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In 1986, the mathematician and philosopher Gian-Carlo 
Rota wrote, “I wonder whether or when artificial intelli-
gence will ever crash the barrier of meaning” (Rota 1986). 

Here, the phrase “barrier of meaning” refers to a belief about 
humans versus machines: Humans are able to actually 
understand the situations they encounter, whereas even the 
most advanced of today’s artificial intelligence (AI) systems 
do not yet have a humanlike understanding of the con-
cepts that we are trying to teach them. That is, the internal 

 In 1986, the mathematician and 
philosopher Gian-Carlo Rota wrote, 
“I wonder whether or when artificial 
intelligence will ever crash the barrier 
of meaning” (Rota 1986). Here, the 
phrase “barrier of meaning” refers to a 
belief about humans versus machines: 
Humans are able to actually under-
stand the situations they encounter, 
whereas even the most advanced of 
today’s artificial intelligence systems 
do not yet have a humanlike under-
standing of the concepts that we are 
trying to teach them. This lack of 
understanding may underlie current 
limitations on the generality and reli-
ability of modern artificial intelligence 
systems. In October 2018, the Santa 
Fe Institute held a three-day workshop, 
organized by Barbara Grosz, Dawn 
Song, and myself, called Artificial Intel-
ligence and the Barrier of Meaning. 
Thirty participants from a diverse set 
of disciplines — artificial intelligence, 
robotics, cognitive and developmental 
psychology, animal behavior, informa-
tion theory, and philosophy, among 
others — met to discuss questions 
related to the notion of understanding 
in living systems and the prospect for 
such understanding in machines. In the 
hope that the results of the workshop 
will be useful to the broader community, 
this article summarizes the main themes 
of discussion and highlights some of the 
ideas developed at the workshop.

On Crashing the Barrier of  
Meaning in Artificial Intelligence

Melanie Mitchell



Article

Summer 2020  87

representations learned by (or programmed into) 
AI systems do not capture the rich meanings that 
humans bring to bear in perception, language, and 
reasoning.

This lack of understanding may underlie current  
limitations on the generality and reliability of mod-
ern AI systems. While deep neural networks, trained 
via supervised or reinforcement learning, perform 
remarkably well on many problems in computer vision, 
natural language processing, and other domains 
central to AI, these systems remain brittle compared 
with human intelligence. Even the most successful 
deep networks can fail in unexpected ways when 
faced with inputs that differ, even in small degrees, 
from their training regime. Moreover, such networks 
struggle in making conceptual abstractions, and are 
vulnerable to adversarial attacks that do not affect 
humans. Researchers are still debating whether such 
limitations can be overcome with more data, or with 
additional network layers, or whether something more 
fundamental is missing.

For decades, the AI community has scrutinized ques-
tions concerning machine understanding, exploring 
related ideas such as strong versus weak AI, symbol 
grounding, and the general area of common-sense 
knowledge. Questions about the definition — and  
necessity — of humanlike understanding in machines 
have become ever more centrally important as a result 
of the recent successes and broad real-world deploy-
ment of deep learning systems.

In October 2018, the Santa Fe Institute held a three-
day workshop, organized by myself, Barbara Grosz, 
and Dawn Song, called Artificial Intelligence and the 
Barrier of Meaning. To spur discussion, the follow-
ing questions were given to the participants ahead of 
the workshop: By what mechanisms do humans and 
other natural information-driven systems extract 
meaning from data or experience? Can insights from 
such systems be used to improve AI? To what extent 
do current-day AI systems need to understand the 
situations they deal with to perform reliably, particu-
larly in situations outside their training regimes? To 
what extent do systems need to understand in order 
to be able to explain their decisions and predictions? 
Does a lack of understanding make data-driven AI 
systems (for example, deep networks) susceptible 
to adversarial examples? Is there a way to defend 
against such attacks without imbuing such systems 
with humanlike understanding? How do we deter-
mine if a system is actually understanding?

Thirty participants from a diverse set of disciplines —  
AI, robotics, cognitive and developmental psychology,  
animal behavior, information theory, and philoso-
phy, among others — met to discuss these and related 
questions (a list of the participants is given in figure 1).  
The workshop combined short talks with extensive 
small and large group discussions. In the hope that the 
results of the workshop will be useful to the broader 
community, this article summarizes the main themes 
of discussion and highlights some of the ideas devel-
oped at the workshop.

Correlates of Understanding
Is it true that existing AI systems lack humanlike 
understanding and face a barrier of meaning that 
limits their generality and robustness? While all of 
the workshop participants agreed with the intuitions 
behind such claims, the terms understanding and 
meaning are ill-defined. Marvin Minsky called such 
mental terms “suitcase words,” ones that are packed 
to the breaking point with different meanings (Minsky 
2006).

Rather than proposing specific definitions, the 
workshop participants collectively listed a set of cor-
relates of understanding in humans and other living 
systems, and discussed how these correlates contrast 
with today’s predominant AI systems. The follow-
ing list of such correlates (and other relevant points 
of discussion) attempts to capture the flavor of the 
brainstorming discussion at the meeting.

Core Knowledge
Understanding is built on a foundation of innate core 
knowledge. Unlike most current AI systems, humans 
and other animals seem to come into the world with 
(or develop very early on) a healthy dose of intuitive 
physics: how objects behave individually, how they 
interact with other objects, and the possible effects 
of such interactions. Moreover, humans and ani-
mals seem to possess an innate metaphysics: They 
are born with (or develop early on) the very notions 
of discrete objects, relationships, events, and indeed 
causality itself. Humans, being thoroughly social 
organisms, also have an innate or early-developed 
intuitive psychology, one that includes concepts of 
what communication is for, and a basic theory of  
mind for other humans. The extent to which non-
human animals have something like a theory of mind 
is unclear, but communication is also either innate 
or developed early in many animals. In humans, and 
to at least some extent in other animals, such core 
knowledge forms the foundation for future under-
standing, inference, and common sense. What form 
such inductive biases take in various living systems, 
how such biases are represented in the brain and 
body, and how they emerge and develop in early life 
are fundamental and largely open questions in neu-
roscience and cognitive science.

Abstraction and Generativity
Supervised machine learning (ML) typically focuses 
on training and test data coming from the same distri-
bution. This requires function-fitting interpolation. 
In contrast, humans and most other animals are able 
to extrapolate — that is, to adapt what they have 
learned to diverse situations. This is accomplished 
via the abilities to build abstract representations, and 
to make analogies mapping these representations to 
new situations. Abstract representations and analogy, 
combined with core knowledge, allow organisms to 
learn concepts from a small number of examples, 
to imitate and generate behavior at a conceptual 
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level, to transfer knowledge between modalities, to 
perform flexible planning, and to generate possible 
futures and counterfactuals, among other abilities 
central to our notion of understanding. One workshop 
participant hypothesized as follows:

How could we tell if a machine could understand? If the 
machine can perform an action when asked (for example, 
jump when told “jump!”); recognize the concept enacted 
by others (point to who or what is jumping); enact the 
command with an alternate motor system (for example, 
use two fingers to demonstrate jumping); and conform 

to the concept’s tacit physical context (for example, jump 
without hitting the ceiling) as well as its social context 
(for example, jump gently near humans).

Active Perception, Learning, and Inference
Several workshop participants contrasted the passive, 
feedforward, and supervised nature of current learning 
and inference in neural networks with the importance 
of active mental processes in natural intelligent sys-
tems. Here, active means that the system itself dynam-
ically seeks out information and continually uses the 
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information it finds — along with prior knowledge 
or biases — to help direct further information-seeking. 
Perception, learning, and inference are active processes 
that unfold dynamically over time, involve contin-
ual feedback from context and prior knowledge, and 
are largely unsupervised.

Object-Based, Causal Models
In contrast with models that solely perform classifica-
tion or action selection, understanding involves build-
ing causal models of objects, relationships, actions, and 
entire situations, and flexibly using these models to 
predict and act in the world. Here, the term object refers 
to any discrete conceptual entity, and causal implies 
that a model captures spatio-temporal relationships of 
causality among parts of a situation. Such models are 
built on top of the core knowledge described above.

Metacognition
Understanding seems to require not only causal 
models of the world, but causal models of our own 
thinking. The ability to model one’s own thinking 
processes is known as metacognition, and allows us to 
explain and predict our own thought processes and 
decisions, and map them onto the thought processes 
of others. Moreover, metacognition is what makes 
active perception, learning, and inference possible 
in that it allows an organism to know that it needs 
additional information to solve a problem; metacog-
nition guides the type of information that is sought 
and where (or from whom) it must be obtained.

Embodiment
The embodied-cognition hypothesis states that under-
standing in living systems arises not from an isolated 
brain but rather from the inseparable combination of 
brain and body interacting in the world. Supporters  
of this hypothesis argue that a disembodied brain 
(analogous to most of today’s AI systems) cannot  
achieve humanlike (or animal-like) understanding. 
This hypothesis has long been debated in many fields, 
but over the last decades evidence has emerged from 
neuroscience, psychology, and linguistics that sup-
ports the essential role of the body in virtually all 
aspects of thinking. In neuroscience, such evidence 
includes the discovery of mirror neurons as well as the 
surprisingly extensive connections between motor 
and cognitive areas in the brain in both humans and 
nonhumans. In developmental psychology it appears 
that cognitive development is often triggered by a 
child’s developing motor skills (for example, a child 
develops understanding about other people’s goals 
only when the child herself is able to start reaching 
for objects; Robson and Kuhlmeier 2016). Cognitive 
psychology has provided evidence that even abstract 
concepts are understood via mental simulations of 
physical actions (Barsalou 1999). In linguistics, the 
analysis of metaphors has indicated that abstract 
concepts are often understood via physical metaphors 
(for example, social interaction is grounded in the 
perception of temperature: “she greeted me warmly” 

or “he gave me the cold shoulder”; Lakoff and Johnson 
1980; Williams and Bargh 2008). These are just a few 
examples of interdisciplinary evidence for embodied 
cognition. However, these ideas remain controver-
sial and the notion of embodiment needs further 
clarification and refinement.

Evolutionary Considerations
In our workshop discussions, we focused as well on the 
evolution of neural structures and perceptual capabil-
ities that make embodied understanding possible. 
Embodiment itself is not sufficient for understanding:  
while Autonomous robots routinely perceive features 
of their environment and integrate this information 
in neural networks to achieve a specified goal, 
autonomous cars and vacuum cleaners have not yet 
achieved humanlike understanding. A shared brain 
morphology and organization gives humans, and 
to some extent other animals, a common structure 
to translate signals perceived about the external 
environment into an internal representation that 
appears essential to understanding. As one example, 
there is evidence that an evolved set of neural circuits 
underlie human and animal intuitive understanding 
of numbers. The way the brain encodes numbers 
may explain why the number line is such an easily 
grasped metaphor (Dehaene 2011).

If a common internal organizational structure for 
information representation and processing is at the 
core of understanding, can AI surmount the barrier 
of meaning without sharing this underlying neural 
architecture and its evolutionary history? Perhaps 
the particular underlying structure of the brain is not 
as central to understanding as the evolutionary process 
itself. In evolutionary robotics, both the structure of 
the internal representation and the embodied agent’s 
responses to the environment emerge from repeated 
interactions in that environment (Hecker and Moses 
2015; Nolfi et al. 2016). Such an evolutionary approach 
may be a path toward understanding even if that 
understanding is encoded in structures very different 
than the human brain.

Sufficiency of the Information  
Processing Metaphor
In our workshop, discussion of the embodiment 
hypothesis led to a related discussion about the suf-
ficiency of the information processing metaphor. In 
AI, and in much of cognitive science, intelligence is 
typically framed as information processing. The idea 
is that cognition is a form of computation — a set of 
operations on inputs (for example, perceptions) that 
gives rise to outputs (for example, motor activities). 
At our meeting, the discussion around embodiment 
gave rise to questions about whether this framing of 
intelligence is sufficient to explain and capture the 
notion of understanding. Meeting participants gave 
examples of Caenorhabditis elegans, jumping spiders, 
and other simple creatures for which extensive data 
exists about the brain, but we still don’t understand 
how brain processes give rise to behavior. It may be 
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that the pure information processing metaphor is not 
sufficient, and that other frameworks might give the  
insights that we need. Some proposals for such frame-
works include free energy principles, control theory, 
dynamical systems theory, and ideas from biological 
development. It may be that an entirely new frame-
work is needed for a full account of cognition.

Are We Misframing  
the Learning Problem?

Beyond the correlates of understanding, a major dis-
cussion topic of the workshop was whether, if the 
goal is to create understanding in machines, the cur-
rent framing of how learning takes place in AI is mis-
guided. Supervised machine learning (ML) is often 
framed in terms of distributions over the training 
and test data. In fact, the theoretical basis for much 
of ML requires that training and test examples are 
independently and identically distributed. In con-
trast, human learning — and teaching — is active, 
sensitive to context, driven by top-down expecta-
tions, and transferable among highly diverse tasks, 
whose instances may be far from independently 
and identically distributed. Moreover, some work-
shop participants argued that human learning 
focuses intentionally and preferentially on non- 
independently and identically distributed samples. 
A developmental psychologist at our meeting gave 
the example of Motherese: the language samples that 
mothers (unconsciously) target to their babies. Stud-
ies have shown that Motherese does not consist of 
independently distributed samples of phonemes, but 
rather pushes extremes — phonemes that are close 
to the phonetic boundary. Babies seem to selectively 
pay more attention to these edge cases than to nor-
mal language, and to readily generalize from them.

Going further, modern AI systems often focus on 
the optimization of a cost function. It’s unclear what 
should be optimized to achieve the kinds of correlates 
of understanding described in the previous section, 
or even if optimization itself is the right framework 
to be using.

Another topic of discussion at the workshop was 
the relatively short and narrow life experienced by 
ML systems. ML systems are typically trained on nar-
row problems, using highly restricted datasets that 
are not necessarily ecologically relevant for devel-
oping understanding. Moreover, most research ML 
systems are short-lived; they are created for a particular 
set of experiments (or a paper) and then disappear. 
Unlike living intelligent systems, these ML programs 
do not experience pressure to develop abstract, trans-
ferrable representations. Indeed, it may not be pos-
sible to develop humanlike abstract representations 
without the kind of developmental trajectory that  
human infants experience. Alan Turing himself pro-
posed something similar: “Instead of trying to pro-
duce a programme to simulate the adult mind, why 
not rather try to produce one which simulates the 
child’s?” (Turing 1950). Indeed, creating a program 

with the commonsense abilities of an 18-month–old 
baby is currently the focus of a multiyear Defense 
Advanced Research Projects Agency effort (Turek 
2018).

Benchmark Datasets  
as Drivers of Research in AI

Modern AI research, particularly in the field of ML, 
often focuses on benchmark datasets. Examples of 
widely used benchmarks include ImageNet (Deng 
et al. 2009) and Microsoft COCO (Lin et al. 2014) for 
object recognition, the Stanford Question Answering 
Dataset (Rajpurkar et al. 2016) for question-answering, 
and the Workshop on Statistical Machine Transla-
tion datasets for machine translation (Luong and 
Manning 2016). Several discussions at our workshop 
focused on the role of such widely used benchmarks 
in promoting and testing systems for visual and lan-
guage understanding.

Several workshop participants argued that, while 
such benchmark datasets have done a great service 
in pushing the field forward, there are some down-
sides to the strong focus on such datasets. Due to  
the incentives the field puts on successful perfor-
mance on specific benchmarks, sometimes research 
becomes too focused on a particular benchmark 
rather than the more general underlying task. For 
example, while performance of deep neural networks 
on various ImageNet tasks approaches human level 
performance, the more general task of object detec-
tion and visual recognition more generally remains 
far below the level of humans. Many of the articles 
published using ImageNet focused on incremental 
improvement on the all-important state of the art  
rather than giving any insight into what these net-
works were actually recognizing or how robust they 
were. Moreover, work that explores novel, interest-
ing ideas but does not meet the state of the art is 
often hard to publish at top conferences. In short,  
benchmarks can have the effect of pushing the 
research community into an exploit rather than an 
explore mode of research.

Another example is the widely-used Stanford Ques-
tion Answering Dataset benchmark (Rajpurkar et al.  
2016) for natural-language question-answering. While 
AI systems quickly achieved superhuman performance 
on this dataset, the more general task of question- 
answering remains very challenging for machines. 
It seems that there are exploitable biases that allow 
systems to use what one workshop participant called 
“cheap tricks” to perform well on the Stanford Ques-
tion Answering Dataset (and related natural language 
processing datasets) without actually understanding 
the text in the way human readers do.

Another striking example of the existence of 
exploitable biases is on the Winograd Schema data-
set (Levesque et al. 2011). This task and dataset were 
explicitly constructed to avoid such biases; in propos-
ing this task, the authors write: “We want multiple- 
choice questions that people can answer easily. But 
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we also want to avoid as much as possible questions 
that can be answered using cheap tricks (aka heuris-
tics).” However, it seems that this dataset does con-
tain subtle exploitable biases that allow statistical 
models to do well without what we generally think 
of as understanding (Sakaguchi et al. 2019). One work-
shop participant commented that “in any set chal-
lenge there are likely to be cheap tricks that simple 
algorithms can exploit.”

How should we design benchmark datasets that 
promote deeper machine understanding? Some work-
shop participants argued that benchmark datasets 
should be relatively small, and that projects should 
focus on testing on many independently created data-
sets rather than a single benchmark. Others argued 
that it is important that any given benchmark doesn’t 
stay around too long, new benchmarks should be 
created constantly, and previously published sys-
tems should be evaluated on these new benchmarks 
rather than just put to rest. Others argued that AI 
research should not focus on benchmarks at all, and 
that the community should be challenged to think 
about how research might be carried out without 
competitions on benchmarks.

Conclusions
The discussions at this workshop were an attempt to 
make sense of understanding in both living systems 
and in machines. Understanding is an ill-defined 
quality that seems to be a fundamental part of the 
robust, general intelligence we see in humans and 
other thinking systems. Our limited conception of 
what understanding actually involves makes it hard 
to answer basic questions: How do we know if a system  
is actually understanding? What metrics can we use?  
Could machines be said to understand differently 
from humans? What is the difference between merely 
representing some aspect of the world, as a ther-
mostat represents temperature, and truly under-
standing what it is that you are representing? One 
workshop participant commented: “In my opinion, 
the obligation is upon those who believe that under-
standing is some unified, generalized process to show 
how it is such in human cognitive and neurosci-
ence data.”

This echoes the decades-old thoughts of AI pioneer 
Marvin Minsky:

Though prescientific idea germs like “believe,” “know,” 
and “mean” are useful in daily life, they seem tech-
nically too coarse to support powerful theories. . . .  
Real as “self” or “understand” may seem to us today . . . 
they are only first steps towards better concepts.

Minsky went on, pointing out that our confusions 
about these notions

. . . stem from a burden of traditional ideas inadequate 
to this tremendously difficult enterprise. . . . [T]his  
is still a formative period for our ideas about mind. 
(Minsky 1980)

Of course it is not unusual for ill-defined concepts 
to be central in science: Think, for example, of gene 
in biology or force in physics, both of which are still 
in the process of being fully understood. New ideas at  
the boundaries of neuroscience, cognitive science, and 
AI may allow us to make further scientific progress 
on the inadequate ideas Minsky describes. While our 
workshop discussions reminded us of how far there 
is to go to understand understanding, it also made 
clear the importance of interdisciplinary collabora-
tion to overcome the barrier of meaning.
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