Char-Net: A Character-Aware Neural Network for Distorted Scene Text Recognition


  • Wei Liu The University of Hong Kong
  • Chaofeng Chen The University of Hong Kong
  • Kwan-Yee Wong The University of Hong Kong



Text Recognition, Attention Mechanism, RNN


In this paper, we present a Character-Aware Neural Network (Char-Net) for recognizing distorted scene text. Our Char-Net is composed of a word-level encoder, a character-level encoder, and a LSTM-based decoder. Unlike previous work which employed a global spatial transformer network to rectify the entire distorted text image, we take an approach of detecting and rectifying individual characters. To this end, we introduce a novel hierarchical attention mechanism (HAM) which consists of a recurrent RoIWarp layer and a character-level attention layer. The recurrent RoIWarp layer sequentially extracts a feature region corresponding to a character from the feature map produced by the word-level encoder, and feeds it to the character-level encoder which removes the distortion of the character through a simple spatial transformer and further encodes the character region. The character-level attention layer then attends to the most relevant features of the feature map produced by the character-level encoder and composes a context vector, which is finally fed to the LSTM-based decoder for decoding. This approach of adopting a simple local transformation to model the distortion of individual characters not only results in an improved efficiency, but can also handle different types of distortion that are hard, if not impossible, to be modelled by a single global transformation. Experiments have been conducted on six public benchmark datasets. Our results show that Char-Net can achieve state-of-the-art performance on all the benchmarks, especially on the IC-IST which contains scene text with large distortion. Code will be made available.




How to Cite

Liu, W., Chen, C., & Wong, K.-Y. (2018). Char-Net: A Character-Aware Neural Network for Distorted Scene Text Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).