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Abstract

The increasing of public neuroimaging datasets opens a door
to analyzing homogeneous human brain conditions across
datasets by transfer learning (TL). However, neuroimaging
data are high-dimensional, noisy, and with small sample
sizes. It is challenging to learn a robust model for data across
different cognitive experiments and subjects. A recent TL
approach minimizes domain dependence to learn common
cross-domain features, via the Hilbert-Schmidt Independence
Criterion (HSIC). Inspired by this approach and the multi-
source TL theory, we propose a Side Information Dependence
Regularization (SIDeR) learning framework for TL in brain
condition decoding. Specifically, SIDeR simultaneously min-
imizes the empirical risk and the statistical dependence on the
domain side information, to reduce the theoretical generaliza-
tion error bound. We construct 17 brain decoding TL tasks
using public neuroimaging data for evaluation. Comprehen-
sive experiments validate the superiority of SIDeR over ten
competing methods, particularly an average improvement of
15.6% on the TL tasks with multi-source experiments.

Introduction

In cognitive neuroscience, neuroimaging can help relate dif-
ferent cognitive functions to patterns of neural activity us-
ing functional magnetic resonance imaging (fMRI) (Ogawa
et al. 1990). This often takes the form of a classification
problem (Cox and Savoy 2003), e.g., distinguishing be-
tween brain conditions associated with experimental stim-
uli. While fMRI produces volumes with the number of vox-
els in the order of 105, a typical experiment will have on
the order of 100 discrete trials. This severely constrains
the number of training examples available for the classifier.
Moreover, neuroimaging data are noisy and contain a signif-
icant amount of physiological, respiratory, and mechanical
artifacts, which requires robust modeling against noise (Ay-
dore, Thirion, and Varoquaux 2019).

Transfer learning (TL) is an attractive machine learning
scheme that can improve the classification performance on
a learning task by leveraging the knowledge from related
tasks. The task of interest is called the target domain, while
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the task(s) to be leveraged is called the source domain (Pan
et al. 2011). A TL problem is homogeneous when the fea-
ture and label space of the source and target domains are the
same, and heterogeneous if they are different.

Transfer learning techniques have been studied in some
fMRI applications. Mensch et al. (2017) take a multi-task
learning approach to use resting-state data from the Hu-
man Connectome Project (Van Essen et al. 2012) to learn
a general representation via matrix decomposition and then
jointly optimize multiple heterogeneous task-based fMRI
classification tasks. Zhang, Chen, and Ramadge (2018) take
a matrix factorization approach that relies on shared sub-
jects between datasets to learn better subject factor matrices.
Deep models such as autoencoder (Velioglu and Vural 2017;
Li, Parikh, and He 2018) and AlexNet (Zhang et al. 2019)
pre-trained on generic source data have also been used to
represent the target fMRI data for classification.

However, the source data used by the existing fMRI
TL studies are independent to the target classification task.
While public neuroimaging data from multiple sites, e.g., the
OpenNeuro (Gorgolewski et al. 2017), have many similar
brain conditions across different cognitive experiments. This
enables homogeneous TL studies to leverage the power of
overlapping labels across domains. Furthermore, it may po-
tentially offer interpretation/insights from the domain shift
perspective for neuroscientists. Here, we make the first at-
tempt, to the best of our knowledge, to investigate homoge-
neous TL for brain condition decoding.

Homogeneous TL methods are mainly studied in the
fields of computer vision (CV) and natural language pro-
cessing (NLP). They focus on minimizing data distribution
mismatch, i.e., making features from the source and target
to have as similar distributions as possible, via 1) learning a
feature mapping (Pan et al. 2011; Long et al. 2013b); or 2)
jointly optimizing the distribution mismatch and classifier
parameters (Long et al. 2013a; Wang et al. 2018).

Brain condition decoding presents TL challenges differ-
ent from those in CV/NLP. fMRI data are generated by
brain signals, which are not natural images that human vi-
sual system has adapted to interpret. Consequently, fMRI
analysis relies heavily on statistics. Furthermore, cognitive
stimuli are implemented varying across experiments. Even
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the same information can be encoded as different patterns of
activity by different brains (Chen et al. 2015). Hence, each
subject can be considered as a unique learning task to ex-
tract subject-specific features (Rao et al. 2013) in fMRI stud-
ies. Additionally, as mentioned before, fMRI data are noisy.
Therefore, for TL in brain condition decoding, it can be ben-
eficial to take more domain information, such as experiment
designs and subjects, into account to learn a robust model.

Recently, the maximum independence domain adapta-
tion (MIDA) (Yan, Kou, and Zhang 2018) introduces a
new domain dependence minimization approach to TL. It
learns common, cross-domain features by minimizing sta-
tistical dependence on auxiliary domain side information,
as measured by the Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al. 2005). This inspired us to encode dif-
ferent experiment designs and subjects as auxiliary domain
covariates for TL in brain condition decoding.

In this paper, we propose a Side Information Dependence
Regularization (SIDeR) framework for homogeneous TL in
brain condition decoding. The contributions are threefold:
(1) We discover the relationship between HSIC and maxi-
mum mean discrepancy (MMD) and derive two HSIC-based
generalization bound for and multi-source TL. The theoret-
ical studies enable the formulation of the SIDeR framework
that simultaneously minimizes the empirical prediction risk
and the dependence on domain side information. (2) Under
this framework, we construct a simplified HSIC and incor-
porate the hinge loss that can take unlabeled samples into ac-
count following the Manifold Regularization framework for-
mulation (Belkin, Niyogi, and Sindhwani 2006). This gives
us the SIDeRSVM algorithm. (3) We construct 17 new homo-
geneous brain decoding TL tasksby identifying datasets with
homogeneous brain conditions from public repositories. Ex-
periments on these tasks show the superior performance of
SIDeR over ten competing methods.

Preliminaries

Hilbert-Schmidt Independence Criterion (HSIC) is a
non-parametric criterion for measuring the statistical depen-
dence between two sets X = {xi} and Y = {yi}, both with
size n. HSIC tests whether Pr(x,y) = Pr(x) Pr(y). Denot-
ing the empirical HSIC as ρh(X,Y), it can be computed via
(Gretton et al. 2005)

ρh(X,Y) = tr(KHLH)/(n− 1)2, (1)

where K,H,L ∈ R
n×n, Ki,j := kx(xi,xj), Li,j :=

ky(yi,yj), kx(·, ·) and ky(·, ·) are two kernel functions, e.g.,
linear, polynomial, or radial basis function (RBF), H =
I− 1

n11
� is the centering matrix, and tr (·) is the trace func-

tion. HSIC is zero if and only if X and Y are independent. A
larger HSIC value suggests stronger statistical dependence.

Related works. We summarize the state-of-the-art homo-
geneous TL methods as the following three approaches.

Distribution mismatch minimization mapping is a popu-
lar approach to homogeneous TL, which learns a mapping
via minimizing the marginal or joint distribution mismatch
between a source and a target, e.g., as in Transfer Compo-
nent Analysis (TCA) (Pan et al. 2011) and Joint Distribu-
tion Adaptation (JDA) (Long et al. 2013b). The distribution

mismatch is typically measured by the maximum mean dis-
crepancy (MMD) criterion (Borgwardt et al. 2006). TCA
also has a semi-supervised version, semi-supervised TCA
(SSTCA), that introduces an additional label dependence
objective ρh(φ(X

l),Y) to maximize, where Xl denotes la-
beled data, and Y is a label matrix.

Domain-invariant classifier is another approach that
learns a classifier by optimizing the prediction loss and dis-
tribution mismatch jointly. Long et al. (2013a) proposed
Adaptation Regularization based Transfer Learning (ARTL)
framework by incorporating joint distribution mismatch (as
in JDA) into the manifold regularization framework (Belkin,
Niyogi, and Sindhwani 2006). Based on ARTL, Wang et
al. (2018) proposed Manifold Embedded Distribution Align-
ment (MEDA) by introducing a trade-off between marginal
and conditional distribution mismatch for dynamic transfer.

Domain dependence minimization mapping. Yan, Kou,
and Zhang (2018) proposed the MIDA method using a new
approach that extracts cross-domain features by learning
a mapping to minimize the dependence on domain infor-
mation, e.g., device and time, which is not directly mod-
eled in the previous two approaches. There is also a semi-
supervised version of MIDA, i.e., SMIDA, which maximizes
the label dependence (as in SSTCA).

Proposed Method

This section first defines the transfer learning problem. Then
we perform theoretical studies on HSIC to reveal the re-
lationships between HSIC and MMD. This enables us to
derive a generalization bound for the multi-source TL set-
ting. Subsequently, the bound motivate the formulation of
the Side Information Dependence Regularization (SIDeR)
learning framework for homogeneous TL.

Problem Definition

In a cognitive experiment, each subject is presented a set of
stimuli (conditions) designed by neuroscientists. An experi-
ment typically features one or a few (if repeated) samples per
condition per subject. We consider a target dataset (experi-
ment) have both labeled and unlabeled samples, and there
are labeled samples with the homogeneous brain conditions
that acquired from one or more source experiments, where
the experiment designs are different. The objective is to pre-
dict the human brain conditions of unlabeled target samples.

The target cognitive experiment has nt fMRI data sam-
ples Xt = [Xl

t,X
u
t ] ∈ R

d×nt of m brain conditions for
classification. Xl

t ∈ R
d×ñt and Xu

t ∈ R
d×(nt−ñt) are la-

beled and unlabeled target data, respectively, d is the number
of fMRI features, e.g., voxels.

The source consists of data from one or more cognitive
experiments with ns labeled samples Xs ∈ R

d×ns in total,
with the same m brain conditions as the target data.

Domain covariate encoding. Denote the target and
source data jointly as X = [Xs,Xt] ∈ R

d×n, n = ns + nt.
Each fMRI sample xi (i = 1, · · · , n) is collected with a
particular experiment implementation j from a particular
subject k, where j = 1, · · · , p and k = 1, · · · , q, i.e.,
there are p unique experiment implementations and q unique
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subjects. These are the domain covariates to be utilized in
our TL method. We use a simple one-hot-encoding strat-
egy to encode such domain covariates. Specifically, we con-
struct a one-hot experiment implementation covariate matrix
E ∈ R

n×p, where its (i, j)th element ei,j = 1 if xi is col-
lected from experiment j and ei,j = 0 otherwise. Similarly,
we construct a one-hot subject covariate matrix S ∈ R

n×q ,
where si,k = 1 if xi is from subject k and si,k = 0 other-
wise. We then obtain the auxiliary domain covariate matrix
D ∈ R

d̂×n by concatenating E� and S�, where d̂ = p+ q.
Multi-source view of brain decoding. As mentioned

in Sec. Introduction, each cognitive experiment can be de-
signed differently, and each subject can encode the stim-
uli differently, i.e., P (X|Ei) �= P (X|Ej), and P (X|Si) �=
P (X|Sj), E and S denote an experiment and a subject, re-
spectively. Traditional TL methods consider two different
datasets (experiments in brain decoding) as different do-
mains. If we also consider each subject as a domain as in
(Rao et al. 2013), then each unique experiment-subject com-
bination is a domain, i.e., brain decoding TL tasks is essen-
tially a multi-source transfer problem. Therefore, in the fol-
lowing, we study HSIC in the multi-source TL setting.

Theoretical Studies on HSIC

The domain dependence of the data can be computed via
ρh(X,D), using the domain covariate matrix D defined
above. Now we show when using one-hot encoding and a
linear kernel for D in HSIC, we can derive an equivalence
between HSIC and MMD, as shown in the following lemma.
Based on this lemma, we can derive generalization bounds
for HSIC-based TL and formulate our new framework.
Lemma 1. HSIC is proportional to MMD when there are
only two discrete domains, i.e., with a degenerated one-hot

domain covariate vector, e.g., d0 = [

ns︷ ︸︸ ︷
0 · · · 0

nt︷ ︸︸ ︷
1 · · · 1] ∈ R

n,
and linear kernel is used for d0 in HSIC.

Proof. The MMD between the two domains is

MMD(Xs,Xt) =

∥∥∥∥ 1

ns

ns∑
i=1

xsi −
1

nt

nt∑
i=1

xti

∥∥∥∥
2

Hk

, (2)

where Hk denotes a reproducing kernel Hilbert space
(RKHS). The empirical MMD can be computed via tr(KL′)
(Pan et al. 2011), where K = k(X,X) ∈ R

n×n, X =
[Xs,Xt] ∈ R

d×n, and L′ ∈ R
n×n is defined as

L′
ij =

⎧⎪⎨
⎪⎩

1
ns

2 if xi,xj ∈ Xs,
1

nt
2 if xi,xj ∈ Xt,

− 1
nsnt

otherwise.
(3)

By Eq. (1), ρh(X,d0) = tr(KHLH)/(n − 1)2, where
K = k(X,X) is exactly the same kernel matrix as in the
MMD, and L = d�

0 d0, i.e., Li,j = 1, if xi,xj ∈ Xt, and
otherwise Li,j = 0. Let L̂ = HLH, resulting

L̂ij =

⎧⎪⎨
⎪⎩

nt
2

n2 if xi,xj ∈ Xs,
ns

2

n2 if xi,xj ∈ Xt,

−nsnt

n2 otherwise.
(4)

By comparing Eq. (3) and Eq. (4), we have
MMD(Xs,Xt) = uρh(X,d0), (5)

where u = n2(n−1)2

(nsnt)2
. For a learning task, u is a constant.

This completes the proof.

Generalization bound. For the multi-source setting, we
define a domain j as the samples Xj drawn from a distribu-
tion Dj on the inputs X and a labeling function fj : X →
{0, 1}. A hypothesis f ∈ H is a function f : X → {0, 1}.
We consider a classifier f trained on a total of ns samples
Xs that drawing from J (J ≥ 1) distinct source domains
with a domain weight vector α = [α1, . . . , αJ ], where∑J

j=1 αj = 1, and derive the bounds on its generalization
performance on a target domain, i.e., εt(f) or εt(f, ft).

By the proof of Theorems 4 and 5 in (Ben-David et al.
2010), εt(f) ≤ ε̂s(f) + d̂HΔH(Xs,Xt) + Λ∗ + O, where
d̂HΔH(Xs,Xt) = 2 supf,f ′∈H |ε̂j(f, f ′)− ε̂t(f, f

′)| is the
empirical symmetric H-divergence, Λ∗ is the risk of an ideal
joint hypothesis, and O denotes the complexity of hypothe-
sis space. Here we derive a bound for Λ∗ as a lemma first
and then an HSIC-based bound for the multi-source setting.
Lemma 2. Let H be a hypothesis space, αJ+1 = 1, and
DJ+1 = Dt, for j ∈ {1, . . . , J + 1}, let Xj be samples
drawing from Dj with domain weight αj and labeled by
function fj , let f∗ = argminf∈H

∑J+1
j=1 αjεj(f) to be the

ideal joint hypothesis, Λ∗ =
∑J+1

j=1 αjεj(f
∗), then

Λ∗ ≤1

2

J+1∑
j=1

αj d̂HΔH(Xj ,Xα\j) + Ω, (6)

where Xα is the mixture of Xs and Xt, Xα\j denotes ex-
clude Xj from Xα, and Ω=

∑J+1
j=1 αjεα\j(f∗, fj)+O.

Proof. For any j ∈ {1, . . . , J + 1}
εj(f

∗) = εj(f
∗) + εα\j(f∗, fj)− εα\j(f∗, fj)

≤ |εj(f∗, fj)− εα\j(f∗, fj)|+ εα\j(f∗, fj)

≤ 1

2
dHΔH(Dj , Dα\j) + εα\j(f∗, fj)

≤ 1

2
d̂HΔH(Xj ,Xα\j) +Oj + εα\j(f∗, fj),

(7)

then Λ∗ =
∑J+1

j=1αjεj(f
∗) ≤ ∑J+1

j=1 αjεα\j(f∗, fj) +
1
2

∑J+1
j=1 αj d̂HΔH(Xj ,Xα\j)+O.

Theorem 1 (Multi-source). Let H be a hypothesis space,
αJ+1 = 1, and DJ+1 = Dt, for j ∈ {1, . . . , J}, let Xj

be labeled samples of size nj drawn from Dj with domain
weight αj and labeled by function fj . Let D be a one-hot
domain covariate matrix, then for f ∈ H:

εt(f) ≤ε̂s(f) +
3

2
ρh(X,DU) + Ω, (8)

where ε̂s(f) is the empirical risk of f on the source data,
U = diag(u), diag(·) is the diagonal function, u ∈ R

n is
a vector, ui = αin

2(n − 1)2/(n2
j (n − nj)

2), if xi ∈ Xj ,
i = 1, . . . , n, and Ω=

∑J+1
j=1 αjεα\j(f∗, fj)+O.

6959



Proof. By the theoretical results in (Ben-David et al. 2010)
mentioned above and Lemma 2, we have

εt(f) ≤ ε̂s(f) + d̂HΔH(Xα\(J+1),X(J+1))

+
1

2

J+1∑
j=1

αj d̂HΔH(Xj ,Xα\j) + Ω

≤ ε̂s(f) +
3

2

J+1∑
j=1

αj d̂HΔH(Xj ,Xα\j) + Ω.

(9)

Empirical H-divergence can be estimated by MMD as in
the existing TL studies, e.g., (Long et al. 2013a). Hence, by
Lemma 1, we have

εt(f) ≤ ε̂s(f) +
3

2

J+1∑
j=1

uj tr(KHLjH) + Ω

= ε̂s(f) +
3

2
ρh(X,DU) + Ω,

(10)

where Lj = d�
j dj , dj ∈ R

n is the jth row of D, e.g.,

d1 = [

n1︷ ︸︸ ︷
1 · · · 1

n−n1︷ ︸︸ ︷
0 · · · 0]. This completes the proof.

The Framework

Our ultimate goal is to learn a classifier for the unlabeled
target data. From Theorem 1, the bound of εt(f) can be de-
creased by simultaneously minimizing 1) the empirical er-
ror on labeled data, and 2) the dependence on domain co-
variates. This observation enables us to propose a new Side
Information Dependence Regularization (SIDeR) learning
framework that optimizes these two objectives. Here, we fol-
low the Manifold Regularization framework that can take
unlabeled samples into account and formulate SIDeR as

min
f

L(f(Xl),Y) + σ‖f‖2K + λρh(f(X),D), (11)

where σ, λ ≥ 0 are hyper-parameters, Xl ∈ R
d×ñ de-

notes all labeled samples, f(·) is the decision function of
a classifier, ‖f‖2K is the Tikhonov regularization term, and
Y denotes training labels. For each term in SIDeR frame-
work, L(f(Xl),Y) minimizes the empirical risk, ‖f‖2K
minimizes the model complexity, and ρh(f(X),D) mini-
mizes the domain dependence in the label decision space.

Connection to existing methods. SIDeR minimizes pre-
diction error and domain dependence simultaneously, and
therefore it can also be viewed as combining the virtues
from both domain-invariant classifier methods and domain
dependence minimization mapping. We summarize the rela-
tionship between SIDeR and related methods as follows.

SIDeR vs. ARTL. By Lemma 1, ARTL without mani-
fold regularization and conditional distribution mismatch is
equivalent to SIDeR with the degenerated domain covari-
ate matrix D0. However, SIDeR can model multiple sources
and domain covariates, making it more flexible than ARTL.
Moreover, it is easier to extend SIDeR to leverage the rich
continuous side information in public neuroimaging dataset,
such as subjects’ age, IQ, and handiness score. For the same
reason, TCA is equivalent to MIDA with d0.

Algorithm 1 Side Information Dependence Regularization
(SIDeR) with SVM Loss
Input: Input data matrix X ∈ R

d×n (first ñ samples are la-
beled), label vector y ∈ R

ñ, and domain covariates.
Hyper-parameters: Penalty C, trade-off parameter λ, ker-
nel function kx(·, ·) and corresponding hyper-parameters.
Output: Coefficient vector w.

1: Encode domain covariates into a matrix D ∈ R
d̂×n with

one-hot encoding;
2: Construct matrix Ỹ ∈ R

ñ×n, where Ỹi,i = yi, and the
rest are zeros, identity matrix I, and centering matrix H;

3: Construct kernel matrices K = kx(X,X), L = D�D;
4: Learn the optimal Lagrange multipliers a∗ by solving

the QP problem of Eq. (14);
5: Compute w = (I+ λHLHK)−1Ỹ�a∗.
6: return Coefficient vector w.

SIDeR vs. SMIDA. We can also view SIDeR as 1) replac-
ing the label dependence term ρh(φ(X),Y) in SMIDA with
the prediction loss, and 2) learning a mapping to a one-
dimensional classification space (i.e., a line) rather than a
low-dimensional subspace.

SIDeR vs. Multi-task learning (MTL). MTL learns N dif-
ferent hypotheses for predicting unlabeled samples from
N tasks. SIDeR learns only one hypothesis (homogeneous
task) for predicting unlabeled target samples.

Proposed Algorithm

Simplified HSIC. In SIDeR framework, we aim to optimize
the domain dependence in the decision space. If we view the
coefficient vector w as a classifier-based feature mapping,
this mapping projects input features to a one-dimensional
space (i.e., a line), where the projected values represent the
decision scores. Following the principle of dependence min-
imization, we aim to learn a domain-independent classifier
by minimizing the dependence of the decision scores (pro-
jected values) on domain side information, i.e., experiment
implementations and subjects. By the Representer Theorem
(Schölkopf, Herbrich, and Smola 2001), we can simplify the
HSIC ρh(f(X),D) to the following version

ρsh(f(X),D) = tr((w�K)�(w�K)HLH)

= w�KHLHKw,
(12)

where L = D�D (linear kernel) according to Lemma 1.
SIDeR with SVM loss. We can plug in any loss func-

tion for the first term in SIDeR of Eq. (11), such as the
square loss, logistic loss, or hinge loss. In this paper, we
consider only binary classification with y ∈ R

ñ, yi ∈
{−1, 1}, i = 1, · · · ñ, i.e., decoding m = 2 brain con-
ditions. Here we choose hinge loss, which is robust to bi-
nary classification problems, for empirical risk minimiza-
tion as in support vector machines (SVMs). We define
f(X) = w�φ(X), φ is a linear or non-linear kernel map-
ping, w is a coefficient vector, y = sgn(f(x)), where
sgn(·) is the sign function that extracts the sign of a real
number, i.e., (1 or −1). Using the Representer Theorem
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Table 1: Information on the OpenfMRI data used. ‘Exp’ in-
dexes the six cognitive experiments A–F. #AC is the acces-
sion number of an OpenfMRI project, where the same group
of subjects are used in each project and there is no overlap-
ping subject between projects. #Sub indicate the number of
unique subjects for each dataset. Each of the six experiments
has two brain conditions to classify. Each subject in each
experiment contributed two positive and two negative brain
condition samples, respectively.

Exp #AC Exp Description #Sub

A ds007 Stop signal with spoken pseudo word
naming (Xue, Aron, and Poldrack 2008) 20

B ds007 Stop signal with spoken letter naming
(Xue, Aron, and Poldrack 2008) 20

C ds007 Stop signal with manual response (Xue,
Aron, and Poldrack 2008) 20

D ds008 Conditional stop signal (Aron et al. 2007) 13
E ds101 Simon task [Unpublished] 21
F ds102 Flanker task (Kelly et al. 2008) 26

again, we have f(·) =
∑n

i=1 wikx(·,xi), and therefore
f(xj) =

∑n
i=1 wikx(xi,xj) = w�kx(X,xj). By incor-

porating SVM loss into Eq. (12), we formulate the primal
objective function of SIDeRSVM as

min
w,ξ,b

1

2
w�Kw+C

ñ∑
i

ξi+
λ̃

2
w�KHLHKw,

s.t. yi(w
�ki + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , ñ,

(13)

where ξi is the “slack variable” for the ith sample, b is a bias
term, C > 0 controls the trade-off between penalty and the
margin, λ̃ = λ/(n − 1)2, and λ controls the significance of
simplified HSIC regularizer.

The role of unlabeled samples. The unlabeled target
samples have no labels, but they have domain side informa-
tion (covariates) available. Thus, they should affect (regular-
ize) w directly via the simplified HSIC term.

Optimization. To solve Eq. (13) effectively, we follow
the steps in (Belkin, Niyogi, and Sindhwani 2006) and re-
formulate Eq. (13) via Lagrange dual. We consider the first
ñ samples are labeled and construct a matrix and denote a
as the Lagrange multipliers, resulting the dual problem

min
a

1

2
a�Qa−

ñ∑
i=1

ai,

s.t. a�y = 0, 0 ≤ ai ≤ C, i = 1, . . . , ñ,

(14)

where Q = ỸK(I + λ̃HLHK)−1Ỹ�, Ỹ ∈ R
ñ×n is a

matrix where Ỹi,i = yi, i = 1, . . . ñ, and the rest are
zeros. Denoting a∗ as the optimal solution to Eq. (14),
w = (I+ λ̃HLHK)−1Ỹ�a∗. Equation (14) is a quadratic
programming (QP) problem that can be solved by standard
QP tools. Algorithm 1 is the pseudocode for SIDeRSVM.

Computational complexity. The complexity of comput-
ing HSIC is O(n(d2 + d̃2)) when linear kernel is used, i.e.,

Table 2: Domain differences from the psychological per-
spective. A�B means when A is used as target experiment,
B will be used as source experiment, and vice versa.

Tasks Paradigm Subjects Control Response

A�B Same Same Same Different
A�C Same Same Different Different
B�C Same Same Different Different
C�D Same Different Similar Different
A�D Same Different Different Different
B�D Same Different Different Different
E�F Different Different Similar Different

K = X�X, L = D�D (Gretton et al. 2005). In brain de-
coding problems, d � n and d � d̃, so the overall com-
putational complexity of HSIC is O(nd2). However, HSIC
only needs to be computed once. The complexity of solving
the quadratic programming problem for Eq. (14) is O(n3).

Experiments

This section evaluates SIDeRSVM against ten competing
methods on 17 TL tasks in brain decoding. 1

Experimental Setup

Dataset selection. We selected six datasets (A to F) that are
most meaningful from psychological perspective from the
public OpenfMRI repository,2 as summarized in Table 1.
Each dataset is from an experiment. Subjects from the same
accession number (ds×××) are the same and there is no
overlapping subject between accession numbers. There are
two brain conditions selected from each dataset, with each
as a class and having the same number of samples. Thus,
we have binary classification problems that discriminate be-
tween brain conditions in an experiment.

Preprocessing. Each sample was preprocessed using FSL
(Jenkinson et al. 2012) with the protocol in (Poldrack et al.
2013) to obtain the Z-score statistical parametric map (SPM)
(Friston et al. 1994; 1998) of size 91 × 109 × 91, which is
then reduced to a vector of size 228, 546 by masking the
voxels outside of the brain.

Seventeen TL tasks. We constructed 17 TL problems
with increasing psychological difficulty, as determined by
discrepancy across experimental paradigms, subjects in-
volved, cognitive control demands (e.g., inhibiting a planned
response or ignoring a distracting or misleading stimulus),
and complexity or modality of response. Table 2 summa-
rizes how each pair of tasks relate on these dimensions. We
denote source and target experiments as S and T and classify
a positive condition against a negative condition. We define
17 TL tasks (S → T ) as listed in the first columns of Tables
3 and 4 with the three classification problems below:
• “Successful stop” vs “Unsuccessful stop”: Twelve TL

tasks with single-source experiment.
1The code for reproducing the experiments (including data pre-

processing) is available at https://github.com/sz144/sider
2https://legacy.openfmri.org or https://openneuro.org.
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Table 3: Classification accuracy in percentage for 14 single-source experiment TL tasks (mean ± standard deviation over ten
repetitions of cross-validation). ‘Avg’ is the average over the 14 tasks. Each task is denoted as Source→Target experiment, e.g.,
A→B means A is the source and B is the target. Subscript r denotes the RBF kernel gives better results, and for those without
subscript r, the linear kernel gives better results. The best result for each task is in bold, and the second best is underlined.

SVMt PCAt PCAs+t TCA SSTCAr JDA ARSVM MEDA MIDA SMIDA SIDeRSVM

A→B 63.4±2.6 62.5±4.4 59.7±4.5 55.0±4.3 48.0±3.9 63.7±2.8 65.7±2.2 57.8±5.3 64.5±5.0 54.9±2.8 78.6±2.9
B→A 59.2±4.0 60.4±5.7 60.8±3.1 58.9±3.2 50.4±4.6 54.4±1.8 64.0±2.8 62.5±4.5 71.2±3.5 52.4±1.5 79.6±2.7
A→C 68.4±2.6 66.9±6.3 74.0±5.9 70.6±6.3 48.0±4.6 58.4±3.1 70.9±2.7 70.1±2.1 78.4±2.9 57.5±2.1 87.4±2.1
C→A 59.2±4.0 60.4±5.7 67.6±5.2 63.6±4.0 51.8±3.4 53.7±3.6 59.5±3.4 59.7±3.1 70.6±4.0 52.4±1.3 68.8±3.8
B→C 68.4±2.6 66.9±6.3 78.9±3.4 86.4±5.3 49.9±3.6 63.1±5.2 73.5±2.1 73.6±3.6 80.1±4.4 58.5±2.5 90.5±1.5
C→B 63.4±2.6 62.5±4.4 66.6±4.0 75.3±4.0 52.6±4.4 54.1±3.5 62.5±2.1 57.0±2.1 73.2±3.3 58.4±2.4 77.4±2.8
C→D 74.6±3.2 79.6±8.2 68.9±4.9 74.4±5.3 44.8±2.6 71.7±2.3 81.3±4.0 64.6±3.4 74.2±6.6 66.5±2.8 87.1±2.3
D→C 68.4±2.6 66.9±6.3 75.0±1.4 71.9±4.6 56.0±5.3 58.0±2.4 70.9±2.6 62.8±4.1 74.4±4.2 61.4±3.6 87.4±2.6
A→D 74.6±3.2 78.7±2.6 51.9±4.3 54.0±3.2 53.7±3.2 64.2±9.9 78.5±1.9 52.9±4.5 63.3±6.0 72.7±4.6 86.2±1.9
D→A 59.2±4.0 60.4±5.7 63.7±5.3 58.0±4.8 50.0±3.1 55.5±1.9 59.2±3.4 58.4±3.6 50.6±2.4 48.1±1.7 67.1±3.8
B→D 74.6±3.2 79.6±8.2 68.5±2.1 67.9±2.6 60.2±4.0 62.5±4.7 85.6±2.3 55.4±4.7 66.9±4.2 78.7±3.2 94.2±1.9
D→B 63.4±2.6 65.2±4.4 60.5±5.6 50.1±5.4 54.0±4.0 54.7±3.1 61.4±2.4 60.4±5.7 64.7±3.6 55.5±2.3 73.7±3.1
E→F 66.9±1.7 67.5±6.2 51.4±1.8 52.3±3.2 56.0±2.3 50.5±2.2 62.5±2.0 60.2±2.2 66.4±3.0 61.5±3.8 74.0±4.0
F→E 53.3±2.8 51.8±3.9 51.3±2.4 49.3±1.9 52.1±2.1 50.2±1.7 49.9±2.2 52.7±1.5 53.7±4.5 49.2±1.7 51.0±4.4
Avg 65.5±3.0 66.5±5.7 64.2±3.8 63.4±4.1 51.9±3.6 58.2±3.4 67.5±2.6 60.6±3.7 68.0±4.2 59.1±2.6 78.8±2.8

• “Congruent correct” vs “Incongruent correct”: Two TL
tasks with singe-source experiment.

• “Successful stop” vs “Unsuccessful stop”: Three TL tasks
with multiple (two) source experiments.

Ten methods compared. We evaluate SIDeRSVM against
ten methods: three simple baselines 1) SVMt, 2)PCAt, and
3) PCAs+t; and seven state-of-the-art TL methods discussed
in Preliminary: 4) TCA (Pan et al. 2011), 5) SSTCA (Pan et
al. 2011), 6) JDA (Long et al. 2013b), 7) ARSVM (Long et
al. 2013a) of ARTL, 8) MEDA (Wang et al. 2018), 9) MIDA
(Yan, Kou, and Zhang 2018), and 10) SMIDA (Yan, Kou,
and Zhang 2018). SVMt and PCAt use only the target data
while PCAs+t uses both source and target data. For multi-
source experiments TL, the multiple source experiments are
used as one single source domain by MMD based methods,
i.e., TCA, SSTCA, JDA, and ARSVM. PCA, TCA, SSTCA,
JDA, MIDA, and SMIDA only learn a feature mapping so
they use SVM as the classifier. Both linear and RBF kernels
were studied for such SVM classifiers, and also for ARSVM,
MEDA and SIDeRSVM. We will report the result from the
best performing kernel.

We performed 10 × 5-fold cross-validation on the target
domain. For each split, the target training samples and all
source samples (except for SVMt and PCAt) were used for
training, with the target test samples for testing. On each
training set, the optimal hyper-parameters for all methods
are determined using the search strategy in (Pan et al. 2011)
with 10 further random splits (20% for validation, 80% for
training). To compare the difference between MMD and
HSIC as a regularizer, manifold regularization and condi-
tional distribution mismatch of ARSVM are not considered.
Sensitivity studies for SIDeR are provided later in this sec-
tion, which will validate SIDeR can offer stable performance
for a wide range of hyper-parameter settings.

Results and Discussions

Tables 3 and 4 summarize the decoding accuracy of the 17
TL tasks with both the mean and standard deviation. The
best result for each task is in bold and the second best is
underlined. We have five key observations:
• On the whole, SIDeRSVM outperformed all the compar-

ing methods. From results of using experiment A or B as
target domain, we can observe the performance gain de-
creases from easy to difficult tasks. This indicates a plau-
sible correlation between the TL improvements and the
transfer difficulties from psychological perspective.

• SIDeRSVM outperformed the best existing method (AR-
SVM) by 15.6% (83.2% vs. 67.6%) in TL tasks with
multi-source experiments (Table 4). On the other hand,
SIDeRSVM obtained lower accuracy on A&B→C com-
pared to B→C, and the rest results show using multiple
source experiments is better. Thus, source selections can
influence the transfer performance. If there is no clear
preference of a particular source dataset, transfer with
multiple sources is preferred in our opinion.

• MIDA and SIDeRSVM outperformed the correspond-
ing MMD-counterparts TCA and ARSVM, respectively.
Based on Theorem 1, this confirmed that making use of
multiple domain side information (experiments and sub-
jects) is beneficial in brain decoding.

• SIDeRSVM outperformed SMIDA, and ARSVM outper-
formed SSTCA, which indicates prediction loss (hinge
loss) is more robust than variance preserving and label
dependence maximization in brain decoding problems.

• In Talbe 3, TCA and MIDA outperformed the correspond-
ing semi-supervised version SSTCA and SMIDA. How-
ever, their performance were close when more source
samples were used (Table 4). This observation indicates
that label dependence is more susceptible to overfitting.
Additionally, the performance of methods with condi-
tional distribution alignment, i.e., JDA and MEDA, were
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Table 4: Classification accuracy in percentage for three multi-source experiment TL tasks.

SVMt PCAt PCAs+t
r TCAr SSTCA JDA ARSVM MEDA MIDA SMIDA SIDeRSVM

B&C→A 59.2±4.0 60.4±5.7 51.5±1.5 52.1±1.1 52.1±3.4 51.7±2.8 63.2±2.5 52.6±1.4 51.4±1.8 55.4±2.4 80.3±3.1
A&C→B 63.4±2.6 62.5±4.4 53.7±2.1 54.5±3.1 52.2±3.2 53.8±3.3 67.6±1.6 52.6±1.3 61.7±2.2 60.4±2.2 79.5±2.0
A&B→C 68.4±2.6 66.9±6.3 50.6±2.5 52.1±1.1 56.5±3.5 52.0±3.1 71.9±2.6 57.0±0.8 65.4±2.2 60.5±3.2 89.9±1.7
Avg 63.7±3.1 62.6±5.5 52.0±2.0 52.9±1.8 53.6±3.4 52.5±3.0 67.6±2.2 54.1±2.6 59.5±2.0 58.8±2.6 83.2±2.3

(a) C. (b) λ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Target training size

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Single source experiment
Multi source experiments

(c) Target training size. (d) Convergence.

Figure 1: The sensitivity of the classification accuracy with respect to hyper-parameters C, λ, and labeled target training data
size, and the convergence study for SIDeRSVM with linear kernel.

inferior to marginal distribution alignment methods, i.e.,
TCA and ARSVM. In summary, using label dependence
or conditional distribution alignment may lead to inferior
performance in small sample brain decoding TL tasks.

Hyper-parameter sensitivity. We evaluated the sensitiv-
ity of SIDeRSVM with linear kernel against hyper-parameters
C and λ under five-fold cross validation. Figure 1a shows the
sensitivity against C ∈ [10−3, 104] when fixing λ = 1. We
can observe that the accuracy stays stable when C ≤ 1, and
shows a trend of decreasing when C ∈ [100, 104]. Since a
smaller value of C can lead to a larger SVM classification
margin, we expect a classifier with a larger margin to gener-
alize better and have higher prediction accuracy. Figure 1b
shows the sensitivity against λ ∈ {0, 0.01, 0.1, 1, 10, 100}
when fixing C = 1. We can observe that the prediction ac-
curacy of SIDeRSVM kept almost constant when λ > 0 and
it was not sensitive to λ. When λ = 0, i.e., without mini-
mizing domain dependence, SIDeRSVM becomes a standard
kernel SVM and the performance dropped significantly.

Sensitivity to sample size. Figure 1c shows the sensitivity
of SIDeRSVM with respect to labeled target training sample
size for single/multi-source experiment transfer, averaged
over fourteen/three single/multi-source experiment transfer
tasks over 20 random splits, respectively. Multi-source ex-
periment transfer obtained better performance, especially
when the labeled target training sample size is smaller.

Convergence. Figure 1d illustrates the primal and dual
cost of SIDeRSVM on the TL task A→B. We can observe
that the costs converged within ten iterations.

Model visualization. We visualize the three models with
the best performance on the learning task A&B→C, which
are SVMt, ARSVM, and SIDeRSVM, using the Python pack-
age Nilearn (Abraham et al. 2014). Figure 2 depicts the
learned weights averaged over 5-fold cross validation in
the voxel space. We can observe that without training with
source data, SVMt (Fig. 2a) highlight different areas com-
pare to ARSVM (Fig. 2b) and SIDeRSVM (Fig. 2c), which

(a) SVMt (b) ARSVM (c) SIDeRSVM

Figure 2: Visualization of the top 1% learned voxel weights
in magnitude for three classifiers averaged over 5-fold cross
validation on A&B→C.

identified some common clusters around cingulate gyrus
(shaded in blue). These clusters in Fig. 2c are clearer and
less noisy, suggesting that SIDeRSVM has identified more co-
herent brain functional areas.

Conclusion

In this paper, we proposed Side Information Dependence
Regularization (SIDeR) learning framework for TL in an-
alyzing human brain conditions across subjects and experi-
ments. We incorporated the SVM loss into SIDeR to simul-
taneously minimize the empirical prediction risk and the de-
pendence on domain side information measured by a sim-
plified HSIC. We evaluated SIDeR against SVM, PCA and
seven state-of-the-art TL methods on seventeen TL tasks.
Experimental results showed the superior overall perfor-
mance of SIDeR over other methods, particularly on multi-
source experiment transfer, with a 15.6% improvement. This
confirmed the benefits of leveraging domain side informa-
tion and HSIC in TL for brain condition decoding.
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