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The 1988 Workshop on Principles of
Hybrid Reasoning, a one-day AAAI-
sponsored workshop, was held in St.
Paul, Minnesota on August 21, 1988,
in conjunction with the National
Conference on Artificial Intelligence.
This article reports on the workshop
and presents some of our
afterthoughts based upon prolonged
discussion of the issues that arose
during the workshop. To a certain
extent this article can serve as a sur-
vey of research on hybrid reasoning;
to aid in this purpose we include
numerous citations to the literature.
All references can be found in the
bibliography by Alan Frisch and
Richard Scherl that accompanies this
report.

Researchers in Artificial Intelli-
gence recently have been taking an
increasing interest in hybrid repre-
sentation and reasoning systems—
systems that consist of two or more
integrated subsystems, each of which
may employ distinct representation
languages and inference systems.
Though a number of such systems
have been designed, studied, con-
structed, and put into use, little effort
has been devoted to comparing the
systems or searching for common
principles underlying them.

The workshop addressed this need
by bringing together a small number
of leading researchers on hybrid rea-
soning for a day of intensive interac-
tion. The workshop was organized by
Alan Frisch (Workshop Chair), Ron
Brachman, and Rich Thomason.

Each participant was invited to
submit a short paper that best char-
acterized their work on hybrid rea-
soning. The submissions were collect-
ed into a proceedings distributed to
all participants prior to the work-
shop. As the submissions included
previously-published papers as well
as early drafts of work in progress, it
was agreed at the workshop that the
proceedings would be distributed no
further. However, since most of the
draft papers have subsequently

appeared in published form, it is now
possible to give a virtual proceedings.
In the bibliography that accompanies
this article published versions of the
submitted papers are indicated with
an asterisk.

Overview of the Workshop
The workshop program comprised
seven invited talks, two moderated
discussion sessions, one dinner, and
two coffee breaks. We outline the
talks and discussion sessions below
and leave the dinner and coffee
breaks as an exercise for the reader.
We concluded with an informal late-
night discussion on whether the
workshop had been useful to the par-
ticipants and whether we would like
another one. The overall feeling was
that the workshop had been useful
and another would be desirable, but
it should be either longer or devoted
to discussion of selected position
papers on a specific topic.

Characterization of Hybrid
Knowledge Representation and
Reasoning Systems

Peter Patel-Schneider began his pre-
sentation by categorizing various
types of hybrid knowledge represen-
tation and reasoning systems. A sys-
tem can qualify as hybrid by employ-
ing multiple representations or by
employing multiple reasoning meth-
ods, thus suggesting a characteriza-
tion of hybrid systems along these
two dimensions. Along the represen-
tation dimension, a system can have
multiple redundant representations
of the same knowledge in different
media—as in the vivid reasoning sys-
tem (which we shall call VIVID) pre-
sented by Brachman and Etherington
(Etherington et al. 1989) and the
multiple reasoners at a single layer of
the CAKE architecture (Rich 1985)—
or it can have different representa-
tions for different kinds of knowl-
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edge—as in KRYPTON (Brachman et
al. 1983) and many-sorted logics
(Cohn 1987; Frisch 1989; Walther
1987). Along the reasoning dimen-
sion, a system can have different rea-
soners for the same representation—
as in VIVID—different reasoners for
different representations—as in
KRYPTON, KL-TWO (Vilain 1985),
theory resolution (Stickel 1985a) and
many-sorted logics—or the same rea-
soner for different kinds of knowl-
edge—as in Patel-Schneider’s 1987a
hybrid logic. Finally, it is possible to
have a hybrid reasoner without a
hybrid representation. In this case a
system might have several indepen-
dent reasoners or a general purpose,
complete but slow reasoner together
with one or more specialized, fast,
but incomplete reasoners, all using a
common representation.

Patel-Schneider suggested two
requirements that should be met by a
hybrid system; these were generally
accepted. Firstly, a hybrid system
should have a model-theoretic
semantics, and this semantics should
be common to the different represen-
tations to ensure a coherent seman-
tics for communication. Secondly,
the various reasoners of a hybrid sys-
tem should be tightly coupled so that
information from one component
affects the actions of other compo-
nents. The first requirement appears
to rule out blackboard systems since
most of these have an ad hoc seman-
tics at best. However, it might well be
argued that a blackboard system is a
hybrid architecture since the knowl-
edge sources frequently embody spe-
cialized reasoners. The group also dis-
cussed whether a meta-level
reasoning system is a hybrid system,
but no conclusion was reached.

The main benefits of hybrid repre-
sentation and reasoning systems
include: 1) increased expressive
power because a single language may
not represent everything easily; 2)
increased reasoning power, that is,
the ability to make more inferences;
and 3) increased efficiency because a
specialized reasoner can make opti-
mizations that a general purpose rea-
soner cannot. Each hybrid system
can be evaluated by the benefits it
obtains in each of these areas.

Some pitfalls are associated with
the hybrid approach, particularly
involving problems of integration. It
is possible that certain kinds of infer-
ences may not be performed because
they “fall in the cracks’’ between the

different reasoning modules. Even if
there are no cracks between the mod-
ules, without adequate communica-
tion a set of locally complete special-
ized reasoners may still fail to be
globally complete. Furthermore, cer-
tain problems associated with con-
trolling multiple reasoners must be
solved to obtain an efficient hybrid
system. One such problem is called
“overlapping.’’ In a number of
hybrid systems particular predicate
and function symbols are associated
with only a single special-purpose
reasoner that is invoked to deal with
expressions formed with that sym-
bol. However, if a symbol is associat-
ed with many reasoners, then decid-
ing which reasoner to invoke can be
problematic.

The Substitutional Framework
for Hybrid Reasoning

Alan Frisch’s presentation outlined
the results of his research on a class
of hybrid reasoners that he has iden-
tified and dubbed “substitutional rea-
soners’’ (Frisch 1989). The distin-
guishing characteristic of a
substitutional reasoner is that it con-
sists of a primary reasoner that
invokes an embedded special-pur-
pose reasoner only to perform certain
prescribed inferences during unifica-
tion. Substitutional reasoners are so
named because the embedded rea-
soner affects only what substitutions
are made by the primary reasoner.
Information flows only from the
embedded reasoner to the primary
reasoner. Another way to look at the
architecture is to view a substitution-
al reasoner as a primary reasoner that
uses a unifier that is extended to per-
form certain built-in inferences.

The language that the primary rea-
soner uses, and that the extended
unifier must operate on, contains
restricted variables. Unlike ordinary
variables that range over the entire
domain, restricted variables have
information associated with them
that specifies a subset of the domain
over which they are to range. The
restrictions may be monadic or of a
higher degree. A monadic restriction
constrains the values that a single
variable may take on. For example,
the variable x may be restricted to
take on a value from the set of mam-
mals. Variables with monadic restric-
tions are a prominent feature of
many of the sorted logic systems that
recently have been receiving great

attention. A higher-degree restriction
specifies dependencies among the
values that two or more variables can
take. For example, the variables x and
y may be constrained so that x takes
on a value that is greater than the
value of y.

The substitutional framework has
been one of the most common and
most successful architectures for
hybrid reasoning, being used in a
wide range of reasoners including
logic programming systems (Allen et
al. 1984; Allen and Miller 1988;
Frisch et al. 1983), a general-purpose
resolution system (Walther 1983;
Walther 1987), a deductive database
system (Reiter 1977; Reiter 1981), a
parser for logic grammars (Frisch
1986b), and a knowledge retriever
(Frisch 1986a). Though all of these
systems use only monadic restric-
tions, recent work on constraint logic
programming (Jaffar and Lassez
1987) provides a broad framework for
generalizing Horn-clause logic pro-
gramming to incorporate higher-
degree restrictions in a substitutional
manner. Frisch’s research identifies
all of these reasoners as a single class
and investigates their common
properties and the general principles
underlying them.

Frisch presented his main results
in terms of monadic restrictions and
suggested that the results could be
generalized to higher-degree restric-
tions. The results show how one can
systematically transform a unifica-
tion-based non-hybrid reasoning sys-
tem and its proof of completeness
into a substitutional hybrid system
and its proof of completeness.

This presentation concluded by
mentioning a number of research
projects within the substitutional
framework that Frisch and his stu-
dents are investigating, including a
couple of reasoners that use higher-
degree restrictions.

What is Hybrid Reasoning 
and Who Cares?

The first issue addressed in this dis-
cussion session moderated by
Richard Fikes was whether every
representation system is a hybrid
one, since one could perversely view
almost any system as being com-
posed of specialized reasoners. For
instance, in a natural deduction sys-
tem one could view each inference
rule as a separate reasoner. This view
is unnatural since a specialized rea-
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soner should be “reasonably com-
plete’’ in some sense; however it is
clearly impossible to define this con-
cept precisely and thus the boundary
between hybrid and non-hybrid sys-
tems must remain somewhat arbi-
trary. In any case such a definition
would not be profitable in any practi-
cal sense.

It was agreed that, unlike non-
monotonic reasoning systems,
hybrid reasoning systems cannot be
characterized by their input/output
behavior; the notion of hybrid rea-
soning has to do with the organiza-
tion of the system, not its functional-
ity. In particular it was proposed that
one might regard a system as hybrid
if one can associate particular colors
with particular representation
schemes and specialized inferences,
and thereby assign colors to every
step in a derivation. One good reason
for associating different colors with
different components is that they
have different proof-theoretic proper-
ties, such as completeness and decid-
ability; another reason might be
because the representation systems
are of differing expressiveness.

It was pointed out that another
way of classifying hybrid systems is
according to whether the different
components arise primarily because
of efficiency considerations (e.g.,
Stickel’s theory resolution) or primar-
ily because of presenting a particular
conceptual framework to the user
(e.g., systems that separate defini-
tions and assertions). An ultimate
goal for a theory of hybrid reasoning
might be to enable the development
of systems that are “plug compati-
ble’’; Frisch’s substitutional frame-
work might be seen as working
towards this end. However there was
serious doubt that one could ever
develop a single framework with
total generality.

It was agreed that an important
topic for future research, and possi-
bly for a future workshop, is the defi-
nition of appropriate protocols for
communication between cooperating
inference systems.

Expressiveness of 
Many-Sorted Logics

Tony Cohn’s presentation briefly
reviewed many-sorted logic and sur-
veyed the dimensions along which
many-sorted logics vary.1 He gave
three main reasons for being interest-
ed in many-sorted logic: to increase

efficiency of deduction by reducing
the deductive search space, to impose
structure on a “flat’’ logical axiomati-
zation, and to perform well-sorted-
ness checking as a simple but effi-
cient integrity check on updates and
queries to a knowledge base.

Cohn outlined the main dimen-
sions along which many-sorted logics
vary: the structure of the set of sorts,
the language used to describe the sor-
tal behavior of the non-logical sym-
bols, the method by which sorts are
associated with variables, and the
precise definition of what constitutes
a well-sorted formula. These dimen-
sions define a space of many-sorted
logical languages of varying expres-
siveness.

Cohn described his extremely
expressive sorted logic, known as
LLAMA (Cohn 1983; Cohn 1987). Its
deductive system extends a resolu-
tion system with a number of mecha-
nisms for reasoning with sort infor-
mation. Because the logic has such a
rich sort system and allows sort liter-
als to appear in ordinary formulas, it
is impossible to fit LLAMA entirely
within the substitutional framework.
Indeed, some of the reasoning meth-
ods fall within the theory resolution
scheme (Stickel 1985a). One of the
main benefits of allowing sort literals
to appear in ordinary formulas is that
sortal knowledge known explicitly
can be represented and treated spe-
cially while still allowing the possi-
bility of implicit (e.g. disjunctive)
sortal information, which is handled
by general methods (Cohn 1989a).

Theory Resolution

In this presentation Mark Stickel
gave an overview of theory resolu-
tion, the details of which are present-
ed in (Stickel 1985a). Theory resolu-
tion is a framework for building a
theory (i.e., a set of axioms) into the
resolution rule of inference by replac-
ing resolution’s simple test for con-
tradictory literals with a more general
test for contradiction with respect to
a given theory. Whereas resolution
operates on clauses containing con-
tradictory literals, theory resolution
operates on clauses containing liter-
als that form a contradiction when
taken together with the built-in theo-
ry. Theory resolution employs a spe-
cial-purpose reasoner to detect such
contradictions, thereby gaining effi-
ciency over an ordinary resolution
system that uses the axioms in the

theory directly. For example, by
building in the “<’’ relation theory
resolution can resolve the three
clauses, a < b, b < c, and c < a, to
obtain the empty clause in a single
step. Stickel presented a number of
examples of theory resolution,
including examples of two special
cases of theory resolution, total theo-
ry resolution and total narrow theory
resolution.

Stickel cited the KRYPTON knowl-
edge representation system (Brach-
man et al. 1983) as a successful appli-
cation of theory resolution.
KRYPTON divides knowledge into
two classes, terminological knowl-
edge and assertional knowledge. The
definitions of the terminological
component are built into the theory
resolution reasoner that operates on
the clauses of the assertional knowl-
edge.

Stickel concluded by comparing
theory resolution to sorted resolu-
tion. Though theory resolution could
be used to build in taxonomic infor-
mation, the resulting system would
not be as efficient as a sorted resolu-
tion system. On the other hand, the-
ory resolution is much more general
since many other kinds of informa-
tion can be built in. An operational
difference between the two
approaches is that the use of a theory
in theory resolution can only
increase the number of successful
unifications, whereas the use of sorts
in a sorted logic can only decrease
the number of successful unifica-
tions. Stickel concluded that he
wants both sorts and theory resolu-
tion in his system.

The RHET Reasoning System

In his presentation James Allen dis-
cussed the architecture of the RHET
hybrid reasoning system and some of
its subsystems (Allen and Miller
1988). RHET comprises a collection
of separately-describable specialized
reasoning systems organized around
a sorted Horn-clause theorem prover.
The specialized reasoners include a
ground equality system, a temporal
reasoner, a context mechanism for
maintaining multiple interrelated
knowledge bases, and a frame-like
representation and reasoning system
that is integrated with the sort sys-
tem to obtain a hierarchy of terms.
RHET has been used in a variety of
applications, including systems for
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natural language processing and plan
reasoning. Developed at the Universi-
ty of Rochester by James Allen, Steve
Feist, Stephanie Guez, Nat Martin,
Brad Miller, and Michael McInerny,
the system is a direct descendant of
the HORNE system (Frisch et al.
1983; Allen et al. 1984).

Allen’s presentation concentrated
on three of RHET’s subsystems: the
sort reasoner (though he used the
word “type’’), the equality reasoner,
and the context mechanism. Sort rea-
soning is integrated into the unifier
according to the substitutional
framework. One of the most interest-
ing features of sorted unification in
RHET is that multiple unifiers are
avoided by allowing unsolved con-
straints to be attached to clauses. The
equality reasoner uses a modified
union-find algorithm to reason with-
in the unifier about ground equali-
ties. The context mechanism, which
is used for representing beliefs and
hypotheticals, maintains a tree of
knowledge bases. In the context of a
particular node, a reasoner has access
to the information at that node and
all its ancestors. Allen explained how
the sort reasoner and equality reason-
er can be used to encode and reason
with typical frame-like representa-
tions in a straightforward manner.

When asked how all these systems
were integrated, Allen simply replied,
“It’s hairy!’’ However, he did elabo-
rate a little. Each specialized reasoner
owns particular predicates (e.g., the
temporal reasoner owns the Before
predicate) and the reasoner is
invoked whenever a clause contain-
ing one of the predicates it owns is
tested, added or deleted. A specialized
reasoner may bind variables or may
delay its action until certain variables
become bound. Furthermore, a spe-
cialized reasoner must supply alterna-
tive bindings if appropriate when the
system backtracks. Some reasoners
are integrated into the system
through hooks in the unifier. When
two terms whose sorts have an inter-
section cannot be unified structural-
ly, a special reasoner may be invoked
to determine if the unification
should be allowed anyway. One pos-
sible action a specialized reasoner
may take is to tag terms with con-
straints, which are checked when
they are further instantiated. Upon
questioning, Allen acknowledged
that this means that the solvability of
a constraint may not be detected as
early as possible, resulting in a larger

search space, and that a RHET proof
might be dependent upon the solv-
ability of any remaining constraints.

Design Issues in 
Hybrid Reasoning

Chuck Rich, the moderator of this
discussion session, opened by
expressing his views on what consti-
tute the main issues in the design of
hybrid reasoners.2 One design issue
is how a system is to be divided into
components. Two broad approaches
to making such a decision are the
top-down approach and the bottom-
up approach. In the bottom-up
approach one begins by identifying
the reasoners that are to be included
in the system and then attacks the
problem of integrating them. The
design of Nelson and Oppen’s (1975)
cooperating decision procedures is
bottom-up; it starts with a set of
known decision procedures for par-
ticular types of theories and then
combines them into a decision pro-
cedure for the composite theory. In
the top-down approach one starts
with some distinction between types
of knowledge and then seeks reason-
ing components for these. The
design of KRYPTON is essentially top-
down as it begins with the termino-
logical/assertional distinction.

Another design issue involves how
the components of a hybrid system
are to communicate and cooperate
with each other. Any hybrid system
needs to have a way of representing
the goals of the different subsystems
and the returned results, and a public
language (probably first order predi-
cate calculus) in which to express
these. There may also be languages
private to particular components.

The final design issue raised is how
a hybrid reasoner is to control the
multiplicity of reasoners and repre-
sentations that it incorporates. The
problem is to decide how to divide
up a task, and which component of
the system should deal with which
subtask. The control structures of the
systems may be of various kinds; the
way in which resources are allocated
may be heuristic or algorithmic and
may be based on either syntactic or
semantic criteria. The communica-
tion protocol may be directed
between subsystems or broadcast
generally. Control may be centralized
or distributed.

The group discussed what features
they would like to see in what was

called an “empty machine’’ for
hybrid reasoning, that is, a domain
independent machine with which
one could implement hybrid reason-
ers. Among the features listed were
equality, dependencies (i.e., some
explicit representation of the proof
structure), and a teleological vocabu-
lary for representing the goals, pre-
requisites and subgoals of the
machine.

Vivid Reasoning 
and Tractable Reasoning

Ron Brachman and David Ethering-
ton presented their preliminary work
with Alex Borgida and Henry Kautz
(with help from Hector Levesque and
Bart Selman) on constructing and
using vivid knowledge representa-
tions for commonsense reasoning.3

The basic idea derives from Johnson-
Laird’s work on mental models and
from Levesque’s suggestion in his
1985 Computers and Thought Lec-
ture (Levesque 1986) that some kinds
of commonsense reasoning may be
best modeled by simple database
style lookups in an appropriately
organized representation. A vivid
knowledge base (KB) bears a strong
structural relationship to the world
being modeled. In particular, a vivid
KB has a set of symbols that stand in
a one-to-one correspondence to
objects of interest in the world, and
for every relationship of interest in
the world there is a directly analo-
gous connection between the corre-
sponding symbols in the KB. Thus a
vivid KB is an analog of the domain;
everything that is represented is
explicitly represented. Such a KB con-
tains no disjunctive information so
reasoning by cases is not necessary.

Since a vivid KB is expressively
weaker than a first-order KB, Brach-
man and Etherington suggested the
use of a hybrid architecture contain-
ing both representations. (It is this
architecture that we are referring to
as “VIVID’’ within this report.) Facts
represented in the first-order KB can
be “vivified’’ and placed into the
vivid KB where they can be used effi-
ciently. However, the vivid form of a
first-order fact may contain less
information, making it useful to keep
the first-order representation around.
If the result of querying the vivid KB
yields insufficient information, one
can then query the first-order KB,
where more-powerful but less-effi-
cient reasoning methods are used.
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Thus, the components of their pro-
posed hybrid system operate on
redundant representations of the
same information that differ in grain
size, whereas the components of
each of the other hybrid systems that
were presented at the workshop oper-
ate on representations of different
information. The problem of how to
integrate vivid reasoning and more
powerful forms of logical reasoning is
one of the many open questions yet
to be addressed at this early stage of
the research.

One of the main issues under
investigation is how an ordinary
first-order representation can be vivi-
fied automatically. The presentation
focussed on two methods under
investigation. The first method elimi-
nates universal quantifiers by replac-
ing universally quantified atomic for-
mulas with their ground instances.
For example, a sentence such as 
∀ x Man(x) → Mortal(x) can be elimi-
nated provided Mortal(a) is added
whenever a sentence of the form
Man(a) is added. The second method
of vivification eliminates disjunc-
tions by forming generalizations in a
subsumption hierarchy. For example,
the sentence Teacher(Joe) ∨
Professor(Joe) can be replaced by
Instructor(Joe), given that Instructor
subsumes Teacher and Professor. This
replacement can be viewed as trading
indefiniteness for vagueness.

Mating Nonmonotonic 
Inheritance with 
Theorem Proving

Rich Thomason presented his work
on the Linkup Project, a collaborative
effort with Chuck Cross, Jeff Horty
and Dave Touretzky to study the logi-
cal foundations of inheritance. In
particular, he presented a Gentzen-
style proof theory that combines
classical logic with a default inheri-
tance reasoner that operates on net-
work structures.4 The key feature of
Gentzen-style systems is that they
operate on sequents, expressions that
state that some formula is derivable
from some set of formulas. The net-
work structures and default reasoner
are brought into the proof system by
an inference rule for deriving “isa’’
statements in the outer logic and an
axiom for reflecting the results of the
inheritance module into the outer
logic.

inference rule:

Γ, x isa p |– x isa q

Γ |– p’s are q’s

(where Γ is a set of formulas that does not con-

tain x)

axiom:

Γ |– A, provided the inheritance 

reasoner can derive A from Γ

Thomason stressed that the use of
sequents in the Gentzen-style system
was crucial to the successful integra-
tion of the inheritance reasoner into
the proof system and suggested that
this approach could be used to inte-
grate other kinds of reasoners into a
logical system.

Afterthoughts
With the benefit of hindsight, we
shall compare and contrast the vari-
ous hybrid reasoners presented at the
workshop. In so doing we derive a
partial taxonomy of hybrid reasoners
that includes these systems. The tax-
onomy is but a first cut intended to
provoke others to think about the
relationships within the class of
hybrid reasoners.

Leaving aside Patel-Schneider’s
overview, the remaining six presenta-
tions concerned particular systems or
architectures for hybrid reasoning. Of
the six systems or architectures only
Brachman and Etherington’s VIVID
system contains components that use
different representations of the same
knowledge. In the other five, each
component reasons with different
knowledge. Let us consider these five
systems more closely.

Cohn’s LLAMA system and Allen’s
RHET system are complex systems,
each consisting of numerous reason-
ing components integrated by a vari-
ety of methods. Frisch’s substitution-
al framework and Stickel’s theory
resolution are architectures for inte-
grating specialized reasoners into a
resolution system. (It appears that
both can be generalized beyond reso-
lution, a point that is addressed
later.) Thomason’s hybrid system
integrates its two reasoners via a sin-
gle mechanism, which we shall
assume, as he suggested, is a general
technique. Therefore we shall consid-
er his presentation to be concerned
with an architecture for hybrid rea-
soning, henceforth called the
sequent architecture.

All five of these systems or archi-
tectures have separate reasoning
modules with distinct representa-

tions and all integrate the modules
by a method we shall call rule
embedding. As part of its execution
an embedding rule invokes a sub-
sidiary reasoner, called the embedded
reasoner. After completing its
assigned task the embedded reasoner
passes its results back to the embed-
ding inference rule. The embedded
reasoner does nothing until invoked
by the embedding rule and each time
it is invoked it operates independent-
ly of all previous invocations; that is,
no state is maintained from invoca-
tion to invocation. Rule-embedded
inference is currently the most preva-
lent and best understood form of
hybrid reasoning. However, other
architectures currently exist, VIVID
being one, and quite possibly a large
variety of others are yet to be devel-
oped.

One way to categorize rule embed-
ded systems is according to where in
the embedding system the embed-
ding takes place. Let us now illustrate
this method of categorizing rule-
embedded reasoners by comparing
theory resolution and the substitu-
tional framework. The comparison is
particularly interesting because both
are architectures for embedding spe-
cial-purpose reasoners into the reso-
lution rule of inference.

The essence of resolution compris-
es two fundamental ideas; one forms
the foundation of theory resolution
and the other forms the foundation
of substitutional reasoning. The first
idea is that at the ground (variable-
free) level resolution looks for local
evidence of unsatisfiability. The local
evidence comes in the form of a pair
of clauses, one containing a literal
and the other containing its
complement. Taken together the two
literals are unsatisfiable and, indeed,
a set of ground literals is unsatisfiable
only if it contains a pair of comple-
ments. Theory resolution generalizes
this idea; instead of merely looking
for a pair of literals that are unsatisfi-
able by themselves, it looks for a set
of literals that are unsatisfiable when
taken in conjunction with a given
background theory. Thus, the theory
resolution rule of inference applies to
a set of clauses containing a set of lit-
erals that, together with the back-
ground theory, are unsatisfiable.

The second fundamental idea in
resolution is that a clause with vari-
ables is treated as schematic for the
set of all its ground instances. In
resolving two clauses with variables,
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resolution behaves as if it were
resolving all of the ground instances
of the two clauses together. This sim-
ulation of ground resolution is pre-
cisely what unification achieves. The
result is that every derivation involv-
ing clauses with variables is schemat-
ic for one or more ground deriva-
tions. The schematic derivation is
said to lift the ground derivations.
The substitutional framework
extends this paradigm for handling
variables by allowing constraints to
be placed on expressions to restrict
the set of ground instances for which
they are schematic. Whether or not a
particular ground expression satisfies
the constraints depends on a back-
ground theory. This is handled by
building into unification certain con-
straint satisfaction procedures that
invoke the embedded reasoner to
ascertain certain logical conse-
quences of the background theory.

Thus the substitutional framework
extends resolution by replacing the
simple notion of an instance of an
expression with one that takes a
background theory into account,
whereas theory resolution replaces
the simple notion of unsatisfiability
with one that takes a background
theory into account. The two essen-
tial components of resolution are
orthogonal, and hence so are the two
proposed extensions. The two exten-
sions could be combined in a single
system and a theoretical understand-
ing of the resulting system could be
obtained straightforwardly from our
present theoretical understanding of
each.

The basic ideas embodied in theory
resolution and in the substitutional
framework are applicable outside of
the resolution setting. The substitu-
tional framework could be used to
extend any reasoner that treats vari-
ables schematically by using unifica-
tion. Theory resolution could be used
to extend any inference rule that
operates by recognizing unsatisfiable
formulas. Furthermore, one could
imagine extending relations other
than unsatisfiability—subsumption,
for example—to be relative to a back-
ground theory.

Another distinction that can be
made between rule-embedding sys-
tems involves the theory (i.e., knowl-
edge base) that the embedded reason-
er uses. The theory used by the
embedded reasoner in a substitution-
al reasoner or in a theory resolution
reasoner remains fixed throughout

the course of an entire deduction.
Consequently this theory may be
compiled in some manner in order to
speed up the embedded reasoner. The
theory may not even exist explicitly
within the embedded reasoner. The
embedded reasoner may be some
procedure whose operation is func-
tionally equivalent to a procedure
manipulating an explicit theory. A
hybrid system that uses an embedded
reasoner with an implicit theory is
often said to have a built-in theory.

In the sequent architecture, unlike
the theory resolution and substitu-
tional architectures, the embedded
reasoner does not have a fixed theory.
Each time the embedded reasoner is
invoked it is passed the theory that it
is to use. Because the embedded rea-
soner may be using a different theory
on every invocation, it is difficult to
see how one could reap any benefits
from compilation. However, as
Thomason points out, the ability to
use different theories on different
invocations is important if the em-
bedded reasoner is non-monotonic.

The distinction between embedded
reasoners that use a fixed theory and
those that use a varying theory is
based on the amount of information
that is passed to the embedded rea-
soner when it is invoked. In a similar
way we can categorize rule-embed-
ded systems according to the infor-
mation that is passed back when an
invocation of the embedded reasoner
terminates. In all systems considered
here the embedded reasoner at least
indicates success or failure. In those
systems that we call “strict’’ no other
information is returned that affects
the operation of the embedding sys-
tem. The distinction between the
strict systems and the non-strict sys-
tems can be explained best by exam-
ining an application of a non-strict
inference rule, partial theory resolu-
tion.

Suppose that partial theory resolu-
tion uses a theory that encodes the
information that the set of persons
divides into the mutually-exclusive
subsets of males and females. Then
theory resolution can perform the
following deduction:

¬ Female(kim) V A (1)
Person(kim) V B (2)
Male(kim) V A V B (3)

The justification for this inference
is that if Kim is not a male then 
¬ Female(kim) and Person(kim) are
contradictory and theory resolution

could derive A V B. Hence, either
Kim is a male or A V B is true.

This kind of inference is non-strict
because the embedded reasoner 
provides a condition—namely that 
¬ Male(kim) is needed in order to
obtain a contradiction—to the
embedding reasoner. The condition,
which Stickel calls a residue, is used
in forming the resolvent, and thus
formulas produced by the embedded
reasoner become part of the deriva-
tion produced by the embedding
rule. Thus in partial theory resolu-
tion, unlike ordinary resolution, a
resolvent may contain a literal that is
not an instance of any literal occur-
ring in its parents. Total theory reso-
lution, on the other hand, does not
use residues, and therefore does not
introduce new literals; it is a strictly-
embedded inference rule.

The distinction between partial
theory resolution, which is non-
strict, and total theory resolution,
which is strict, is not as big as it
may first seem because total theory
resolution can do anything partial
theory resolution can do. In the
foregoing example, for instance,
total theory resolution could derive
(3) from (1), (2), and the tautology
Male(x) V¬ Male(x).

Substitutional reasoners, by defini-
tion, use strict rule embedding. The
special predicates that the embedded
reasoner uses are not manipulated by
the embedding reasoner and do not
enter the representation used by the
embedding reasoner except as anno-
tations on variables. The reasoner
embedded in a substitutional system
can return large amounts of informa-
tion. For example, in RHET and in
constraint logic programming, com-
plex constraints on multiple vari-
ables can be returned. Nonetheless,
these are examples of strict embed-
ding because the constraints do not
affect the operation of the embed-
ding reasoner; the embedding rea-
soner simply stores the constraints
with the associated formulas and
passes them back to the embedded
reasoner on future invocations.

As Frisch’s results show, the conse-
quence of using strict rule embed-
ding in the substitutional framework
is that a certain class of theories can-
not be used by the embedded reason-
er without sacrificing completeness.
Cohn’s sorted logic, LLAMA, reasons
about sorts during unification but,
because the logic is sufficiently rich,
the system’s architecture must go
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beyond the substitutional framework
in order to obtain completeness.
Consequently, the LLAMA design has
sort reasoning non-strictly embedded
within unification. For example,
given the same information as in the
theory resolution example—that the
set of persons divides into the mutu-
ally-exclusive sets of males and
females—the individual symbol kim of
sort Person and the variable x of sort
Male can be unified provided that Kim
is a male. Thus the unifier gives back
the literal Male(kim), and the formula
inferred by the embedding rule is of
the form Male(kim) → ψ. This
returned literal, which Cohn calls a
prosthetic literal, is much like a
residue in that it can appear in a
resolvent even though it appears in
neither parent. Thus some sort infor-
mation enters the representation
used by the embedding reasoner,
something that does not happen in a
substitutional reasoner. Once these
prosthetic literals are in the formulas
used by the embedding reasoner,
what is known about sorts must be
used to make further inferences.
LLAMA does this with some infer-
ence rules that can be viewed as spe-
cial cases of theory resolution. Fur-
ther discussion of prosthetic literals
can be found in (Cohn 1989a).

Putting this all together yields the
partial taxonomy of hybrid reasoners
displayed in Figure 1. The six systems
or architectures presented in the talks
are shown as examples of the cate-
gories in the taxonomy.

Conclusions
This workshop was organized as a
step to help discover the principles
underlying hybrid reasoning. As a

result of this workshop and subse-
quent discussions we have come to
believe that the class of hybrid rea-
soners is far too diverse for there to
be a grand theory of them all. Rather,
we will see a set of architectures
developed, each with its own theory.
Particular systems will be built that
are instances of a particular architec-
ture or, like RHET and LLAMA, com-
bine elements two or more architec-
tures. Additional work is needed to
better understand existing architec-
tures, and to develop new, more
diverse architectures. Developers of
different architectures will need to
communicate to share solutions to
common problems and to work
toward an understanding of the rela-
tionships and tradeoffs among the
various architectures.
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Notes
1. Cohn has published a more detailed
survey along these lines (Cohn 1989b).

2. Many of the issues that Rich raised are
discussed at greater length in a paper that
he co-authored (Brotsky and Rich 1985).

3. Subsequent work on vivid representa-
tions and reasoning has been reported by
Borgida and Etherington (1989) and by
Etherington, Borgida, Brachman and
Kautz (1989).

4. Thomason and Aronis (1989) have sub-
sequently reported their results on this
research.
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• Hybrid reasoning systems

• Non rule-embedded
example: VIVID

• Rule-embedded

• Instantiation-based
examples: LLAMA's unifier (fixed theory, non-strict)

RHET's sort and constraint system (fixed theory, strict)
Substitutional framework (fixed theory, strict)

• Contradiction-based
examples: Partial theory resolution (fixed theory, non-strict)

Total theory resolution (fixed theory, strict)

• Other rule embedded systems
example: Sequent architecture (varying theory, strict)

Figure 1: A partial taxonomy of hybrid reasoners




