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Abstract

In this paper, we present a Character-Aware Neural Network
(Char-Net) for recognizing distorted scene text. Our Char-
Net is composed of a word-level encoder, a character-level
encoder, and a LSTM-based decoder. Unlike previous work
which employed a global spatial transformer network to rec-
tify the entire distorted text image, we take an approach of
detecting and rectifying individual characters. To this end, we
introduce a novel hierarchical attention mechanism (HAM)
which consists of a recurrent RoIWarp layer and a character-
level attention layer. The recurrent RoIWarp layer sequen-
tially extracts a feature region corresponding to a charac-
ter from the feature map produced by the word-level en-
coder, and feeds it to the character-level encoder which re-
moves the distortion of the character through a simple spa-
tial transformer and further encodes the character region. The
character-level attention layer then attends to the most rele-
vant features of the feature map produced by the character-
level encoder and composes a context vector, which is finally
fed to the LSTM-based decoder for decoding. This approach
of adopting a simple local transformation to model the distor-
tion of individual characters not only results in an improved
efficiency, but can also handle different types of distortion
that are hard, if not impossible, to be modelled by a single
global transformation. Experiments have been conducted on
six public benchmark datasets. Our results show that Char-
Net can achieve state-of-the-art performance on all the bench-
marks, especially on the IC-IST which contains scene text
with large distortion. Code will be made available.

Introduction

Recently, scene text recognition has been receiving much
attention as it is fundamental in extracting textual infor-
mation embedded in natural scenes. With the increased
popularity of wearable cameras such as GoPro, more and
more images are captured under arbitrary poses. This in-
evitably introduces different kinds of distortion in the text
appearing in these images (see Figure 1a). Although remark-
able results have been reported in recognizing undistorted
scene text (Wang et al. 2012; Jaderberg et al. 2014; 2015a;
He et al. 2016b; Shi, Bai, and Yao 2016; Lee and Osindero
2016), it remains a challenge to build a robust text recog-
nizer that can handle highly distorted scene text effectively
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Figure 1: (a) Some examples of scene text suffering from
different kinds of distortion. (b) A text along a curve can be
considered a sequence of individually rotated characters.

and efficiently.

To the best of our knowledge, there exist two methods
(Shi et al. 2016; Liu et al. 2016) that employ global spa-
tial transformer networks (Jaderberg et al. 2015b) to rectify
the distorted text. They both adopt a complicated thin-plate
spline (TPS) transformation to model different types of dis-
tortion in the scene text. As their spatial transformer net-
works are only optimized with the weak supervision of the
recognition loss, they have difficulty in precisely locating
the fiducial points which tightly bound the text region. This
leads to error in the estimation of the TPS transformation,
and hence the deformation of the scene text, from the fidu-
cial points.

In this work, instead of estimating a global transformation
and rectifying the entire scene text, we take the approach
of detecting and rectifying individual characters in the dis-
torted text. We observe that by considering characters in the
distorted text separately, the distortion modelled by a com-
plicated transformation can actually be described by some
much simpler local transformations of the individual char-
acters. For instance, a text along a curve can be regarded
as a sequence of individually rotated characters (see Figure
1b). Hence, we can remove the distortion of the scene text
by rectifying each individual character through a simple lo-
cal transformation (e.g., rotation). This approach of adopting
a simple local transformation to model the distortion of indi-



vidual characters not only results in an improved efficiency,
but can also handle different types of distortion that are hard,
if not impossible, to be modelled by a single global transfor-
mation.

Driven by the above observation, we present a Character-
Aware Neural Network (Char-Net) for recognizing distorted
scene text. Our Char-Net is composed of a word-level en-
coder, a character-level encoder, and a LSTM-based de-
coder. We introduce a novel hierarchical attention mecha-
nism (HAM) that bridges the word-level encoder with the
character-level encoder, and the character-level encoder with
the LSTM-based decoder. The newly proposed HAM con-
sists of two layers, namely the recurrent RolWarp layer and
the character-level attention layer. The recurrent RoIWarp
layer sequentially extracts a feature region corresponding to
a character from the feature map produced by the word-level
encoder, and feeds it to the character-level encoder which re-
moves the distortion of the character through a simple spatial
transformer and further encodes the character region. The
character-level attention layer then attends to the most rele-
vant features of the feature map produced by the character-
level encoder and composes a context vector, which is finally
fed to the LSTM-based decoder for decoding. Equipped with
the HAM, our Char-Net is capable of handling complicated
distortion exhibited in scene text both efficiently and effec-
tively, by rectifying individual characters through simple lo-
cal transformations.

In summary, the key contributions of this work are:

e A simple and efficient Character-Aware Neural Network
(Char-Net) for distorted scene text recognition. The whole
network can be trained in an end-to-end fashion using
only text images and their corresponding character labels.
Experimental results on six public benchmarks not only
show that our Char-Net can achieve state-of-the-art per-
formance, but also demonstrate the effectiveness of each
of its components.

e A novel hierarchical attention mechanism that facilitates
the rectification of individual characters and attends to the
most relevant features for recognizing individual charac-
ters.

e A character-level encoder that removes distortion of indi-
vidual characters using a simple local spatial transformer,
and enables our Char-Net to handle different types of de-
formation exhibited in the scene text.

Related Work

Scene Text Recognition Scene text recognition has made
significant progress in recent years due to the great successes
in deep neural networks. For lexicon constrained methods,
Wang et al. (Wang et al. 2012) and Jaderberg et al. (Jader-
berg, Vedaldi, and Zisserman 2014) performed character
recognition by CNNs, and they grouped the predicted char-
acters in a left-to-right manner to output the final word
predictions. Instead of character based recognition, (Jader-
berg et al. 2014) and (Jaderberg et al. 2016) directly ex-
tracted CNN features from the entire word image to do a
90k-word classification (90k being the size of a pre-defined
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dictionary). For unconstrained scene text recognition, Jader-
berg et al. (Jaderberg et al. 2015a) employed an architec-
ture of two CNNs with one CNN to predict characters and
the other to detect N-grams contained in the word image.
As recurrent neural networks (RNNs) become popular in se-
quence recognition, recent scene text recognizers (Shi, Bai,
and Yao 2016; Shi et al. 2016; Lee and Osindero 2016;
Liu et al. 2016) use both CNNs and RNNs to encode fea-
tures of word images. Furthermore, inspired by the suc-
cesses (Bahdanau, Cho, and Bengio 2014) in Neural Ma-
chine translation, Shi et al. (Shi et al. 2016) and Lee et
al. (Lee and Osindero 2016) both introduced a learnable at-
tention mechanism in their RNNs to automatically select the
most relevant features for recognizing individual characters.
The literature is relatively sparse when it comes to recog-
nizing distorted scene text. Phan et al. (Phan et al. 2013)
employed a SIFT descriptor matching to handle perspec-
tive distortion exhibited in the scene text. In order to han-
dle a more general distortion, a spatial transformer network
(Jaderberg et al. 2015b) was introduced in (Shi et al. 2016;
Liu et al. 2016) to rectify the entire text. Different from
these two methods, our Char-Net is capable of rectifying
individual characters and can therefore handle more compli-
cated forms of distortion that cannot be modelled by a single
global transformation easily.

Network Architecture

In this section, we describe the architecture of our Character-
Aware Neural Network (Char-Net) for distorted scene text
recognition. As illustrated in Figure 2, our Char-Net is com-
posed a word-level encoder, a recurrent RoIWarp layer, a
character-level encoder, a character-level attention layer, and
a LSTM-based decoder. Here, the recurrent RoIWarp layer
and the character-level attention layer form the core of our
hierarchical attention mechanism (HAM). We describe the
details of each of these components in the following subsec-
tions. Throughout this paper, we denote the ground truth la-
belling of a text image as y = {y*, v?, ..., yT,yT 1}, where
T is the length of the text, and y”*! is the end-of-string
(eos) token representing the end of the labelling. We refer to
the process of predicting one character from the text image
as being one time step/decoding step.

Word-Level Encoder We first employ a word-level en-
coder (WLE) to encode the entire text image. The proposed
WLE takes the form of a CNN. It takes a single gray im-
age I € RW*H ag input, where W and H denote the width
and height of the image respectively, and produces a three-
dimensional feature map

F = WLE(I), (1)

with a dimension of W; x H; x Cy, where Wy, H; and
C'y represent the width, height and number of channels re-
spectively. To recognize the label y* of the character at time
step t, the recurrent RolWarp layer of our HAM extracts a
small feature region F*, from F that corresponds to the char-
acter being recognized, and feeds it to the character-level
encoder. This process requires the feature map produced by
WLE contains not only semantic information but also spatial
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Figure 2: Overall architecture of the Char-Net. Blue and yellow rectangles in the word-level encoder represent the convolu-
tional blocks and the max-pooling layers, respectively. Three convolutional feature maps from different levels of the CNN are
normalised (local response normalization), concatenated and dimension-reduced (1 x 1 convolution) to produce the feature map
F. Two red rectangles denote the two layers of the hierarchical attention mechanism. The corresponding image patches of FZ

and FL_

information of each character. As features in the final layer
of a deep CNN are semantically strong but spatially coarse,
our WLE stacks convolutional feature maps from differ-
ent levels by several hyper-connections (Kong et al. 2016;
He et al. 2017) to increase the spatial information encoded
in the outputted feature map (refer to the word-level encoder
depicted in Figure 2).

Character-Level Encoder The character-level encoder
(CLE) consists of a local spatial transformer and a CNN.
It takes the small feature region F? extracted by the recur-
rent RoIWarp layer as input. The spatial transformer of the
CLE enables our Char-Net to handle complicated distortion
exhibited in the scene text. Unlike previous work (Shi et al.
2016; Liu et al. 2016) which employed a global spatial trans-
former network (STN) to rectify the entire text image, the
local spatial transformer of the CLE targets at removing the
distortion of an individual character

Fi.. = STN(F;). @)
Here F. . is the rectified feature map having the same
dimension as F!. Comparing with those global STNs
which adopted a complicated thin-plate spline transforma-
tion (Bookstein 1989) to model different types of distortion,
the local STN of the CLE can effectively model the com-
plicated distortion of the scene text by simply predicting the
rotation of each individual character (refer to the visualisa-
tion of the rectified character images in Figure 2). A small
CNN is employed to further encode the rectified feature map
F? . so as to extract more semantic features for the decoding
step.

Hierarchical Attention Mechanism As mentioned previ-
ously, our hierarchical attention mechanism (HAM) consists
of two layers, namely the recurrent RolWarp layer and the
character-level attention layer. The recurrent RolWarp layer
connects the word-level encoder to the character-level en-
coder. It is responsible for extracting a small feature region
F?! that corresponds to the current character being recog-
nized from the entire feature map F produced by the word-
level encoder, and feeding it to the character-level encoder
for further processing. The character-level attention layer
connects the character-level encoder to the LSTM-based de-
coder. It is responsible for attending to the most relevant
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,- together with the character-level attentions are shown in the green rectangle.

features of the feature map produced by the character-level
encoder and computing a context vector z’, for the LSTM-
based decoder. We describe the details of these layers in the
next section.

LSTM-based Decoder The LSTM-based decoder recur-
rently predicts the ground truth labelling y using a Long
Short-Term Memory (LSTM) layer. Let L denote the set
of labels. At the decoding step ¢, the LSTM layer defines
a probability distribution over L as

h! = LSTM(h'" !, 0
p(y'

t—1 Zt

1 Zc)
o'~! z!) = SoftMax(W,h"),

3)
“4)

where h'~! and h? denote the previous and current hid-
den states respectively, W, is the parameter matrix, y" is
the label of the current predicted character, and o'~ 1 is the
one-hot encoding of the previously predicted character. Note
that the implementation of LSTM follows the one in (Graves
2013), and o'~! implicitly introduces a (learned) language
model to assist the prediction of each character. The proba-
bility of the sequential labelling is then given by the product
of the probability of each label, i.e.,

T+1

prlht !

In the training process, we minimize the sum of the nega-
tive log-likelihood of Eq. (5) over the whole training dataset.
During testing, we directly pick the label with the highest
probability in Eq. (4) as the output in each decoding step.

p(yll) = (5)

Hierarchical Attention Mechanism

Given the feature map F of the text image produced by the
word-level encoder, our hierarchical attention mechanism
(HAM) aims at producing a context vector z, for predict-
ing the label y! of the character being considered at time
step t. As mentioned previously, HAM consists of two lay-
ers, namely the recurrent RolWarp layer and the character-
level attention layer (refer to the red rectangles in Figure 2).
We describe the details of these two layers in the following
subsections.
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Figure 3: The detailed structure of the recurrent RoIWarp
layer.

Preliminary: Traditional Attention Mechanism

Before introducing each layer of HAM, we first briefly re-
view the traditional attention mechanism (Bahdanau, Cho,
and Bengio 2014). In tradition attention mechanism, a con-
text vector z', is computed as a weighted sum of all the fea-
ture points in a feature map F

Wy Hy

t __ t -
ze = > o Fi,

i=1j=1

(6)

where F;; denotes a C'r-dimensional feature vector at (i, 5),
and ! denotes a set of weights for the feature vectors. Given
the previous hidden state h’~! of the LSTM-based decoder
and the feature map F of the text image, the weight set af
at time ¢ can be generated by

s;; = wiTanh(Mh'~" + VF;;),
a' = SoftMax(s'),

(N
®)

where M and V are the parameter matrices, w is a parame-
ter vector and s’ is the score map for all the feature points.

Recurrent RoIWarp Layer

The recurrent RolWarp layer of HAM aims at sequentially
attending to a region of the feature map that corresponds to
a character being considered at each time step. At time step
t, the recurrent RoIWarp layer automatically extracts a small
feature region F? based on the predicted location of the ¢-th
character

F! = RRolWarp(F,h'™1). ©)

This greatly narrows down the range of attention for com-
puting the context vector z!. As illustrated in Figure 3, the
recurrent Ro[Warp layer is composed of three components,
namely the recurrent localization network, the grid genera-
tor and the bilinear sampler. All these three components are
differentiable and can be optimized using a gradient descent
algorithm.

Recurrent Localization Network The recurrent localiza-
tion network (RLN) is responsible for recurrently locating
each character region of interest. Inspired by the traditional
attention mechanism, we directly use the score map s’ com-
puted by Equation (7) to predict the spatial information of
each region-of-interest

(qiv qzv QZNCIZ) = MLPZ(St),

where MLP; is a multilayer perceptron, (¢, qé) are the co-
ordinates of the predicted center of the character region,
and ¢!, and ¢}, are the predicted width and height of the

(10)
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character region respectively. Following (Jaderberg et al.
2015b), we use normalized coordinates for the prediction of
(Qiaqznqzm(ﬁ) so that —1 S q;»qgtﬁquqz S 1. In the fi-
nal layer of MLP, we add an extra Tanh activation layer to
ensure that each predicted center point is within the convo-
lutional feature map.

Note that we do not have any direct supervision over the
location and size of each character of interest. During the
whole training procedure, we only use the recognition ob-
jective function to update all the parameters of the whole
network. It is therefore very difficult to optimize the recur-
rent localization network from scratch. Hence, we pre-train
a variant of the traditional attention mechanism to ease the
difficulty in training the recurrent localization network. At
each decoding step, the character features of interest are re-
stricted to a small continuous region of the feature map F.
The generated weight set ' in Equation (8) can be inter-
preted as an attention distribution over all the feature points
in the convolutional feature map. Instead of generating an
‘unconstrained’ distribution by normalizing the relevancy
score map s’, we model the attention distribution as a 2-D
Gaussian distribution and calculate its parameters by

(g Hys 0, ) = MLPy(s"), (11
where MLP,, is a multilayer perceptron for predicting the
Gaussian distribution, and (u%,, 1f,) and (o, o) are center
and standard deviations of the distribution respectively. Sim-
ilar to the traditional attention mechanism, this Gaussian at-
tention mechanism can be easily optimized in an end-to-end
manner. We then directly use the parameters of the Gaussian
attention mechanism to initialize our recurrent localization
network. More implementation details can be found in the
experiment section.

Grid Generator and Bilinear Sampler The grid genera-
tor and bilinear sampler target at cropping out the character
of interest at each time step and warping it into a fixed size
W, x H. x Cy, where W, x H_ gives the spatial resolution
of each outputted feature map F%. Given the predicted pa-
rameters (q%, g}, q4,,q;,) for each region of interest at each
time step, the grid generator computes the sampling location
(u’,v’) in the original convolutional feature map F for every
point (u, v) in the outputted F, by

W, 1

Wo=qh 4 (u— —5 — )y, u=1,2.. W,
2 2
H 1 (12)
_ .t c o
=gyt (- = 5)dy, v=12 L H
where §, = 3{,”_,11 and §, = I’g’l 111. Each sampled feature

point can then be calculated usingg the bilinear sampler

H W
Fi(u,0) =Y > F/ o)K@ wK' h). (13)
h=1w=1
where K(a, b) = max(0, 1—|a—b|) is the kernel for bilinear
interpolation.

Character-Level Attention Layer

The character-level attention layer (CLA) takes the respon-
sibility of selecting the most relevant features from the rec-
tified character feature map produced by the character-level



encoder to generate the context vector z!. It takes the form
of a traditional attention mechanism. Note that CLA is es-
sential as it is difficult for the recurrent RoIWarp layer to
precisely crop out a small feature region that contains fea-
tures only from the corresponding character. Even though
our recurrent localization network can perfectly predict the
bounding box for each character region, the distortion exhib-
ited in the scene text would cause the warped feature region
to include also features from neighboring characters. From
experiment, we find that features from neighboring charac-
ters and cluttered background would mislead the update of
the parameters during the training procedure if we do not
employ CLA, and this would prevent us from training our
Char-Net in an end-to-end manner.

Experiment
Testing Datasets

We evaluate our Char-Net with the following public bench-
marks:

e ICDAR-2003 (IC-03) (Lucas et al. 2005) contains 860
cropped text images for testing. Following the protocol
proposed by Wang et al. (Wang, Babenko, and Belongie
2011), we recognize the images containing only alphanu-
meric words (0-9 and A-Z) with at least three characters.

e ICDAR-2013 (IC-13) (Karatzas et al. 2013) is derived
from IC-03. Following (Shi et al. 2016), 857 cropped
word test images without any pre-defined lexicon are fil-
tered out using the protocol in IC-03.

o Street View Text (SVT) (Wang, Babenko, and Belongie
2011) contains 647 test word images collected from
Google Street View.

e IIIT5K (Mishra, Alahari, and Jawahar 2012) contains
3,000 cropped text images for testing. These images are
all collected from the Internet.

e Street View Text Perspective (SVT-P) (Phan et al. 2013)
contains 639 cropped test images which are specially
picked from the side-view angles in Google Street View.
Most of them suffer from a large perspective distortion.

e ICDAR Incidental Scene Text (IC-IST) (Karatzas et al.
2015) contains 2077 text images for testing. All the word
images are cut out from incidental scene text images cap-
tured under arbitrary poses. Hence, IC-IST contains scene
text with different kinds of severe distortion.

Implementation Details

There are five convolutional blocks (refer to the blue rect-
angles in Figure 2) in the word-level encoder. The de-
tailed configurations of these five convolutional blocks
are [3,64,1,1] x 3, [3,128,1,1] x 2, [3,256,1,1] x 2,
[3,256,1,1] x 4 and [3,256,1, 1] x 4 respectively, where
the numbers in the brackets represent the filter size, num-
ber of channels, pad size and stride, respectively, and the
number following the brackets gives the number of convo-
lutional layers stacked. All the blocks use ReL.U (Nair and
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Hinton 2010) as the activation function. The first and the sec-
ond convolutional blocks are each followed by a 2 x 2 max-
pooling layer with a stride of 2. To produce the final feature
map of the word-level encoder, feature maps from the last
three blocks are normalized using a local response normal-
ization (Krizhevsky, Sutskever, and Hinton 2012), concate-
nated along the channel dimension and dimension-reduced
with a 1 x 1 convolutional layer with 256 channels. For the
character-level encoder, there are two convolutional layers
with 256 channels in the local spatial transformer and three
more convolutional layers with 512 channels for the CNN.
The spatial transformer is employed to predict only the rota-
tion angle of each character in the distorted scene text.

In the hierarchical attention mechanism, the recurrent
RoIWarp layer uses Equation (2) for regressing the bound-
ing box of each character region. As the decoder employs
a LSTM layer with 256 hidden states and F;; in the recur-
rent RoIWarp layer is a 256-dimensional feature vector, the
corresponding dimensions of M, V and w are 256 x 256,
256 x 256 and 1 x 256 respectively. Besides, MLP; and
MLP, both take the form of a fully-connected layer with
4 hidden states. The width and height of F’ are both set to
5. For the character-level attention layer, it again employs
Equation (2) to attend to the most relevant features of the
character feature region, in which each feature point is a
512-dimensional feature vector after the character-level en-
coder. Consequently, the dimension of V in the character-
level encoder becomes 256 x 512 while the others remain
the same as those in the recurrent RolWarp layer.

Comparison with Previous Methods

To make a fair comparison with previous methods (Jader-
berg et al. 2015a; Lee and Osindero 2016; Shi, Bai, and Yao
2016; Shi et al. 2016), we first trained our Char-Net follow-
ing their experimental settings. In this section, we trained
our Char-Net to classify 37 classes (26 case-insensitive char-
acters + 10 digits + eos) using the 8-million synthetic dataset
(SynthR) generated by Jaderberg et al. (Jaderberg et al.
2014). The training batch size was set to 64. All the in-
put images were gray-scale and resized to 100 x 32 in both
training and testing. As mentioned in the recurrent localiza-
tion network, a pre-training Gaussian attention mechanism
was employed to successfully optimize our Char-Net. We
first trained this Gaussian attention mechanism with a word-
level encoder and a LSTM-based decoder using Adadelta
(Zeiler 2012). We then initialized our Char-Net using the pa-
rameters of the pre-trained model and optimized it by Adam
(Kingma and Ba 2014). The learning rate was set to 104,
We denote our Char-Net trained under this experimental set-
ting as Char-Net[P].

Results The recognition accuracies of our Char-Net[P] are
reported in Table 1. We mainly focus on the “unconstrained’
scene text recognition without any pre-defined lexicon. As
the results in (Jaderberg et al. 2016) were constrained to a
90K dictionary, we also include results using the same dic-
tionary to post-process the predictions of our Char-Net[P]
on IC-03, IC-13 and SVT. Compared with previous meth-



Table 1: Scene text recognition accuracies (%) of Char-Net[P] on public benchmarks. Note that all the outputs in (Jaderberg et
al. 2016) (marked with *) were constrained to a 90K dictionary even when recognizing without a pre-defined lexicon.

Method 1C-03 1C-13 HIT5K SVT SVT-P | IC-IST
Bissacco et al. (Bissacco et al. 2013) - 87.6 - 78.0
*Jaderberg et al. (Jaderberg et al. 2016) #93.1 *90.8 - *80.7
Jaderberg et al. (Jaderberg et al. 2015a) 89.6 81.8 - 71.7
Lee et al. (Lee and Osindero 2016) 88.7 90.0 78.4 80.7 -
CRNN (Shi, Bai, and Yao 2016) 89.4 86.7 78.2 80.8 66.8
RARE (Shi et al. 2016) 90.1 88.6 81.9 81.9 71.8
STAR-Net (Liu et al. 2016) 89.9 89.1 83.3 83.6 73.5 -
Char-Net[P] Unconstrained 91.5 90.8 83.6 844 73.5 60.0
90K Dict 93.3 93.7 - 87.6

Table 2: Details of ground truth labelling of public bench-
marks. Note that text images in IIIT5K (marked with *)
contain different punctuations, which are not labeled in the
ground truth.

IC-03 | IC-13 | HITSK | SVT | SVT-P | IC-IST
Case-Sensitive Yes Yes Yes No No Yes
Punctuations No No *No No No Yes

ods, our Char-Net[P] can achieve state-of-art performance
on all six testing datasets. In particular, we compare our
Char-Net[P] against RARE (Shi et al. 2016) and STAR-Net
(Liu et al. 2016), which both focus on the rectification of the
entire distorted text using global spatial transformer. We find
that our Char-Net is able to outperform both methods on al-
most every benchmark. Note that although the performance
of STAR-Net on SVT-P is similar to that of our Char-Net,
our Char-Net does not require extra undistorted training data
as in STAR-Net. Besides, our Char-Net is much simpler than
STAR-Net which employs 26 convolutional layers with the
powerful residue learning (He et al. 2016a).

Experiments for General Scene Text Recognition

In this section, we further evaluate our Char-Net on more
general scene text recognition. In the comparisons with pre-
vious methods, we observe that their experimental settings
have three limitations that prevent the recognizer from han-
dling text in more general scenarios. First, the process of
resizing images to 100 x 32 damages the aspect ratio of
the characters when recognizing scene text with large dis-
tortion (refer to the first three images in Figure 4). Second,
all the previous work focused on 37-class scene text recogni-
tion. In general scenarios, however, scene text often contains
case-sensitive characters and different punctuations. Table
2 gives the detailed information of whether public bench-
marks contain ground truth labelling for case-sensitive char-
acters or punctuations. Third, the training dataset SynthR
does not contain largely distorted scene text, which can be
observed from the synthetic scripts' released by Jaderberg
et al. (Jaderberg et al. 2014). In this section, we trained our
Char-Net with the following modifications to address a more
general scene text recognition:

"https://bitbucket.org/jaderberg/text-renderer.

e We padded the text image to a square and then resized it to
100 x 100. This ensures the aspect ratio of the characters
in the image remains unchanged when handling scene text
with a severe distortion, especially with a large rotation.

e We trained our Char-Net to perform 96-class recognition
(26 upper-case letters + 26 lower-case letters + 10 digits +
33 punctuations + eos). To compensate the lack of scene
text with different punctuations in SynthR, we incorpo-
rated another recently proposed dataset (Gupta, Vedaldi,
and Zisserman 2016) for scene text detection and created
a new dataset SynthM? for training.

e We performed data augmentation to generate scene text
with different kinds of rotation and perspective distortion
for training.

We denote our Char-Net trained under this new experimental
setting as Char-Net[N]. We used the previous Char-Net[P]
as a pre-trained model to initialize our Char-Net[P]. Adam
with a 10~* learning rate was then employed to optimize
Char-Net[N] to convergence. In order to demonstrate the ef-
fectiveness of each component in the proposed model, we
also trained five variants of our Char-Net (refer to Table 3).

Results: The results of our Char-Net[N] and its variants
are shown in Table 3. The proposed Char-Net, which con-
sists of the word-level encoder with hyper-connections, the
hierarchical attention mechanism and the character-level en-
coder, can achieve either highly competitive or state-of-the-
art performance among all its variant models, especially on
the IC-IST dataset which consists of many largely distorted
scene text.

Hyper-Connections: Comparing the results of our Char-
Net[N] and V1 in Table 3, we find that the proposed archi-
tecture of Char-Net benefits a lot from the hyper-connections
in the word-level encoder. This is because these hyper-
connections alleviate the problem of using only features
from the final layer of a deep CNN which are semantically
strong but spatially coarse. This problem is particularly se-
vere for small objects. Although we keep the aspect ratio
of the characters by padding the text image to a square, the
process of resizing the square image to 100 x 100 inevitably

*http://www.visionlab.cs.hku.hk/datasets/wliu/synthm
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Table 3: Scene text recognition accuracies of Char-Net[N] and its variants on public benchmarks. ‘Hyper-Connect’, ‘TAM’,
‘HAM’ and ‘CLE’ stands for the hyper-connections of the word-level encoder, the traditional attention mechanism, the proposed
hierarchical attention mechanism and the character-level encoder respectively.

CLE 1C-03 IC-13 SVT TITSK SVT-P IC-IST
Model Hyper-Connect TAM HAM — - - — - — -
STN CNN sen in-sen sen in-sen in-sen sen in-sen in-sen sen in-sen
Char-Net[N] v v v v 894 | 920 || 883 | o911 855 || 887 | 92.0 78.9 716 | 742
Vi v v v 886 | 909 || 872 | 906 849 || 876 | 913 75.7 70.1 | 72.6
V2 v v v 893 | 914 [ 873 [ 902 833 87.9 91 74.9 694 | 718
V3 v v v 89.4 | 917 88.0 | 907 85 879 | 915 76.1 703 | 72.8
V4 v v 89 917 879 | 906 856 || 885 | 917 75.5 68.8 | 70.8
V5 v v 89.1 | 917 872 | 895 84.9 88 912 75.2 682 | 70.1
il EESER T
x x . {
< < \\‘l‘.."‘\'
0 0 -0 pamos)
predicted results: T o] K Y o] a .|
= = R EEBEHBRE BERDEL AMORING OKEN TAPL
< < )
o) o) 5t JASNO/TO AIROB SMOKING OPEN TAPE
= = [ * BHEA
predicted results: T S A o T . .
reverse the order using predicted angles: T o A s T Figure 5: Some failure cases of Char-Net. Blue and black
2y a7 B wor.ds denote the recognition results and ground truth la-
) o' bellings, respectively.
"y )
EEEEON
predicted results: D N [¢] Y E B
the order usi dicted angles: B E Y O N D . C .
reverse fhe orcer tsing prediciec anges and predict its spatial distortion.
- d & e EEE Hierarchical Attention Mechanism: From Table 3, we
predicted resuits: ToA M oACN T A observe that the scene text recognized only with the pro-
a Z i~ G| posed HAM (V4) can already achieve a slightly better per-
1 N = formance than that with the traditional attention mecha-
_ -0 - nism (V5) employed by previous work (Shi et al. 2016;
predicted results: w | S H | N G

Figure 4: Some examples of largely distorted scene text
being recognized by our Char-Net. The first and second
columns are the original images and the square images for
training, respectively. The corresponding image patches of
the attended and rectified character feature regions together
with the character-level attentions are shown in the third col-
umn. Note that in order to get the correct predictions of the
second and third images, we reverse the order of the pre-
dicted characters according to their rotation angles.

causes the scale of the characters to vary. In the six testing
datasets, the minimum and maximum lengths of scene text
are 1 and 22 respectively. The size of the characters in the
images ranges from 100 x 100 to 5 x 5. With the word-
level encoder becomes deeper and deeper, the spatial infor-
mation of each character preserved in the final feature map
decreases drastically, especially for those small characters.
The hyper-connections can improve the spatial resolution of
characters in the final feature map by merging convolutional
features from different levels. This preserves spatial infor-
mation as much as possible for the following recurrent Rol-
Warp layer and the STN in the character-level encoder. This
allows them to better locate each feature region of interest
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Lee and Osindero 2016). However, the most important ad-
vantage of the proposed HAM is its flexible architecture,
which enables our Char-Net to further employ a character-
level encoder to handle the distortion of each individual
character. By employing a local spatial transformer network
in the character-level encoder, our Char-Net can outperform
V5 on almost all the benchmarks by a large margin. Espe-
cially, the proposed Char-Net is able to handle scene text
with a large distortion in the IC-IST dataset, which are illus-
trated in Figure 4.

Effectiveness of Each Component: We notice that the
performances of our Char-Net, V2, V3 and V4 are quite
similar on IC-03, IC-13, SVT and IIIT5k, which are four
commonly used benchmarks,. This is mainly because most
of the scene text in these datasets are tightly-bounded, hor-
izontal and frontal. When it comes to SVT-P and IC-IST in
which most of the images suffer from a large distortion, our
Char-Net consistently outperforms its variants with one or
more omitted components.

Weakness: Our Char-Net can achieve the state-of-the art
performance for recognising largely distorted text. However,
it fails when handling very blury text images. Some failure
cases from IC-IST are shown in Figure 5.



Conclusion

In this paper, we present a novel Character-Aware Neu-
ral Network (Char-Net) for distorted scene text recognition.
Thanks to our newly proposed hierarchical attention mech-
anism, our Char-Net can efficiently and effectively handle
complicated forms of distortion exhibited in the scene text
by attending to and rectifying individual character regions
through a simple local transformer network. Experiments on
six public benchmark datasets demonstrate our Char-Net can
achieve state-of-the-art performance.
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