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A large number of problems in AI and other areas of computer science can be
viewed as special cases of the constraint-satisfaction problem. Some examples
are machine vision, belief maintenance, scheduling, temporal reasoning,
graph problems, floor plan design, the planning of genetic experiments, and
the satisfiability problem. A number of different approaches have been devel-
oped for solving these problems. Some of them use constraint propagation to
simplify the original problem. Others use backtracking to directly search for
possible solutions. Some are a combination of these two techniques. This article
overviews many of these approaches in a tutorial fashion.
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A large number of problems in AI and other
areas of computer science can be viewed as
special cases of the constraint-satisfaction
problem (CSP) (Nadel 1990). Some examples
are machine vision (Chakravarty 1979; Davis
and Rosenfeld 1981; Mackworth 1977b; Mon-
tanari 1974; Hummel 1976), belief mainte-
nance (Dechter 1987; Dechter and Pearl
1988b; Dhar and Croker 1990), scheduling
(Dhar and Ranganathan 1990; Fox 1987; Fox,
Sadeh, and Baykan 1989; Petrie et al. 1989;
Prosser 1989; Rit 1986), temporal reasoning
(Allen 1983, 1984; Dechter, Meiri, and Pearl
1991; Vilain and Kautz 1986; Tsang 1987),
graph problems (McGregor 1979; Bruynooghe
1985), floor plan design (Eastman 1972), the
planning of genetic experiments (Stefik
1981), the satisfiability problem (Zabih and
McAllester 1988), circuit design (de Kleer and
Sussman 1980), machine design and manu-
facturing (Frayman and Mittal 1987; Nadel
and Lin 1991; Navinchandra 1990), and diag-
nostic reasoning (Geffner and Pearl 1987).

The scope of this article is restricted to
those constraint-satisfaction problems that
can be stated as follows: We are given a set of
variables, a finite and discrete domain for
each variable, and a set of constraints. Each
constraint is defined over some subset of the
original set of variables and limits the combi-
nations of values that the variables in this
subset can take. The goal is to find one assign-
ment to the variables such that the assign-
ment satisfies all the constraints. In some
problems, the goal is to find all such assign-
ments. More general formulations of CSP can
be found in Freuder (1989); Gu (1889); Mack-
worth, Mulder, and Havens (1985); Mittal 
and Frayman (1987); Mittal and Falkenhainer
(1990); Freeman-Benson, Maloney, and Born-
ing (1990); Navinchandra and Marks (1987);
Shapiro and Haralick (1981); and Ricci (1990).

I further restrict the discussion to CSPs in
which each constraint is either unary or binary.
I refer to such CSP as binary CSP. It is possible
to convert CSP with n-ary constraints to
another equivalent binary CSP (Rossi, Petrie,
and Dhar 1989). Binary CSP can be depicted
by a constraint graph in which each node
represents a variable, and each arc represents
a constraint between variables represented by

the end points of the arc. A unary constraint
is represented by an arc originating and ter-
minating at the same node. I often use the
term CSP to refer to the equivalent constraint
graph and vice versa.

For example, the map-coloring problem can
be cast as CSP. In this problem, we need to
color (from a set of colors) each region of the
map such that no two adjacent regions have
the same color. Figure 1 shows an example
map-coloring problem and its equivalent CSP.
The map has four regions that are to be col-
ored red, blue, or green. The equivalent CSP
has a variable for each of the four regions of
the map. The domain of each variable is the
given set of colors. For each pair of regions
that are adjacent on the map, there is a binary
constraint between the corresponding vari-
ables that disallows identical assignments to
these two variables.

Backtracking: A Method for
Solving the Constraint-

Satisfaction Problem
CSP can be solved using the generate-and-test
paradigm. In this paradigm, each possible
combination of the variables is systematically
generated and then tested to see if it satisfies
all the constraints. The first combination that
satisfies all the constraints is the solution. The
number of combinations considered by this
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Figure 1. An Example Map-Coloring Problem and
Its Equivalent Constraint-Satisfaction Problem.
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method is the size of the Cartesian product of
all the variable domains.

A more efficient method uses the backtrack-
ing paradigm. In this method, variables are
instantiated sequentially. As soon as all the
variables relevant to a constraint are instanti-
ated, the validity of the constraint is checked.
If a partial instantiation violates any of the
constraints, backtracking is performed to the
most recently instantiated variable that still
has alternatives available. Clearly, whenever a
partial instantiation violates a constraint,
backtracking is able to eliminate a subspace
from the Cartesian product of all variable
domains. The backtracking method essential-
ly performs a depth-first search (Kumar 1987)
of the space of potential CSP solutions.

Although backtracking is strictly better than
the generate-and-test method, its run-time
complexity for most nontrivial problems is
still exponential. One of the reasons for this
poor performance is that the backtracking
paradigm suffers from thrashing (Gaschnig
1979); that is, search in different parts of the
space keeps failing for the same reasons. The
simplest cause of thrashing concerns the
unary predicates and is referred to as node
inconsistency (Mackworth 1977a). If the domain
Di of a variable Vi contains a value a that
does not satisfy the unary constraint on Vi,
then the instantiation of Vi to a always results
in an immediate failure. Another possible
source of thrashing is illustrated by the fol-
lowing example: Suppose the variables are
instantiated in the order V1, V2, …,Vi, …, Vj,
…, VN. Suppose also that the binary con-
straint between Vi and Vj is such that for Vi
= a, it disallows any value of Vj. In the back-
track search tree, whenever Vi is instantiated
to a, the search will fail while instantiation is
tried with Vj (because no value for Vj would
be found acceptable). This failure will be
repeated for each possible combination that
the variables Vk (i < k < j) can take. The cause
of this kind of thrashing is referred to as a
lack of arc consistency (Mackworth 1977a).
Other drawbacks of simple backtracking are
discussed in Intelligent Backtracking and
Truth Maintenance.

Thrashing because of node inconsistency
can be eliminated by simply removing those
values from the domains Di of each variable
Vi that do not satisfy unary predicate Pi.
Thrashing because of arc inconsistency can
be avoided if each arc (Vi, Vj) of the constraint
graph is made consistent before the search
starts. In the next section, I formally define
the notion of arc consistency and consider
algorithms for achieving it.

Propagating Constraints
Arc (Vi, Vj) is arc consistent if for every value
x in the current domain of Vi, there is some
value y in the domain of Vj such that V1 = x
and Vj = y are permitted by the binary con-
straint between Vi and Vj . The concept of
arc consistency is directional; that is, if an arc
(Vi, Vj) is consistent, then it does not auto-
matically mean that (Vj, Vi) is also consistent.
Consider the constraint graph of another
map-coloring problem given in figure 2. In
this constraint graph, arc (V3,V2) is consistent
because green is the only value in the domain
of V3, and for V3 = green, at least one assign-
ment for V2 exists that satisfies the constraint
between V2 and V3. However, arc (V2, V3) is
not consistent because for V2 = green, there is
no value in the domain of V3 that is permitted
by the constraint between V2 and V3.

Clearly, an arc (Vi, Vj) can be made consis-
tent by simply deleting those values from the
domain of Vi for which the previous condition
is not true. (Deletions of such values do not
eliminate any solution of original CSP.) The
following algorithm, taken from Mackworth
(1977a), does precisely that.

procedure REVISE(Vi, Vj);
DELETE ← false;
for each x ε Di do

if there is no such vj ∈ Dj
such that (x, vj ) is consistent,
then

delete x from Di ;
DELETE ← true;

endif;
endfor; 
return DELETE;
end_REVISE

To make every arc of the constraint graph
consistent, it is not sufficient to execute
REVISE for each arc just once. Once REVISE
reduces the domain of some variable Vi, then
each previously revised arc (Vj, Vi) has to be
revised again because some of the members

V2V1

V3

red green blue

green

blue green

Figure 2. A Constraint Graph for Some 
Map-Coloring Problems.



of the domain of Vj might no longer be com-
patible with any remaining members of the
revised domain of Vi. For example, in CSP in
figure 2, arc (V1, V2) is initially consistent.
After arc (V2, V3) is made consistent by delet-
ing green from the domain of V2, arc (V1, V2)
no longer remains consistent. The following
algorithm, taken from Mackworth (1977a),
obtains arc consistency for the whole con-
straint graph G:

procedure AC-1
Q ← {(Vi, Vj) ∈ arcs(G), i ≠ j};
repeat

CHANGE ← false;
for each (Vi, Vj) ∈ Q do

CHANGE ← (REVISE(Vi, Vj)
or CHANGE);

endfor;
until not(CHANGE);
end_AC
The major problem with the previous algo-

rithm is that successful revision of even one
arc in some iteration forces all the arcs to be
revised in the next iteration, even though
only a small number of them are affected by
this revision. Mackworth (1977a) presents a

variation (called AC-3) of this algorithm that
eliminates this drawback. This algorithm
(given here) performs re-revision only for
those arcs that are possibly affected by a pre-
vious revision. The reader can verify that in
AC-3, after applying REVISE(Vk, Vm), it is not
necessary to add arc (Vm, Vk) to Q. The reason
is that none of the elements deleted from the
domain of Vk during the revision of arc
(Vk,Vm) provided support for any value in the
current domain of Vm.

procedure AC-3
Q ← {(Vi, Vj) ε arcs(G), i ≠ j}; 
while Q not empty

select and delete any arc (Vk, Vm)
from Q;

if (REVISE(Vk, Vm) then
Q ← » {(Vi, Vk) such that (Vi,

Vk)  ε arcs(G), i ≠ k, i ≠ m} 
endif;

endwhile;
end_AC
The well-known algorithm of Waltz (1975)

is a special case of this algorithm and is equiv-
alent to another algorithm, AC-2, discussed in
Mackworth (1977a). Assume that the domain
size for each variable is d, and the total number
of binary constraints (that is, the arcs in the
constraint graph) is e. The complexity of an
arc-consistency algorithm given in Mack-
worth (1977a) is O(ed3) (Mackworth and
Freuder 1985). Mohr and Henderson (1986)
present another arc-consistency algorithm
that has a complexity of O(ed2). To verify the
arc consistency, each arc must be inspected at
least once, which takes O(d2) steps. Hence,
the lower bound on the worst-case time com-
plexity of achieving arc consistency is O(ed2).
Thus, Mohr and Henderson’s algorithm is
optimal in terms of worst-case complexity.
Variations and improvements of this algo-
rithm were developed in Han and Lee (1988)
and Chen (1991).

Given an arc-consistent constraint graph, is
any (complete) instantiation of the variables
from current domains a solution to CSP? In
other words, can achieving arc consistency
completely eliminate the need for backtrack-
ing? If the domain size of each variable
becomes one after obtaining arc consistency,
then the network has exactly one solution,
which is obtained by assigning the only possi-
ble value in its domain to each variable. Oth-
erwise, the answer is no in general. The
constraint graph in figure 3a is arc consistent,
but none of the possible instantiations of the
variables are solutions to CSP. In general,
even after achieving arc consistency, a net-
work can have (1) no solutions (figure 3a), (2)
more than one solution (figure 3b), or (3)
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Figure 3. Examples of Arc-Consistent 
Constraint Graphs.

(a) The graph has no solutions. (b) The graph has two
solutions ((blue,red,green), (blue,green,red)). (c) The
graph has exactly one solution (blue,red,green).
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exactly one solution (figure 3c). In each case,
search might be needed to find the
solution(s) or discover that there is no solu-
tion. Nevertheless, by making the constraint
graph arc consistent, it is often possible to
reduce the search done by the backtracking
procedure. Waltz (1975) shows that for the
problem of labeling polyhedral scenes, arc
consistency substantially reduces the search
space. In some instances of this problem, the
solution was found after no further search.

Given that arc consistency is not enough 
to eliminate the need for backtracking, can
another stronger degree of consistency elimi-
nate the need for search? The notion of K
consistency captures different degrees of con-
sistency for different values of K.

A constraint graph is K consistent if the fol-
lowing is true: Choose values of any K - 1
variables that satisfy all the constraints among
these variables, then choose any K’th vari-
able. A value for this variable exists that satis-
fies all the constraints among these K variables.

A constraint graph is strongly K consistent
if it is J consistent for all J ≤ K.

Node consistency, discussed earlier, is
equivalent to strong 1 consistency. Arc con-
sistency is equivalent to strong 2 consistency.
Algorithms exist to make a constraint graph
strongly K consistent for  K > 2 (Cooper 1989;
Freuder 1988). Clearly, if a constraint graph
containing n nodes is strongly  n consistent,
then a solution to CSP can be found without
any search. However, the worst-case complex-
ity of the algorithm for obtaining n consis-

tency in an n-node constraint graph is also
exponential. If the graph is K consistent for K
< n, then in general, backtracking cannot be
avoided. Now the question is, Are there cer-
tain kinds of CSPs for which K consistency
for K < n can eliminate the need for back-
tracking? Before answering this question, I
define some terms.

An ordered constraint graph is a constraint
graph whose vertices have been ordered lin-
early. Figure 4 shows six different ordered
constraint graphs corresponding to the given
constraint graph. Note that in the backtrack-
ing paradigm, the CSP variables can be
instantiated in many different orders. Each
ordered constraint graph of CSP provides one
such order of variable instantiations. (The
variables that appear earlier in the ordering
are instantiated first. For example, in figure 4,
for each ordered graph, the variable corre-
sponding to the top node is instantiated
first.) It turns out that for some CSPs, some
orderings of the constraint graph are better
than other orderings in the following sense:
If the backtracking paradigm uses these order-
ings to instantiate the variables, then it can
find a solution to CSP without search (that is,
the first path searched by backtracking leads
to a solution). Next, I define the width of a
constraint graph that is used to identify such
CSPs.

The width at a vertex in an ordered constraint
graph is the number of constraint arcs that
lead from the vertex to the previous vertices
(in the linear order). For example, in the left-
most ordered constraint graph, the width of
the vertex V2 is 1, and the width of V1 is 0.
The width of an ordered constraint graph is
the maximum of the width of any of its ver-
tices. The width of a constraint graph is the
minimum width of all the orderings of the
graph. Hence, the width of the constraint
graph given in figure 4 is 1. The width of a
constraint graph depends on its structure.

Theorem 1: If a constraint graph is strongly
K consistent, and K > w, where w is the width
of the constraint graph, then a search order
exists that is backtrack free (Freuder 1988, 1982).

The proof of the theorem is straightfor-
ward. If w is the width of the graph, then an
ordering of the graph exists such that the
number of constraint arcs that lead from any
vertex of the graph to the previous vertices
(in the linear order) is, at most, w. Now, if the
variables are instantiated using this ordering
in the backtracking paradigm, then whenever
a new variable is instantiated, a value for this
variable that is consistent with all the previ-
ous assignments can be found. Such a value
can be found because (1) this value has to be
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Figure 4. A Constraint Graph and Its Six Different 
Ordered Constraint Graphs.



Dechter and Pearl (1988a, 1988c, 1986); Freud-
er and Quinn (1985); Freuder (1990); Dechter,
Meir, and Pearl (1990); Zabih (1990); Perlin
(1991); and Montanari and Rossi (1991).

How Much Constraint 
Propagation Is Useful?

To this point, I have considered two rather
different schemes for solving CSP: backtrack-
ing and constraint propagation. In the first
scheme, different possible combinations of
variable assignments are tested until a com-
plete solution is found. This approach suffers
from thrashing. In the second scheme, con-
straints between different variables are propa-
gated to derive a simpler problem. In some
cases (depending on the problem and the
degree of constraint propagation applied),
resulting CSP is so simple that its solution can
be found without search. Although, any n-
variable CSP can always be solved by achiev-
ing n consistency, this approach is usually
even more expensive than simple backtrack-
ing. A lower-degree consistency (that is, K
consistency for K < n) does not eliminate the
need for search except for certain kinds of
problems. A third possible scheme is to
embed a constraint-propagation algorithm
inside a backtracking algorithm, as follows:

A root node is created to solve original CSP.
Whenever a node is visited, a constraint-prop-
agation algorithm is first used to attain a
desired level of consistency. If at a node, the
cardinality of the domain of each variable
becomes 1, and corresponding CSP is arc con-
sistent, then the node represents a solution. If
in the process of performing constraint prop-
agation at the node, the domain of any vari-
able becomes null, then the node is pruned.
Otherwise one of the variables (whose current
domain size is >1) is selected, and new CSP is
created for each possible assignment of this
variable. Each such new CSP is depicted as a
successor node of the node representing
parent CSP. (Note that each new CSP is small-
er than parent CSP because we need to choose
assignments for one less variable.) A back-
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consistent with the assignments of, at most,
w other variables (that are connected to the
current variable) and (2) the graph is strongly
(w + 1) consistent.

It is relatively easy to determine the ordering
of a given constraint graph that has a mini-
mum width w (Freuder 1988, 1982). It might
appear that all we need to do is to make this
constraint graph strongly (w + 1) consistent
using the algorithms in Freuder (1978).
Unfortunately, for K > 2, the algorithm for
obtaining K consistency adds extra arcs in the
constraint graph, which can increase the
width of the graph. Hence, a higher degree of
consistency has to be achieved before a solu-
tion can be found without any backtracking.
In most cases, even the algorithm for obtain-
ing strong 3 consistency adds so many arcs in
the original n-variable constraint graph that
the width of the resulting graph becomes n.
However, we can use node-consistency or arc-
consistency algorithms to make the graph
strongly 2 consistent. None of these algo-
rithms adds any new nodes or arcs to the con-
straint graph. Hence, if a constraint graph has
width 1 (after making it arc and node consis-
tent), we can obtain a solution to the corre-
sponding CSP without any search.

Interestingly, all tree-structured constrained
graphs have width 1 (that is, at least one of
the orderings of a tree-structured constraint
graph has width equal to 1) (Freuder 1988,
1982). As an example, figure 5 shows a tree-
structured constraint graph and one of its
ordered versions whose width is 1. Hence, if
given CSP has a tree-structured graph, then it
can be solved without any backtracking once
it has been made node and arc consistent.

In Dechter and Pearl (1988a, 1988b), the
notion of adaptive consistency is presented
along with an algorithm for achieving it.
Adaptive consistency is functionally similar
to K consistency because it also renders CSP
backtrack free. Its main advantage is that the
time and space complexity of applying it can
be determined in advance. For other tech-
niques that take advantage of the structure of
the constraint graphs to reduce search, see

If the domain size of each variable becomes one after obtaining
arc consistency, then the network has exactly one solution…



depicts each of these algorithms as a combi-
nation of pure tree search and some fraction
of arc consistency. On one extreme, GT is
simple generate and test, and at the other
extreme, RFL is a complete 2-consistency
algorithm embedded in backtracking. The
other algorithms—BT, FC, PL, and FL—are
increasingly complete implementations of
partial arc consistency. Note that even back-
tracking incorporates a limited degree of arc
consistency because whenever a new variable
is considered for instantiation, any of its
values that are inconsistent with any previous
instantiations cause immediate failure. Hence,
the domain of this variable is effectively fil-
tered to contain only those values that are
consistent with the instantiations of variables
higher in the tree. FC incorporates a greater
degree of arc consistency than BT, as follows:
Whenever a new variable instantiation is
made, the domains of all as-yet-uninstantiat-
ed variables are filtered to contain only those
values that are consistent with this instantia-
tion. If the domains of any of these uninstan-
tiated variables becomes null, then failure is
recognized, and backtracking occurs. PL, FL,
and RFL are essentially augmented versions of
FC that perform arc consistency even between
uninstantiated variables. Nadel (1988) pre-
sents a comprehensive evaluation of these
algorithms in the context of n-queens and
confused-n-queens problems. The n-queens
problem is to place n queens on an n x n chess
board in such a way that no pair of queens
attacks each other. The confused-n-queens
problem is a variation of the n-queens prob-
lem. Here, the n queens are to be placed on
the n x n chess board, one queen to a row,
such that each pair of queens attacks each
other (that is, each pair of queens is either on
the same column or the same diagonal). For
these problems, FC (which implements only
a fraction of the consistency achieved by the
arc-consistency algorithm) turns out to be the
best algorithm. Experiments by other researchers
with a variety of problems also indicate that
it is better to apply constraint propagation
only in a limited form (Haralick and Elliot
1980; McGregor 1979; Gaschnig 1978, 1979;
Dechter and Meiri 1989a; Prosser 1991).

Intelligent Backtracking and
Truth Maintenance

There are two major drawbacks to the stan-
dard backtracking scheme. One is thrashing.
Thrashing can be avoided by intelligent back-
tracking; that is, by a scheme in which back-
tracking is done directly to the variable that

tracking algorithm visits these nodes in the
standard depth-first fashion until a solution
is found. The question now is how much
constraint propagation to do at each node. If
no constraint propagation is done, then the
paradigm reverts to simple backtracking
(actually, as we see shortly, even simple back-
tracking performs some kind of constraint
propagation). More constraint propagation at
each node will result in the search tree con-
taining fewer nodes, but the overall cost can
be higher because the processing at each node
will be more expensive. At one extreme,
obtaining n consistency for the original prob-
lem would completely eliminate the need for
search, but as mentioned before, this method
is usually more expensive than simple back-
tracking.

A number of algorithms for solving CSPs
that essentially fit the previous format have
been investigated by various researchers (Har-
alick and Elliot 1980; Nadel 1988; Fikes 1970;
Gaschnig 1974; Ullman 1976; Haralick, Davis,
and Rosenfeld 1978; McGregor 1979; Dechter
and Meiri 1989). In particular, Nadel (1988)
empirically compares the performance of the
following algorithms: generate and test (GT),
simple backtracking (BT), forward checking
(FC), partial lookahead (PL), full lookahead
(FL), and really full lookahead (RFL). These
algorithms primarily differ in the degrees of
arc consistency performed at the nodes of the
search tree. 

Figure 6 (adapted from Nadel [1988])
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caused the failure. The other drawback is
having to perform redundant work. To see
how backtracking can perform redundant
work, consider the following example:

Assume that variables V1, V2, and V3 have
been assigned values a1, b3, and c1, respective-
ly. Assume that none of the values of V3 were
found compatible with the values b1 and b2 of
V2. Now assume that all possible values of V4
conflict with the choice of V1 = a1. Because
the conflict is caused by the inappropriate
choice of V1, clearly an intelligent backtrack-
ing scheme will perform backtracking to V1
and, thus, assign a different value to V1. How-
ever, even this scheme will undo the assign-
ments of V2 and V3 and will rediscover, from
scratch, the fact that none of the values of V3
are compatible with the values b1 and b2 of V2.

There is a backtracking-based method that
eliminates both of these drawbacks to back-
tracking. This method is traditionally called
dependency-directed backtracking (Stallman and
Sussman 1977) and is used in truth mainte-
nance systems (Doyle 1979; McDermott 1991).
CSP can be solved by Doyle’s RMS (Doyle 1979;
Stallman and Sussman 1977), as follows: A
variable is assigned some value, and a justifi-
cation for this value is noted (the justification
is simply that no justification exists for assign-
ing other possible values). Then, similarly, a
default value is assigned to some other vari-
able and is justified. At this time, the system
checks whether the current assignments vio-
late any constraint. If they do, then a new
node is created that essentially denotes that
the pair of values for the two variables in
question is not allowed. This node is also used
to justify another value assignment to one of
the variables. This process continues until a
consistent assignment is found for all the
variables. Such a system, if implemented in
full generality, never performs redundant back-
tracking and never repeats any computation.

Although the amount of search performed
by such a system is minimal, the procedures
for determining the culprit of constraint vio-
lation and choosing a new value of the vari-
ables are complex (Petrie 1987). Hence, overall
the scheme can take more time than even
simple backtracking for a variety of problems.
Hence, a number of simplifications to this
scheme were developed by various researchers
(Bruynooghe 1981; Rosiers and Bruynooghe
1986; Dechter 1986, 1990; Haralick and Elliot
1980; Gaschnig 1977). For example, a scheme
developed by Dechter and Pearl is much sim-
pler and less precise than the original depen-
dency-directed backtracking scheme of
Stallman and Sussman.

Even the schemes that perform only intelli-

gent backtracking can be complex depending
on the analysis done to find the reason for
failure. Recall that these schemes make no
effort to avoid redundant work. A simple
intelligent backtracking scheme can turn out
to have less overall complexity than a more
complicated intelligent backtracking method.
The scheme presented in Freuder and Quinn
(1985) can be viewed as a simple intelligent
backtracking scheme that takes advantage of
the structure of the constraint graph to deter-
mine possible reasons for failure.

Intelligent backtracking schemes developed
for Prolog (Kumar and Lin 1988; Bruynooghe
and Pereira 1984; Pereira and Porto 1982) are
also applicable to CSPs. De Kleer developed
an assumption-based truth maintenance
system (ATMS) (de Kleer 1986a, 1986b) that
also tries to remedy the drawbacks to simple
backtracking. As discussed in de Kleer (1989),
there are strong similarities between the con-
straint-propagation methods discussed in
Propagating Constraints and ATMS for solv-
ing CSPs.

Variable Ordering and 
Value Instantiation

If backtracking is used to solve CSP, then
another issue is the order in which variables
are considered for instantiations. Experiments
and analysis by several researchers show that
the ordering in which variables are chosen for
instantiation can have substantial impact on
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Generate & Test (GT)

Simple Backtracking (BT = GT + AC 1/5)

Forward Checking (FC = GT + AC 1/4)

Partial Lookahead (PL = FC + AC 1/3)

Full Lookahead (FL = FC + AC 1/2)

Really Full Lookahead (RFL = FC + AC)

Figure 6. Different Constraint-Satisfaction Algorithms Depicted as a Combi-
nation of Tree Searching and Different Degrees of Constraint Propagation.



contributes to the search space only additively
(that is, not multiplicatively, which is usually
the case). If the constraint graph has n vertices,
and a stable set of m vertices exists, then the
overall complexity of the backtrack is bound-
ed by dn-m * md as opposed to dn. Hence, it
makes sense to find the maximal stable set of
the constraint graph before deciding on the
order of instantiation. Unfortunately, the
problem of finding a maximal stable set is
NP-hard. Thus, one has to settle for a heuristic
algorithm that finds a suboptimal stable set.
Fox, Sadeh, and Baykan (1989) use many 
different structural characteristics of CSP to
select variable order and show its utility in
the domains of spatial planning and factory
scheduling.

Recall that the tree-structured constraint
graphs can be solved without backtracking
simply at the cost of achieving arc consistency.
Any given constraint graph can be made a
tree after deleting certain vertices such that
all the cycles from the graph are removed.
This set of vertices is called the cycle cutset. If
a small cycle cutset can be found, then a good
heuristic is to first instantiate all the variables
in the cycle cutset and then solve the result-
ing tree-structured CSPs without backtracking
(Dechter 1986). If the size of a cycle cutset of
an n-variable CSP is m, then the original CSP
can be solved in dm + (n - m) * d2 steps.

Once the decision is made to instantiate a
variable, it can have several values available.
The order in which these values are consid-
ered can have substantial impact on the time
to find the first solution. For example, if CSP
has a solution, and a correct value is chosen
for each variable, then a solution can be
found without any backtracking. One possi-
ble heuristic is to prefer those values that
maximize the number of options available for
future assignments (Haralick and Elliot 1980).
By incorporating such a value-ordering
heuristic in Stone and Stone’s algorithm for
solving the n-queens problem, Kale (1990)
developed a backtracking-based algorithm
that can be used to solve the problem with
little backtracking even for large values of n
(= 1000). Without incorporating Kale’s
heuristic, Stone and Stone’s algorithm is
unable to solve the n-queens problem for n
much larger than 100. 

Minton, Johnston, Philips, and Laird (1990)
use similar value- and variable-ordering
heuristics in a somewhat different framework
to obtain solutions to the n-queens problem
for n = 1,000,000. In their scheme, backtrack-
ing starts after a good initial assignment of
values to the variables in CSP (that is, an
assignment to the variables that violates only

the complexity of backtrack search (Bitner
and Reingold 1975; Purdom 1983; Stone and
Stone 1986; Haralick and Elliot 1980; Zabih
and McAllester 1988). Several heuristics have
been developed and analyzed for selecting
variable ordering. One powerful heuristic,
developed by Bitner and Reingold (1975), is
often used with the FC algorithm. In this
method, the variable with the fewest possible
remaining alternatives is selected for instanti-
ation. Thus, the order of variable instantiation
is, in general, different in different branches
of the tree and is determined dynamically.
This heuristic is called the search-rearrangement
method. Purdom and Brown extensively stud-
ied this heuristic, as well as its variants, both
experimentally and analytically (Purdom
1983; Purdom and Brown 1981, 1982; Purdom,
Brown, and Robertson 1981). Their results
show that for significant classes of problems,
search-rearrangement backtracking is a sub-
stantial improvement over the standard back-
tracking method. For the n-queens problem,
Stone and Stone (1986) experimentally show
that the search-rearrangement heuristic led to
an improvement of dozens of orders of mag-
nitude for large values of n. With this heuris-
tic, they were able to solve the problem for n
≤ 96 using only a personal computer. The
standard backtracking method could not
solve the problem in a reasonable amount of
time even for n = 30. Nadel (1983) presents
an analytic framework that can be used to
analyze the expected complexities of various
search orders and select the best one. Feld-
man and Golumbic (1989) apply these ideas
to the student scheduling problem and sug-
gest some further extensions.

Another possible heuristic is to instantiate
those variables first that participate in the
highest number of constraints. This approach
tries to ensure that the unsuccessful branches
of the tree are pruned early. Freuder and Quinn
(1985) discuss an ordering that is somewhat
related to this heuristic. A set of variables
with no direct constraints between any pair
of them is called a stable set of variables. In
this heuristic, the backtracking algorithm
instantiates all the members of a stable set at
the end. The instantiation of these variables
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A set of variables with no direct constraints
between any pair of them is called a stable
set of variables.



a few of the constraints) has been obtained
through some greedy algorithm. Now the
values of the variables that conflict with other
variables are systematically changed in the
backtracking paradigm. Minton and his col-
leagues present empirical results using this
scheme for many problems as well as an ana-
lytic model that explains the performance of
this scheme with different kinds of problems.
This method was originally developed as a
hill-climbing method (that is, nonbacktracking
method). It starts with a reasonable assign-
ment of values to variables and then contin-
ues to repair the values of variables until a
correct solution is obtained. Sosic and Gu also
developed a similar algorithm (Gu 1989).

Another heuristic is to prefer the value
(from those available) that leads to CSP that is
easiest to solve. Dechter and Pearl (1988a) dis-
cuss one way of estimating the difficulty of
solving CSP. In this method, CSP is converted
into a tree-structured CSP by deleting a mini-
mum number of arcs; resulting CSP is solved
for all solutions. The number of solutions
found in corresponding tree-structured CSP is
taken as the measure of difficulty of solving
CSP (higher the solution count, easier CSP).
They also present an experimental evaluation
of this heuristic, as well as its variations, on
randomly generated CSPs and show that a
variation of this heuristic helps in reducing
the overall search effort. Good value-ordering
heuristics are expected to be highly problem
specific. For example, Sadeh (1991) shows
that Dechter and Pearl’s value-ordering heuris-
tic performs poorly for the job shop schedul-
ing problem. Sadeh presents other variable-
and value-ordering heuristics that work well
for this problem.

Concluding Remarks
CSP can always be solved by the standard
backtracking algorithm, although at substantial
cost. The reason for the poor performance of
backtracking is that it does not learn from the
failure of different nodes. The performance of
a backtracking algorithm can be improved in
a number of ways: (1) performing constraint
propagation at the search nodes of the tree,
(2) performing reason maintenance or just
intelligent backtracking, and (3) choosing a
good variable ordering or a good order for the
instantiation of different values of a given
variable. By performing constraint propaga-
tion, given CSP is essentially transformed into
different CSP whose search space is smaller. In
the process of constraint propagation, certain
failures are identified, and the search space is
effectively reduced so that these failures are

not encountered at all in the search space of
transformed CSP. In the second technique,
CSP is not transformed into a different prob-
lem, but the search space is searched careful-
ly. Information about a failure is kept and
used during the search of the remaining
space. Based on previous failure information,
whenever it is determined that search in
some new subspace will also fail, then this
subspace is also pruned. Good variable order-
ing reduces the bushiness of the tree by
moving the failures to upper levels of the
search tree. Good value ordering moves a
solution of CSP to the left of the tree so that
it can be found quickly by the backtracking
algorithm. If applied to an extreme, any of
these techniques can eliminate the thrashing
behavior of backtracking. However, the cost
of applying these techniques in this manner
is often more than that incurred by simple
backtracking. It turns out that simplified ver-
sions of these techniques can be used together
to reduce the overall search space. The optimal
combination of these techniques is different
for different problems and is a topic of cur-
rent investigation (Dechter and Meiri 1989).
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