasekar et al. 2017; Ji and Telgarsky
2018) argue that gradient-based algorithms are implicitly bi-
ased towards certain favorable solutions (even without ex-
plicit regularization) to explain benign overfitting (Bartlett
et al. 2020; Oymak and Soltanolkotabi 2020; Du et al. 2018;
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Figure 2: Random feature regression (RFR)
and pruning with ReLU feature map (φ(a) =
ReLU(Ra)) and varying sparsity targets.
Solid lines follow from our distributional
characterization and the markers are obtained
by solving the actual RFR.

Chizat, Oyallon, and Bach 2019; Belkin, Ma, and Man-
dal 2018; Belkin, Rakhlin, and Tsybakov 2019; Tsigler and
Bartlett 2020; Liang and Rakhlin 2018; Mei and Monta-
nari 2019; Ju, Lin, and Liu 2020). More recently, these
studies have led to interesting connections between ker-
nels and DNNs and a flurry of theoretical developments.
Closest to us, (Nakkiran et al. 2019; Belkin, Hsu, and Xu
2019; Belkin et al. 2019) uncover a double-descent phe-
nomenon: the test risk has two minima as a function of
model size. One minimum occurs in the classical under-
parameterized regime whereas the other minimum occurs
when the model is overparameterized and the latter risk can
in fact be better than former. Closer to our theory, (Derez-
iński, Liang, and Mahoney 2019; Hastie et al. 2019; Monta-
nari et al. 2019; Deng, Kammoun, and Thrampoulidis 2019;
Kini and Thrampoulidis 2020; Liang and Sur 2020; Salehi,
Abbasi, and Hassibi 2020; Ju, Lin, and Liu 2020) character-
ize the asymptotic performance of overparameterized learn-
ing problems. However these works are limited to charac-
terizing the test error of regular (dense) training. In contrast,
we use distributional characterization (DC) to capture the
performance of more challenging pruning strategies and we
uncover novel double descent phenomena (see Fig. 1).

2 Problem Setup
Let us fix the notation. Let [p] = {1, 2, . . . , p}. Given β ∈
Rp, let Ts(β) be the pruning operator that sets the smallest
p − s entries in absolute value of β to zero. Let I(β) ⊂
[p] return the index of the nonzero entries of β. In denotes
the n × n identity matrix and N (µ,Σ) denotes the normal
distribution with mean µ and covariance Σ.X† denotes the
pseudoinverse of matrixX .
Data: Let (ai, yi)

n
i=1 ⊂ Rd × R with i.i.d. input-label pairs.

Let φ(·) : Rd → Rp be a (nonlinear) feature map. We gener-
ate xi = φ(ai) and work with the dataset S = (xi, yi)

n
i=1

coming i.i.d. from some distribution D. As an example, of
special interest to the rest of the paper, consider random fea-
ture regression, where xi = ψ(Rai) for a nonlinear acti-
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vation function ψ that acts entry-wise and a random ma-
trix R ∈ Rp×d with i.i.d. N (0, 1) entries; see Fig. 2. In
matrix notation, we let y = [y1 . . . yn]T ∈ Rn and
X = [x1 . . . xn]T ∈ Rn×p denote the vector of labels
and the feature matrix, respectively. Throughout, we focus
on regression tasks, in which the training and the test risks
of a model β are defined as

Population risk: L(β) = ED[(y − xTβ)2]. (1)

Empirical risk: L̂(β) =
1

n
‖y −Xβ‖2`2 . (2)

During training, we will solve the empirical risk minimiza-
tion (ERM) problem over a set of selected features ∆ ⊂ [p],
from which we obtain the least-squares solution

β̂(∆) = arg min
β : I(β)=∆

L̂(β). (3)

For example, regular ERM corresponds to ∆ = [p], and we
simply use β̂ = β̂([p]) to denote its solution above. Let
Σ = E[xxT ] be the covariance matrix and b = E[yx] be
the cross-covariance. The parameter minimizing the test er-
ror is given by β? = Σ−1b. We are interested in training
a model over the training set S that not only achieves small
test error, but also, it is sparse. We do this as follows. First,
we run stochastic gradient descent (SGD) to minimize the
empirical risk (starting from zero initialization). It is com-
mon knowledge that SGD on least-squares converges to the
minimum `2 norm solution given by β̂ = X†y. Next, we
describe our pruning strategies to compress the model.
Pruning strategies: Given dataset S and target sparsity
level s, a pruning function P takes a model β as input and
outputs an s-sparse model βPs . Two popular pruning func-
tions are magnitude-based (MP) and Hessian-based (HP)
(a.k.a. optimal brain damage) pruning (LeCun, Denker, and
Solla 1990). The latter uses a diagonal approximation of the
covariance via Σ̂ = diag(XTX)/n to capture saliency (see
(4)). Formally, we have the following definitions:

• Magnitude-based pruning: βMs = Ts(β).

• Hessian-based pruning: βHs = Σ̂
−1/2

Ts(Σ̂
1/2
β).

• Oracle pruning: Let ∆? ⊂ [p] be the optimal s indices
so that β̂(∆?) achieves the minimum population risk (in
expectation over S) among all β̂(∆) and any subset ∆ in
(3). When Σ is diagonal and s < n, using rather classical
results, it can be shown that (see Lemma 7 in the extended
version (Chang et al. 2020)) these oracle indices are the
ones with the top-s saliency score given by

Saliency score = Σi,iβ
?
i

2. (4)

Oracle pruning employs these latent saliency scores and
returns βOs by pruning the weights of β outside of ∆?.

We remark that our distributional characterization might al-
low us to study more complex pruning strategies, such as op-
timal brain surgeon (Hassibi, Stork, and Wolff 1994). How-
ever, we restrict our attention to the three aforementioned
core strategies to keep the discussion focused.

Pruning algorithm: To shed light on contemporary prun-
ing practices, we will study the following three-stage
train→prune→retrain algorithms.

1. Find the empirical risk minimizer β̂ = X†y.

2. Prune β̂ with strategy P to obtain β̂Ps .

3. Retraining: Obtain β̂RTs = β̂(I(β̂Ps )).

The last step obtains a new s-sparse model by solving ERM
in (3) with the features ∆ = I(β̂Ps ) identified by pruning.
Figures 1 and 2 illustrate the performance of this procedure
for ResNet-20 on the CIFAR-10 dataset and for a random
feature regression on a synthetic problem, respectively . Our
analytic formulas for RF, as seen in Fig. 2, very closely
match the empirical observations (see Sec. 3 for further ex-
planations). Interestingly, the arguably simpler RF model
already captures key behaviors (double-descent, better per-
formance in the overparameterized regime, performance of
sparse model comparable to large model) in ResNet.

Sections 3 and 4 present numerical experiments on prun-
ing that verify our analytical predictions, as well as, our
insights on the fundamental principles behind the roles of
overparameterization and retraining. Sec 5 establishes our
theory on the DC of β̂ and provable guarantees on pruning.
All proofs are deferred to the extended version (Chang et al.
2020).

3 Motivating Examples
3.1 Linear Gaussian Problems
We begin our study with linear Gaussian problems (LGP),
which we formally define as follows.

Definition 1 (Linear Gaussian Problem (LGP)) Given
latent vector β? ∈ Rd, covariance Σ and noise level σ, as-
sume that each example in S is generated independently as
yi = xTi β

? + σzi where zi ∼ N (0, 1) and xi ∼ N (0,Σ).
Additionally, the map φ(·) is identity and p = d.

Albeit simple, LGPs are of fundamental importance for the
following reasons: (1) We show in Sec. 5 that our theoretical
framework rigorously characterizes pruning strategies for
LGPs; (2) Through a “linear Gaussian equivalence", we will
use our results for linear models to obtain analytic predic-
tions for nonlinear random features; (3) Our theoretical pre-
dictions and numerical experiments discussed next demon-
strate that LGPs already capture key phenomena observed in
more complex models (e.g., Fig. 1).

In Fig. 3, we consider LGPs with diagonal covariance Σ.
We set the sparsity level s/p = 0.1 and the relative dataset
size n/p = 0.3. To parameterize the covariance and β?, we
use a spiked vectorλ, the first s entries of which are set equal
to C = 25� 1 and the remaining entries equal to 1. λ cor-
responds to the latent saliency score (cf. (4)) of the indices.
To understand the role of overparameterization, we vary the
number of features used in the optimization. Specifically, we
solve (3) with ∆ = [k] and vary the number of features k
from 0 to p. Here we consider the train→prune algorithm,
where we first solve for β̂([k]) and obtain our pruned model
β̂Ps ([k]) by applying magnitude, Hessian or Oracle pruning

6976



Te
st

R
is

k

Problem Size (k/p)

(a) Identity covariance, spiked
latent weights.

Problem Size (k/p)

(b) Spiked covariance, identi-
cal latent weights.

Figure 3: Theoretical predictions for vari-
ous pruning strategies in linear models with
s/p = 0.1 and n/p = 0.3.

(cf. P ∈ {M,H,O}). Retraining curves are omitted here,
but they can be found in Fig. 7 of (Chang et al. 2020). Since
λ is non-increasing, the indices are sorted by saliency score;
thus, Oracle pruning always picks the first s indices. Solid
lines represent analytic predictions, while markers are em-
pirical results. The vertical dashed line is the sparsity level
s/p. The horizontal dashed line highlights the minimum risk
among all underparameterized solutions (k ≤ n) and all so-
lutions obtained by a final retraining.

In Fig. 3a, we set Σ = Ip and β? =
√
λ. Note, that the

analytic curves correctly predict the test risk and the double
descent behavior. Observe that the Hessian and Magnitude
pruning coincide here, since the diagonal of the empirical
covariance is essentially identity. In contrast, Fig. 3b em-
phasizes the role of the feature covariance by setting Σ =
diag(λ) and β? to be the all ones vector. In this scenario, we
observe that Hessian pruning performs better compared to
Fig. 3a and also outperforms Magnitude pruning. This is be-
cause the empirical covariance helps distinguish the salient
indices. Importantly, for Hessian and Oracle pruning, the op-
timal sparse model is achieved in the highly overparame-
terized regime k = p. Notably, the achieved performance
at k = p is strictly better than the horizontal dashed line,
which highlights the optimal risk among all underparame-
terized solutions k ≤ n and all retraining solutions (see also
(Chang et al. 2020) Sec. A). This has two striking conse-
quences. First, retraining can in fact hurt the performance;
because the train→prune performance at k = p is strictly
better than train→prune→retrain for all k. Second, overpa-
rameterized pruning can be provably better than solving the
sparse model with the knowledge of the most salient features
as k = p is also strictly better than k = s.

3.2 Random Features Regression
We relate an ERM problem (3) with nonlinear map φ to
an equivalent LGP. This will allow us to use our theoreti-
cal results about the latter to characterize the properties of
the original nonlinear map. We ensure the equivalence by
properly setting up the LGP to exhibit similar second order
statistics as the original problem.

Definition 2 (Equivalent Linear Problem) Given dis-
tribution (x, y) ∼ D, the equivalent LGP(β,Σ, σ) with
n samples is given with parameters Σ = E[xxT ],
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Figure 4: Illustration of the slight mismatch
between standard retraining (with same sam-
ples, red markers) and retraining with fresh
samples (cyan markers/line).

β? = Σ−1 E[yx] and σ = E[(y − xTβ?)2]1/2.
In Section 5, we formalize the DC of LGPs, which enables
us to characterize pruning/retraining dynamics. Then, we
empirically verify that DC and pruning dynamics of equiv-
alent LGPs can successfully predict the original problem
(3) with non-linear features. The idea of setting up and
studying equivalent LGPs as a proxy to nonlinear models,
has been recently used in the emerging literature of high-
dimensional learning, for predicting the performance of the
original ERM task (Montanari et al. 2019; Goldt et al. 2020;
Abbasi, Salehi, and Hassibi 2019; Dereziński, Liang, and
Mahoney 2019). This work goes beyond prior art, which fo-
cuses on ERM, by demonstrating that we can also success-
fully predict the pruning/retraining dynamics. Formalizing
the performance equivalence between LGP and equivalent
problem is an important future research avenue and it can
presumably be accomplished by building on the recent high-
dimensional universality results such as (Oymak and Tropp
2018; Hu and Lu 2020; Abbasi, Salehi, and Hassibi 2019;
Goldt et al. 2020).

In Fig. 2, we study random feature regression to approx-
imate a synthetic nonlinear distribution. Specifically, data
has the following distribution: Given input a ∼ N (0, Id),
we generate random unit norm β1 ∈ Rd,β2 ∈ Rd and set
the label to be a quadratic function given by y = aTβ1 +

(aTβ2)2. Then, we fix R i.i.d.∼ N (0, 1) and we generate
ReLU features x = ReLU(Ra), where R corresponds to
the input layer of a two-layer network. The markers in Fig.
2 are obtained by solving RFR and pruning and retraining
with varying sparsity targets (s, 2s, 4s with s/n = 10%).
Here, d = 10, n = 200. For each marker, the results are
averages of 50 R ∈ Rp×d realizations and 10 iterations
for each choice of R. The lines are obtained via our DC
of the equivalent LGP (by using Defs. 4 and 5) where the
latent parameter β?, noise σ and the covariance Σ of the
RFR problem are calculated for fixed realization of the input
layer R (similarly averaged over 50 random R). The blue
line is the performance of usual RFR with growing number
of features p. The other lines are obtained by solving RFR
with p features, pruning and retraining the solution to fixed
sparsity levels (s, 2s, 4s) with s/n = 0.1. Importantly, the
risks of the retrained models exhibit double descent and are
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minimized when p � n despite fixed model size / spar-
sity. Our theory and empirical curves exhibit a good match.
(The slight mismatch of the red curve/markers is explained
in Fig. 4.) The results demonstrate the importance of over-
parameterization for RF pruning, which corresponds to pick-
ing random features smartly. Here, the coefficients of least-
squares act like a scoring function for the saliency of ran-
dom features and capture how well they are aligned with the
target function. The fact that the risk of the pruned mod-
els is minimized in the overparameterized regime implies
that least-squares regression succeeds in properly selecting
salient random features from a larger candidate set. In the
context of deep learning, our discussion can be interpreted
as pruning hidden nodes of the network.
Predicting retraining performance. As discussed in Sec. 5
and Def. 5, for the retraining stage, our DC is accomplished
by assuming that retraining phase uses n fresh training ex-
amples (i.e. a new dataset Sfresh). Let us denote the resulting
model by β̂RTfresh. In Fig. 4, we use exactly the same setting
as in Fig. 2, but only show the case of sparsity 4s for which
the mismatch is observed. Observe that our analytical pre-
dictions accurately capture the risk of retraining with fresh
samples. However, we observe a discrepancy with the true
risk of retraining (without fresh samples) around the interpo-
lation threshold. Also shown the risk of the original ERM so-
lution before pruning (in blue) and of the magnitude-pruned
model (before any retraining). Perhaps surprisingly, Fig. 2
shows that this DC correctly captures the performance of
β̂RT with the exception of the red curve (4s). Fig. 4 focuses
on this instance and shows that our DC indeed perfectly pre-
dicts the fresh retraining performance and verifies the slight
empirical mismatch between β̂RT and β̂RTfresh.

3.3 Neural Network Experiments
Finally, we study pruning deep neural networks. Inspired by
(Nakkiran et al. 2019), we train ResNet-20 with changeable
filters over CIFAR-10. Here, the filter number k is equiv-
alent to the width of the model and it controls the over-
all model size. As the width of ResNet-20 changes, the
fitting performance of the dataset varies. Here, we apply
train→prune→retrain. Select s as the sparsity target and
s-filter ResNet-20 model as the base model with Ns pa-
rameters. First, we train a dense model with k filters and
Nk parameters, Nk � Ns, and prune it by only keeping
the largest Ns entries in absolute value non-zero. Nk grows
approximately quadratically in k. Now, the sparse model
shares the same number of parameters amenable to train-
ing as the base model. Finally, we retain the pruned net-
work and record its performance on the same dataset and
same configuration. In Fig. 1, we plot the training (dashed)
and test (solid) errors of dense and sparse models. All the
neural experiments are trained with Adam optimization and
0.001 learning rate for 1000 epochs, with data augmenta-
tion. The blue line corresponds to training of a dense model
with width-k. Green, yellow and red lines correspond to
sparsity targets s ∈ {5, 8, 10}, with around 28,000, 70,000
and 109,000 trainable parameters, for which a dense model
of width-k is first pruned to achieve the exact same num-
ber of nonzeros as a dense model of width-s and then re-

trained over the identified nonzero pattern. Surprisingly, all
curves interpolate (achieve zero training error) around the
same width parameter despite varying sparsity. As the width
k grows, the training and test errors decrease for all 5-, 8-,
10-filter base models, except for the shaded double descent
range and the best test error is always achieved in the overpa-
rameterized regime (large width). These experiments again
verify the main insight revealed to us by studying simpler
linear and random-feature models, that is, training a larger
model, followed by appropriate pruning, can preform bet-
ter than training a small model from the beginning. Another
worth-mentioning observation is that with appropriate spar-
sity level (here, 10) the pruned model has prediction perfor-
mance comparable to the dense model. Finally and interest-
ingly, the test error dynamics of the pruned model exhibit a
double descent that resembles that of the dense model (pre-
viously observed in (Nakkiran et al. 2019)).

3.4 Further Intuitions on The Denoising Effect of
Overparameterization

To provide further insights into the pruning benefits of
overparameterization, consider a simple linear model (as in
Def 1) with n ≥ p ≥ s, noise level σ = 0 and identity co-
variance. Suppose our goal is estimating the coefficients β?∆
for some fixed index set ∆ ⊂ [p] with |∆| = s. For prun-
ing, we can pick ∆ to be the most salient/largest entries.
If we solve the smaller regression problem over ∆, β̂(∆)
will only provide a noisy estimate of β?∆. The reason is that,
the signal energy of the missing features [p] − ∆ acts as a
noise uncorrelated with the features in ∆. Conversely, if we
solve ERM with all features (the larger problem), we per-
fectly recover β? due to zero noise and invertibility (n ≥ p).
Then one can also perfectly estimate β?∆. This simple argu-
ment, which is partly inspired by the missing feature setup
in (Hastie et al. 2019), shows that solving the larger problem
with more parameters can have a “denoising-like effect" and
perform better than the small problem. Our contribution ob-
viously goes well beyond this discussion and theoretically
characterizes the exact asymptotics, handles the general co-
variance model and all (n, p, s) regimes, and also highlights
the importance of the overparameterized regime n� p.

4 Understanding the Benefits of Retraining
On the one hand, the study of LGPs in Fig. 3 and Fig. 7 of
(Chang et al. 2020) suggest that retraining can actually hurt
the performance. On the other hand, in practice and in the
RFR experiments of Fig. 4, retraining is crucial; compare
the green β̂M and red β̂RT curves and see (Chang et al.
2020) Section A for further DNN experiments. Here, we ar-
gue that the benefit of retraining is connected to the correla-
tions between input features. Indeed, the covariance/Hessian
matrices associated with RF and DNN regression are not di-
agonal (as was the case in Fig. 3). To build intuition, imag-
ine that only a single feature suffices to explain the label. If
there are multiple other features that can similarly explain
the label, the model prediction will be shared across these
features. Then, pruning will lead to a biased estimate, which
can be mitigated by retraining. The following lemma for-
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malizes this intuition under an instructive setup, where the
features are perfectly correlated.
Lemma 1 Suppose S is drawn from an LGP(σ,Σ,β?) as in
Def. 1 where rank(Σ) = 1 with Σ = λλT for λ ∈ Rp. De-
fine ζ = Ts(λ)2/‖λ‖2`2 . For magnitude and Hessian prun-
ing (P ∈ {M,H}) and the associated retraining, we have
the following excess risks with respect to β?

ES [L(β̂Ps )]− L(β?) =
ζ2σ2

n− 2
+ (1− ζ)2(λTβ?)2︸ ︷︷ ︸

Error due to bias

(5)

ES [L(β̂RTs )]− L(β?) = σ2/(n− 2). (6)
The lemma reveals that pruning the model leads to a biased
estimator of the label. Specifically, the bias coefficient 1− ζ
arises from the missing predictions of the pruned features
(which correspond to the small coefficients of |λ|). In con-
trast, regardless of s, retraining always results in an unbiased
estimator with the exact same risk as the dense model which
quickly decays in sample size n. The reason is that retrain-
ing enables the remaining features to account for the missing
predictions. Here, this is accomplished perfectly, due to the
fully correlated nature of the problem. In particular, this is in
contrast to the diagonal covariance (Fig. 3), where the miss-
ing features act like uncorrelated noise during retraining.

5 Main Results
Here, we present our main theoretical result: a sharp asymp-
totic characterization of the distribution of the solution to
overparameterized least-squares for correlated designs. We
further show how this leads to a sharp prediction of the risk
of magnitude-based pruning. Concretely, for the rest of this
section, we assume the linear Gaussian problem (LGP) of
Definition 1, the overparameterized regime k = p > n and
the min-norm model

β̂ = arg min
β
‖β‖`2 s.t. y = Xβ. (7)

As mentioned in Sec. 2, β̂ is actually given in closed-form
as β̂ = X†y. Interestingly, our analysis of the distribu-
tion of β̂ does not rely on the closed-form expression, but
rather follows by viewing β̂ as the solution to the convex
linearly-constrained quadratic program in (7). Specifically,
our analysis uses the framework of the convex Gaussian
min-max Theorem (CGMT) (Thrampoulidis, Oymak, and
Hassibi 2015), which allows to study rather general infer-
ence optimization problems such as the one in (7), by re-
lating them with an auxiliary optimization that is simpler to
analyze (Stojnic 2013; Oymak, Thrampoulidis, and Hassibi
2013; Thrampoulidis, Oymak, and Hassibi 2015; Thram-
poulidis, Abbasi, and Hassibi 2018; Salehi, Abbasi, and
Hassibi 2019; Taheri, Pedarsani, and Thrampoulidis 2020).
Due to space considerations, we focus here on the more chal-
lenging overparameterized regime and defer the analysis of
the underparameterized regime to (Chang et al. 2020).

5.1 Distributional Characterization of the
Overparameterized Linear Gaussian Models

Notation: We first introduce additional notation necessary to
state our theoretical results. � denotes the entrywise prod-

uct of two vectors and 1p is the all ones vector in Rp.
The empirical distribution of a vector x ∈ Rp is given by
1
p

∑p
i=1 δxi , where δxi denotes a Dirac delta mass on xi.

Similarly, the empirical joint distribution of vectors x,x′ ∈
Rp is 1

p

∑p
i=1 δ(xi,x′

i)
. The Wasserstein-k (Wk) distance be-

tween two measures µ and ν is defined as Wk(µ, ν) ≡(
infρ E(X,Y )∼ρ |X − Y |k

)1/k
, where the infimum is over

all the couplings of µ and ν, i.e. all random variables (X,Y )
such that X ∼ µ and Y ∼ ν marginally. A sequence of
probability distributions νp on Rm converges in Wk to ν,

written νp
Wk=⇒ ν, if Wk(νp, ν) → 0 as p → ∞. Fi-

nally, we say that a function f : Rm → R is pseudo-
Lipschitz of order k, denoted f ∈ PL(k), if there is a con-
stant L > 0 such that for all x,y ∈ Rm, |f(x) − f(y)| ≤
L(1 + ‖x‖k−1

`2
+ ‖y‖k−1

`2
)‖x − y‖2. We call L the PL(k)

constant of f . An equivalent definition of Wk convergence
is that, for any f ∈ PL(k), limp→∞ E f(Xp) = E f(X),
where expectation is with respect to Xp ∼ νp and X ∼ ν.
For a sequence of random variables Xp that converge in
probability to some constant c in the limit of Assumption
1 below, we write Xp

P−→ c.
Next, we formalize the set of assumption under which our

analysis applies. Our asymptotic results hold in the linear
asymptotic regime specified below.
Assumption 1 We focus on a double asymptotic regime
where n, p, s → ∞ at fixed overparameterization ratio
κ := p/n > 0 and sparsity level α := s/p ∈ (0, 1).

Additionally, we require certain mild assumptions on the
behavior of the covariance matrix Σ and of the true la-
tent vector β?. For simplicity, we assume here that Σ =
diag([Σ1,1, . . . ,Σp,p]).
Assumption 2 The covariance matrix Σ is diagonal and
there exist constants Σmin,Σmax ∈ (0,∞) such that:
Σmin ≤ Σi,i ≤ Σmax, for all i ∈ [p].

Assumption 3 The joint empirical distribution of
{(Σi,i,

√
pβ?i )}i∈[p] converges in Wasserstein-k dis-

tance to a probability distribution µ on R>0 × R for some
k ≥ 4. That is 1

p

∑
i∈[p] δ(Σi,i,

√
pβ?i )

Wk=⇒ µ.

With these, we are ready to define, what will turn out to
be, the asymptotic DC in the overparameterized regime.
Definition 3 (Asymptotic DC – Overparameterized regime)
Let random variables (Λ, B) ∼ µ (where µ is defined in
Assumption 3) and fix κ > 1. Define parameter ξ as the
unique positive solution to the following equation

Eµ
[(

1 + (ξ · Λ)−1
)−1
]

= κ−1 . (8)

Further define the positive parameter γ as follows:

γ :=
(
σ2 + Eµ

[ B2Λ

(1 + ξΛ)2

])/(
1− κEµ

[ 1

(1 + (ξΛ)−1)
2

])
.

(9)
With these and H ∼ N (0, 1), define the random variable

Xκ,σ2(Λ, B,H) :=
(

1− 1

1 + ξΛ

)
B +

√
κ

√
γ Λ−1/2

1 + (ξΛ)−1
H,
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and let Πκ,σ2 be its distribution.

Our main result establishes asymptotic convergence of the
empirical distribution of (

√
pβ̂,
√
pβ?,Σ) for a rich class

of test functions. These are the functions within PL(3) that
become PL(2) when restricted to the first two indices. For-
mally, we define this class of functions as follows

F := {f : R2 ×Z → R, f ∈ PL(3) and (10)
sup
z∈Z

“PL(2) constant of f(·, ·, z)” <∞}.

For pruning analysis, we set Z = [Σmin,Σmax] and define

FL := {f : R2 ×Z → R
∣∣ f(x, y, z) = z(y − g(x))2

where g(·) is Lipschitz}. (11)

As discussed below, FL is important for predicting the risk
of the (pruned) model. In (Chang et al. 2020), we prove that
FL ⊂ F . We are now ready to state our main theoretical
result.

Theorem 1 (Asymptotic DC – Overparameterized LGP)
Fix κ > 1 and suppose Assumptions 2 and 3 hold. Recall the
solution β̂ from (7) and let Xκ,σ2 ∼ Πκ,σ2 as in Definition
3. Let f : R3 → R be a function in F defined in (10). We
have that

1

p

p∑
i=1

f(
√
pβ̂i,
√
pβ?i ,Σi,i)

P−→ E
[
f(Xκ,σ2 , B,Λ)

]
. (12)

As advertised, Theorem 1 fully characterizes the joint em-
pirical distribution of the min-norm solution, the latent vec-
tor and the covariance spectrum. The asymptotic DC al-
lows us to precisely characterize several quantities of in-
terest, such as estimation error, generalization error etc..
For example, a direct application of (12) to the function
f(x, y, z) = z(y − x)2 ∈ FL ⊂ F directly yields the risk
prediction of the min-norm solution recovering (Hastie et al.
2019, Thm. 3) as a special case. Later in this section, we
show how to use Theorem 1 towards the more challenging
task of precisely characterizing the risk of magnitude-based
pruning.

Before that, let us quickly remark on the technical novelty
of the theorem. Prior work has mostly applied the CGMT to
isotropic features. Out of these, only very few obtain DC,
(Thrampoulidis, Xu, and Hassibi 2018; Miolane and Mon-
tanari 2018), while the majority focuses on simpler met-
rics, such as squared-error. Instead, Theorem 1 considers
correlated designs and the overparameterized regime. The
most closely related work in that respect is (Montanari et al.
2019), which very recently obtained the DC of the max-
margin classifier. Similar to us, they use the CGMT, but their
analysis of the auxiliary optimization is technically different
to ours. Our approach is similar to (Thrampoulidis, Xu, and
Hassibi 2018), but extra technical effort is needed to account
for correlated designs and the overparameterized regime.

5.2 From DC to Risk Characterization
First, we consider a simpler “threshold-based" pruning
method that applies a fixed threshold at every entry of β̂.

Next, we relate this to magnitude-based pruning and obtain
a characterization for the performance of the latter. In order
to define the threshold-based pruning vector, let

Tt(x) =

{
x if |x| > t

0 otherwise
,

be the hard-thresholding function with fixed threshold t ∈
R+. Define β̂Tt := Tt/√p(β̂), where Tt acts component-
wise. Then, the population risk of β̂Tt becomes

L(β̂Tt ) = ED[(xT (β? − β̂Tt ) + σz)2]

= σ2 +
1

p

p∑
i=1

Σi,i

(√
pβ?i − Tt(

√
pβ̂i)

)2
P−→ σ2 + E

[
Λ
(
B − Tt(Xκ,σ2)

)2]
. (13)

In the second line above, we note that
√
pTt′(x) =

T√pt′(
√
px). In the last line, we apply (12), after recogniz-

ing that the function (x, y, z) 7→ z(y − Tt(x))2 is a member
of the FL family defined in (11). As in (12), the expectation
here is with respect to (Λ, B,H) ∼ µ⊗N (0, 1).

Now, we show how to use (13) and Theorem 1 to charac-
terize the risk of the magnitude-based pruned vector βMs :=

Ts(β̂). Recall, here from Assumption 1 that s = αp. To re-
late β̂Ms to β̂Tt , consider the set St := {i ∈ [p] :

√
p|β̂i| ≥

t} for some constant t ∈ R+ (not scaling with n, p, s). Note
that the ratio |St|/p is equal to

p−1

p∑
i=1

1[
√
p|β̂i|≥t]

P−→ E[1[|Xκ,σ2 |≥t]] = P
(
|Xκ,σ2 | ≥ t

)
.

Here, 1 denotes the indicator function and the convergence
follows from Theorem 1 when applied to a sequence of
bounded Lipschitz functions approximating the indicator.
Thus, by choosing

t? := sup
{
t ∈ R : P(|Xκ,σ2 | ≥ t) ≥ α

}
, (14)

it holds that |St|/p
P−→ α. In words, and observing that

Xκ,σ2 admits a continuous density (due to the Gaussian vari-
able H): for any ε > 0, in the limit of n, p, s → ∞, the
vector β̂Tt? has (1±ε)αp = (1±ε)s non-zero entries, which
correspond to the largest magnitude entries of β̂, with prob-
ability approaching1. Since this holds for arbitrarily small
ε > 0, recalling t? as in (14), we can conclude from (13)
that the risk of the magnitude-pruned model converges as
follows.
Corollary 1 (Risk of Magnitude-pruning) Let the same
assumptions and notation as in the statement of Theorem
1 hold. Specifically, let β̂ be the min-norm solution in (7)
and β̂Ms := Ts(β) the magnitude-pruned model at spar-
sity s. Recall the threshold t? from (14). The risk of β̂Ms
satisfies the following in the limit of n, p, s → ∞ at rates
κ := p/n > 1 and α := s/p ∈ (0, 1) (cf. Assumption 1):

L(β̂Ms )
P−→ σ2 + E

[
Λ
(
B − Tt?(Xκ,σ2)

)2]
,

where the expectation is over (Λ, B,H) ∼ µ⊗N (0, 1).
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5.3 Non-asymptotic DC and Retraining Formula
While Theorem 1 is stated in the asymptotic regime, dur-
ing analysis, the DC arises in a non-asymptotic fashion.
The following definition is the non-asymptotic counterpart
of Def. 3. We remark that this definition applies to arbitrary
covariance (not necessarily diagonal) by applying a simple
eigen-rotation before and after the DC formula associated
with the diagonalized covariance.
Definition 4 (Non-asymptotic DC) Fix p > n ≥ 1 and set
κ = p/n > 1. Given σ > 0, covariance Σ = Udiag(λ)UT

and latent vector β, set β̄ = UTβ and define the unique
non-negative terms ξ, γ, ζ ∈ Rp and φ ∈ Rp as follows:

ξ > 0 is the solution of κ−1 = p−1

p∑
i=1

(
1 + (ξλi)

−1
)−1

,

γ =
σ2 +

∑p
i=1 λiζ

2
i β̄

2
i

1− κ
p

∑p
i=1 (1 + (ξλi)−1)−2

,

ζi = (1 + ξλi)
−1 , φi = κγ(1 + (ξλi)

−1)−2, 1 ≤ i ≤ p.

The non-asymptotic distributional prediction is given by the
following U -rotated normal distribution

Dσ,Σ,β = UN ((1p − ζ)� β̄, p−1diag(λ−1 � φ)).

We remark that this definition is similar in spirit to the con-
current/recent work (Li et al. 2020). However, unlike this
work, here we prove the asymptotic correctness of the DC,
we use it to rigorously predict the pruning performance and
also extend this to retraining DC as discussed next.
Retraining DC. As the next step, we would like to char-
acterize the DC of the solution after retraining, i.e., β̂RT .
We carry out the retraining derivation (for magnitude prun-
ing) as follows. Let I ⊂ [p] be the nonzero support of
the pruned vector β̂Ms . Re-solving (3) restricted to the fea-
tures over I corresponds to a linear problem with effec-
tive feature covariance ΣI with support of non-zeros re-
stricted to I × I . For this feature covariance, we can also
calculate the effective noise level and global minima of the
population risk β?I . The latter has the closed-form solu-
tion β?I = Σ†IΣβ

?. The effective noise is given by ac-
counting for the risk change due to the missing features via
σI = (σ2 + β?TΣβ? − β?I

TΣIβ
?
I)1/2. With these terms

in place, fixing I and using Def. 4, the retraining prediction
becomes DσI ,ΣI ,β?I

. This process is summarized below.
Definition 5 (Retraining DC) Consider the setting of
Def. 4 with σ,Σ,β? and sparsity target s. The sample β̂RT
from the retraining distribution DRT,s

σ,Σ,β? is constructed as
follows. Sample β̂ ∼ Dσ,Σ,β? and compute the set of the
top-s indices I = I(Ts(β̂)). Given I, obtain the effective
covariance ΣI ∈ Rp×p, population minima β?I ∈ Rp,
and the noise level σI > 0 as described above. Draw
β̂RT ∼ DσI ,ΣI ,β?I

.

Observe that, the support I depends on the samples S via β̂.
Thus, our retraining DC is actually derived for the scenario
when the retraining phase uses a fresh set of n samples to
break the dependence between I,S (which obtains β̂RTfresh).

Despite this, we empirically observe that the retraining DC
predicts the regular retraining (reusing S) performance re-
markably well and perfectly predicts β̂RTfresh as discussed in
Figs. 2 and 4. Finally, we defer the formalization of the re-
training analysis to a future work. This includes proving that
β̂RTfresh obeys Def. 5 asymptotically as well as directly study-
ing β̂RT by capturing the impact of the I,S dependency.

6 Conclusions and Future Directions
This paper sheds light on under-explored phenomena in
pruning practices for neural network model compression.
On a theoretical level, we prove an accurate distributional
characterization (DC) for the solution of overparameterized
least-squares for linear models with correlated Gaussian fea-
tures. Our DC allows to precisely characterize the pruning
performance of popular pruning methods, such as magni-
tude pruning. Importantly, our DC combined with a linear
Gaussian equivalence, leads to precise analytic formulas for
the pruning performance of nonlinear random feature mod-
els. On the experimental side, we provide a thorough study
of overparameterization and pruning with experiments on
linear models, random features and neural nets with grow-
ing complexity. Our experiments reveal striking phenomena
such as a novel double descent behavior for model pruning
and the power of overparameterization. They also shed light
on common practices such as retraining after pruning.

Going forward, there are several exciting directions to
pursue. First, it would be insightful to study whether same
phenomena occur for other loss functions in particular for
cross-entropy. Second, this work focuses on unregularized
regression tasks and it is important to identify optimal
regularization schemes for pruning purposes. For instance,
should we use classical `1/`2 regularization or can we re-
fine them by injecting problem priors such as covariance in-
formation? Finally, going beyond pruning, using DC, one
can investigate other compression techniques that process
the output of the initial overparameterized learning problem,
such as model quantization and distillation.
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ciples and guarantees behind the contemporary model com-
pression algorithms and by shedding light on the design of
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