Side Information Dependence as a Regularizer for Analyzing Human Brain Conditions across Cognitive Experiments

Authors

  • Shuo Zhou The University of Sheffield
  • Wenwen Li The University of Edinburgh
  • Christopher Cox Louisiana State University
  • Haiping Lu The University of Sheffield

DOI:

https://doi.org/10.1609/aaai.v34i04.6179

Abstract

The increasing of public neuroimaging datasets opens a door to analyzing homogeneous human brain conditions across datasets by transfer learning (TL). However, neuroimaging data are high-dimensional, noisy, and with small sample sizes. It is challenging to learn a robust model for data across different cognitive experiments and subjects. A recent TL approach minimizes domain dependence to learn common cross-domain features, via the Hilbert-Schmidt Independence Criterion (HSIC). Inspired by this approach and the multi-source TL theory, we propose a Side Information Dependence Regularization (SIDeR) learning framework for TL in brain condition decoding. Specifically, SIDeR simultaneously minimizes the empirical risk and the statistical dependence on the domain side information, to reduce the theoretical generalization error bound. We construct 17 brain decoding TL tasks using public neuroimaging data for evaluation. Comprehensive experiments validate the superiority of SIDeR over ten competing methods, particularly an average improvement of 15.6% on the TL tasks with multi-source experiments.

Downloads

Published

2020-04-03

How to Cite

Zhou, S., Li, W., Cox, C., & Lu, H. (2020). Side Information Dependence as a Regularizer for Analyzing Human Brain Conditions across Cognitive Experiments. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 6957-6964. https://doi.org/10.1609/aaai.v34i04.6179

Issue

Section

AAAI Technical Track: Machine Learning