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Abstract 
What are the powerful new ideas in knowledge based de- 

sign? What important research issues require further investi- 
gation? Perhaps the key research problem in AI-based design 
for the 1980’s is to develop better models of the design process. 
A comprehensive model of design should address the following 
aspects of the design process: the state of the design; the goal 
structure of the design process; design decisions; rationales for 
design decisions; control of the design process; and the role 
of learning in design This article presents some of the most 
important ideas emerging from current AI research on design, 
especially ideas for better models of design It is organized into 
sections dealing with each of the aspects of design listed above 

What is design? Why should we study it? How does 
it relate to AI? Let’s address these questions one at a time. 

Design can be viewed as a dialectic between the de- 
signer and what is possible (Tong, 1984). The purpose 
of design is to construct a structure (artifact) description 
that: 

1. Satisfies a given (perhaps informally) functional 
specification 

2. Conforms to limitations of the target medium, e.g., 
is an executable program in a given language, or is a chip 
layout for some fabrication technology 

3. Meets implicit or explicit requirements on perfor- 
mance and resource usage, e.g., time, space, power, cost 

4. Satisfies implicit or explicit design criteria on the 
form of the artifact, e.g., style, simplicity, testability, main- 

This report grew out of the July 1984 “Rutgers Workshop on Knowl- 
edge Based Design Aids: Models of the Design Process,” attended 
by a few dozen invited AI researchers working on automated design 
The workshop was organized by Louis Steinberg; the planning com- 
mittee included David Barstow, Tom Mitchell, and myself I was 
appointed to write a report placing the presented ideas in a common 
framework The report became two papers One of them, published 
in the SIGART Newsletter (Mostow, 1984c), reports what was said 
in the workshop talks and panels. In contrast, this paper presents 
a more personal view of the field I am grateful to Michelle Kraus, 
Bill Swartout, Steve Minton, Bob Balzer, and David Wile for several 
suggestions which improved the paper Any errors are of course my 
own 
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tainability, reliability, reusability, manufacturability, mod- 
ularity, etc. 

5. Satisfies restrictions on the design process itself, 
such as its length or cost, or the tools available for doing 
the design (e.g., drafting table versus graphic editor). 

Thus, design is largely a process of integrating con- 
straints imposed by the problem, the medium, and the 
designer. 

The design process may have other results besides a 
description of the designed artifact. For example, the de- 
signer may be required to produce documentation on how 
to use the artifact, a justification that the designed arti- 
fact is correct, or a design rationale justifying the design 
decisions. 

Design is an important human activity. As a psycho- 
logical phenomenon, it is an interesting kind of complex 
problem-solving, as yet incompletely understood. In eco- 
nomic terms, design pervades our high-tech society. It is 
probably safe to say that billions of dollars are spent an- 
nually cm various kinds of design. Moreover, design errors 
cost an untold amount in lives and property: Consider the 
potential cost of a single design error in a nuclear reactor, 
a space shuttle, or a missile system. Thus scientific study 
of design is easily justified by its potential for improving 
the cost or reliability of design. 

Mechanizing design-moving the design process into 
the machine-offers to improve both cost and reliability. 
To the extent that design can be automated, the produc- 
tivity of human designers can be enhanced. To the extent 
that assumptions involved in design can be explicitly rep- 
resented and automatically enforced, design errors result- 
ing from violated assumptions can be avoided. 

AI addresses the mechanization of complex, knowledge- 
intensive tasks; design is certainly such a task. Thus, AI is 
a natural discipline for the study of design, and in fact a 
number of AI researchers have recently been studying de- 
sign, especially hardware and software design. The study 
is still at an early stage in that much of the design process 
is still poorly understood, let alone automated. We are 
still developing our models of the design process. 

Developing better models is the key research prob- 
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lem in AI-based design today. A comprehensive model of 
design should address the following aspects of the design 
process: 

1. The state of the design. Design involves a series of 
artifact descriptions at various levels of detail. 

2. The goal structure of the design process. If design is 
a purposive activity, goals guide the choice of what to do at 
each point. These goals are not artifact descriptions, but 
prescribe how those descriptions should be manipulated. 

3. Design decisions. Given a goal, there may be several 
plans for achieving it. Design decisions represent choices 
among them. 

4. Rationales for design decisions. The rationale for 
choosing a particular plan to achieve a goal explains why 
the plan is expected to work and why it was selected in- 
stead of the alternatives. 

5. Control of the design process. Guiding design re- 
quires choosing which goal to work on at each point and 
choosing which plan to achieve it, with. 

6. The role of learning in design. Solving a design 
problem requires both general knowledge about the do- 
main and specific knowledge about the problem. Learning 
is a way to acquire such knowledge. 

This article presents two kinds of prescriptions for bet- 
ter design models. Idea #i indicates an idea successfully 
exploited in one or more of the research projects described 
in (Mostow, 1984c). Issue #i indicates a direction in 
which existing work needs to be extended. 

Making the state of the design explicit 

We need to improve our representations of the design 
process. To model the way design really occurs, we need 
to represent the intermediate states in the design process, 
i.e., the successive descriptions of the artifact being de- 
signed. This requires the ability to represent the partial 
state of a design in which some but not all design decisions 
have been made. It is also important to represent abstrac- 
tions of the design process we use for reasoning about it. 
(Such abstractions are not only significant as psychological 
constructs but are also useful as views to be manipulated 
by automated design aids.) For example, one way to ab- 
stract the design process is to omit the dead-end branches 
explored along the way. 

A consensus has emerged that: 

Idea #l. An idealized design history is a useful abstrac- 
tion of the design process. 

Such a structure is useful in reasoning about designed 
artifacts. It can play a role in several aspects of design: 

l Documentation (Balzer 1984). A record of the deci- 
sions leading to a design is helpful in developing and 
maintaining it. 

l Understandability (Scherlis & Scott). A transforma- 
tional derivation of an algorithm neatly captures its 
structure. 

l Debugging (Kedar-Cabelli, Genesereth, Hamscher & 
Davis). When the actual behavior of a system fails to 
match its intended behavior, it is easier to localize the 
reason for the failure given a record of how the system 
specification was decomposed into successively smaller 
components and implemented. 

l Verification (Lam & Mostow, Barrow). A formal deri- 
vation of a design from a specification via a series 
of correctness-preserving transformations constitutes 
a proof that the design implements the specification. 

l Analysis (Kelly, Singh). A structured history of a de- 
sign includes the functional specification and actual 
implementation of its components at, various levels of 
detail. This information permits simulation of the de- 
sign at multiple levels of abstraction, as well as rea- 
soning about how a change in one part of the design 
affects others (constraint propagation). 

l Explanation (Swartout) . To explain its own behavior, 
a program needs access to the sort of knowledge that 
went into its design and would be included in a design 
history. 

l Modification (Steinberg & Mitchell, Wile). If the de- 
sign of an artifact is properly recorded, redesigning it 
may be largely accomplished by “replaying” its record- 
ed design history. 

l Automation (Balzer et al. 1976, Fickas 1982, Green et 
al., Kowalski & Thomas, Smith, Rich et al., Barstow, 
Kant & Newell, Brown & Chandrasekaran 1984, Sub- 
ramanyam). Automatic design may be achieved by 
applying a series of transformations to derive a design 
from its specification, or by modifying and combining 
such derivations. 
It is common to characterize a design history as a se- 

ries of transformations leading from specification to imple- 
mentation. However, further investigation reveals some 
important differences between different transformational 
models of design. In the abstract refinement model, each 
transformation implements a component or decomposes it 
into subcomponents (Mitchell et al. 1981, Smith, Rich et 
al., Kant & Newell). Since top-down refinement doesn’t 
handle goal coupling well, systems based on abstract re- 
finement typically use constraint propagation to achieve 
consistency between different parts of the design. In fact, 
for routine design tasks, the abstract refinement process 
may be precompiled into a standard structure of parame- 
terized components; in such cases (for example, air-cylinder 
design), the design process consists totally of reasoning 
about constraints in order to determine appropriate pa- 
rameter values (Brown & Chandrasekaran, 1984). 

The transformational model (Balzer et al. 1976, Green 
et al., Lam & Mostow, Scherlis & Scott, Mostow 1981) 
converts a specification into an implementation via a se- 
quence of correctness-preserving transformations from one 
complete description to another. A single transformation 
may operate on several components at once. Thus this 
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model is more general than abstract refinement, which is 
limited to steps that replace a single component with a 
more detailed description of it. However, this generality 
comes at the potential cost of increased complexity, since 
a transformation on a complete description must deal with 
more information than a transformation that refines a sin- 
gle component. 

Idea #2. A transformation sequence can be viewed as an 
executable program for implementing the specification. 

If the specification is modified, it may be possible to 
reimplement it by replaying the derivation of the original 
implementation (Darlington & Feather 1979, Wile 1983, 
Mitchell et al. 1983). A specification change may ne- 
cessitate patching the transformation sequence in places 
where the original design decisions are no longer appro- 
priate (Carbonell, 1981). However, this is much cleaner 
than patching the end product, where the effects of the 
revisions may be widespread. 

A couple of more specific ideas for representing the 
states of the design process and the transformations be- 
tween them are emerging: 

Idea #3. Dataflow graphs with attached assertions are a 
useful representation for partial algorithm designs. 

First, dataflow graphs abstract away extraneous de- 
tails found in program-like textual representations. For ex- 
ample, they can capture decisions about which operations 
are to be performed, without requiring that their order be 
fully specified. Second, new information can be added to 
an annotated dataflow graph in small increments. This 
makes it a good representation for a fine-grained model 
of algorithm design. Finally, a dataflow graph can be ex- 
ecuted on symbolic and test-case data (Kant & Newell, 
Rich et al.). This is a powerful technique for finding places 
where the algorithm description is inconsistent or incom- 
plete. 

Idea #4. Source-to-source program transformations are 
a promising technique for representing hardware design 
methods. 

By encoding circuits as programs, we can apply our 
knowledge about programming, debugging, etc., to the 
less-understood domain of VLSI (Mostow, 1983a). In par- 
ticular, we can apply program transformation techniques 
to derive hardware designs correctly and mechanically. For 
example, to implement a multiplication operator, we can 
use an algebraic transformation to decompose it into a sum 
of powers of two. Another benefit representing circuits as 
programs is that it promotes interchangeability of hard- 
ware and software implementations of the same module 
(Subramanyam) . 

Making the goal structure explicit 

Somewhat surprisingly, most of the systems presented 
at the workshop leave the goal structure of design implicit. 

In the pure transformational paradigm, a transforma- 
tion sequence partly explains how a design was derived, 
but doesn’t explain the purpose of each step. For exam- 
ple, it doesn’t distinguish the few transformations that 
represent key design decisions from the many prepara- 
tory steps that serve to transform the design so that a 
key transformation can be applied. In the abstract refine- 
ment paradigm, an unrefined component specification cor- 
responds directly to (and can therefore be viewed as rep- 
resenting) a goal of the form “implement <component>.” 
Subgoals can arise to resolve mismatches between a goal 
and its initial solution. (In planning, this is called “oper- 
ator subgoaling.“) For example, if a circuit component is 
implemented using a chip that produces parallel output, 
but the component needs to produce serial output, the 
subgoal is “convert the chip output from parallel to se- 
rial” (Mitchell et al., 1983). However, other kinds of goals 
are not represented so directly, e.g., “minimize the number 
of different chip types used in the circuit,” or “design the 
circuit so as to require a minimum of wiring.” 

Idea #5. The goal structure of design can be roughly 
modeled as a tree. 

The goal tree model makes explicit the goal struc- 
ture motivating the transformation sequence leading from 
specification to implementation (Wile 1983, Balzer 1984, 
Fickas 1982, Mostow 1983, Kant & Newell). Like ab- 
stract refinement, this model represents the design his- 
tory as a kind of tree, but one whose nodes are goals and 
transformation steps rather than specifications and com- 
ponents. Some goals arising in the course of implementing 
a high-level program specification might include “reformu- 
late <non-executable construct> into executable code,” 
“optimize <part of program>” and “eliminate <expensive 
construct>.” Since the transformations used to achieve 
a goal may affect multiple portions of the design, they 
may give rise to further goals, possibly in a different sub- 
tree. Moreover, a transformation may help achieve mul- 
tiple goals, and goals may be interleaved. However, these 
phenomena are not explicitly represented in the simple 
goal tree model. Figures 1 and 2 illustrate the two mod- 
els. 

Idea #S. An explicit goal structure makes it easier to 
replay the design process. 

The goal structure motivating the transformation se- 
quence helps the user figure out where to patch it when 
the replay mechanism encounters a transformation step 
that no longer applies. For example, if the goal tree in- 
cludes a goal to eliminate a particular construct, and that 
construct is absent in the revised specification, the sub- 
sequence of transformations under that goal need not be 
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Abstract refinement decomposes a specification S into com- 
ponents of implementation I. 

Figure 1. 

replayed. (Wile, 1983) describes a goal tree representation 
for the development history of a program, and a mecha- 
nism for replaying it that lets the user take over at points 
where replay fails. (Mitchell et al., 1983) describes a sim- 
ilar mechanism used in circuit redesign. 
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The goal tree model refines a goal into an executable trans- 
formation sequence, which converts a specification S intc 
an implementation I. 

L 
Figure 2. 

Idea #7. The complete goal structure of a design is too 
detailed for a human designer to document. 

Thus design should be performed by machine, but 
guided by the human designer (Scherlis & Scott, Balzer 
1981). This human-aided machine design paradigm dif- 
fers from the machine-aided design paradigm in which the 
human does the design and the machine provides support 
tools without understanding the design decisions. 

Issue #l. Goal structure representations should be ex- 
tended to adequately represent interacting goals. 

A goal tree can represent certain subgoal-supergoal, 
conjunctive, disjunctive, and sequential relationships, but 
fails to capture such phenomena as: 

l Goal conflicts-two goals cannot both be achieved. 

l Goal sharing-achieving a subgoal helps achieve a goal 
other than its ancestors in the goal tree. 

l Goal prerequisitesPone goal must be achieved before 
another goal in a different part of the goal tree (i.e., 
not its sibling or ancestor). 

Issue #2. Additional kinds of goals in design must be 
represented. 

While each kind of goal listed below plays an impor- 
tant part in guiding the design process, I know of no design 
system that explicitly represents all of them. 

1. Functionality goals have the form “implement 
<functional specification>.” This kind of goal is 
represented in the abstract refinement paradigm 
by an unimplemented specification 

2. Performance goals seek to satisfy requirements on 
the efficiency, cost, reliability, etc., with which the 
designed artifact satisfies its functional specifica- 
tion. They are often used as criteria for selecting 
among alternative implementations of a functional 
specification. Some systems represent such re- 
quirements as constraints attached to a functional 
specification to restrict how it is implemented. 

3. Knowledge goals seek to gather information needed 
to carry out the design. For example, rough de- 
sign achieves such goals as identifying critical com- 
ponents. These goals ought to be made explicit. 
The idea of making knowledge acquisition an ex- 
plicit goal in a problem solver is discussed in (Fox, 
1981). 

4. Design process goals govern the route taken to 
arrive at a design, not just the end product itself. 
For example, limiting the time and cost of the 
design process is often an important goal, and can 
be important in explaining the design of the final 
product. A system that uses such goals explicitly 
would be reflective, i.e., would reason about its 
own behavior. 

Formalizing these various kinds of goals and represent- 
ing them explicitly should facilitate clean, flexible control 
of the design process. 

Making the design decisions explicit 

The goal tree model represents the goal structure un- 
derlying a design, but doesn’t explain how a goal is reduced 
into subgoals, t.e., by what method. It also omits the al- 
ternative methods that might have been used to achieve 
the goal in a different way. 

Idea #8. Decisions can be roughly modeled as choice 
sets. 

In the explicit choice model, the goal tree is anno- 
tated with the competing methods for achieving each goal. 
For example, (Fickas, 1982) describes a system that con- 
structed an explicit goal tree to record the software de- 
velopment process. Its nodes were program development 
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goals that described how to transform the program de- 
scription, which was not itself a node in the tree. The 
system had problem reduction rules (called “methods”) 
for refining goals into subgoals and ultimately into exe- 
cutable program transformations; the leaves of the goal 
tree formed a sequence of transformations leading from 
an initial specification-level program description to its fi- 
nal implementation. To select among alternative methods 
for achieving a development goal, conflict resolution rules 
called “selection criteria” were used. The goal tree was an- 
notated with the methods applicable to each goal and the 
selection criteria responsible for which one was actually 
used. 

Issue #3. Design assumptions and commitments should 
be made explicit. 

Design can be viewed as a series of commitments and 
the optimizations that exploit, them (Scherlis & Scott). 
We need to develop representations of the design process, 
its intermediate states, and its idcalizcd histories, that ac- 
count for the assumptions and commitments made in the 
course of design (Balzer, 1984). While systems exist which 
make assumptions and add constraints, we need to develop 
mechanisms that explicitly reason about whether to make 
a particular assumption or commit to a design choice. 

Issue #4. Decision-making should be represented as an 
explicit goal. 

While systems like Fickas’ (Fickas, 1982) partly cap- 
ture design decisions, listing the set of alternative methods 
at each point is an incomplete representation of decision- 
making. We need to develop design models that repre- 
sent making a decision as an explicit goal which can be 
reasoned about. For example, given the goal of selecting 
between two implementation strategies, a designer might 
create subgoals to construct a rough design based on each, 
compare them, and choose accordingly Thus learning, in 
the sense of gathering information about a particular de- 
sign problem, can be viewed as a deliberate activity in 
design. More on this later. 

For instance, LIBRA (Kant, 1979) used a combination 
of decision heuristics and algorithm analysis to guide the 
process of program synthesis by estimating the efficiency 
of the programs produced by alternative implementation 
strategies. Such estimates were used to choose what order 
to work on implementation goals, what order to consider 
alternative implementations, and which ones to choose. 
LIBRA used analysis to identify potential bottlenecks in 
the program, worked on them earlier, and allocated design 
resources in proportion to the estimated impact of the de- 
cision. If there were sufficient resources, it would expand 
alternatives into more detail in order to obtain more accu- 
rate cost estimates for them. One can view this top-down 
expansion of an implementation alternative as a form of 
rough design. 
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In general, before going ahead with rough designs, a 
designer might estimate how long they would take and 
whether the expected difference between the alternative 
implementation strategies warrants the extra effort. The 
designer might even reason about whether to make such an 
estimate, and whether to reason about that, and so forth. 
To cut, off all this contemplation and actually make a deci- 
sion, a processing architecture is needed-a built-in inter- 
preter that knows when to stop thinking about decisions 
and actually make them. This is true of problem-solving in 
general, not just design. (Laird & Newell, 1983) provides 
one example of a general problem solving architecture in 
which decisions about what to do next are represented ex- 
plicitly. 

A comprehensive model of decision-making would ex- 
plicitly represent the following processes: 

Frame a decision to be made. (How does a designer 
realize a decision is needed?) 
Generate alternatives (When is it OK to stop?) 
Establish criteria for comparing them. (How do 
these relate to higher-level goals?) 
Evaluate them according to those criteria (How 
careful should the evaluation be?) 
Choose an acceptable alternative. (What consti- 
t,utes enough information to choose?) 

Retract it if it proves unsatisfactory. (When should 
a decision be reconsidered?) 

Existing design systems tend not to deal explicitly 
with all these aspects. In particular, the simplistic model 
of a decision as selecting among an explicit set of alterna- 
tives ignores the problems of framing the decision, gener- 
ating the alternatives, and choosing selection criteria. 

Making the design rationale explicit 

One can ask diffcrcnt kinds of ‘Lwhy” questions about 
a design: 

Why did the designer perform that transforma- 
tion or solve that subgoal? Answer: To achieve its 
supergoal zn the goal tree. 

Why did the designer think a plan to perform some 
transformations or solve some subgoals would 
achieve its goal? Answer: A proof, or less formal 
Justification, of the plan for achievzng the goal 

Why did the designer choose one plan rather than 
another? Answer: A proof or other explanation of 
why that plan satzsfies a given set of deszgn crzteria 

better than the alternatives. 

Why did the designer use a particular set of crite- 
ria to compare alternatives? Answer: A proof or 
other explanation of why those criterza are appro- 

przate, quuen the tradeoffs of the design space and 
the deszgner ‘s preferences. 

design rationale explains why a goal was achieved 
in a particular way. The ” correctness” rationale explains 



why the particular plan used to achieve the goal ought to 
work. The “appropriateness” rationale explains why that 
plan was chosen instead of some other plan. 

Idea #9. Rationales are usefkl in replaying the design 
history to solve a new problem. 

If a goal in the old problem was solved using some 
plan, and the reasons it worked also hold true in the new 
problem, the plan ought to work in the new problem as 
well. Similarly, if the reasons for selecting that plan are 
still valid in the new problem, the same plan should be 
selected; otherwise, some other plan might be more ap- 
propriate (Carbonell 1983). 

Idea #lo. Formally proving that a component satisfies 
its specification has uses besides the obvious one of verifi- 
cation. 

The CYPRESS system (Smith) uses a constructive 
proof to derive a specification of a component from specifi- 
cations of related components and how it’s related to them. 
CYPRESS has a general Divide and Conquer schema with 
a Decompose component that splits an input problem into 
two subproblems and a Compose component that com- 
bines their solutions. Given a particular choice of a De- 
compose operator for some problem (e.g., sorting), CY- 
PRESS deduces what the Compose operator must, be, and 
vice versa. 

A proof that a component satisfies its specification can 
be generalized into a rule for implementing similar compo- 
nents automatically in the future (Mitchell et al, 1984a). 
The Rutgers Learning Apprentice project uses correctness 
rationales to learn general rules for solving goals of the 
form “Design a circuit that satisfies <specification>“: it 
generalizes from an example of a particular hand-designed 
circuit that satisfies a specification and a rationale for why 
it does. However, representing appropriateness rationales 
is much harder, since they involve look-ahead: a design de- 
cision is most naturally explained in terms of its eventual 
impact on parts of the design that have not been coin- 
pleted at the time the decision is made. (Fickas, 1982) in- 
cluded some rules for selecting among alternative designs, 
but they were rather weak and avoided this problem of 
representing something that isn’t there yet. In principle, 
given an appropriateness rationale one could generalize it 
into a rule for selecting among implementations; see Learn- 
ing and Design, below. 

Idea #ll. What’s good for explanation is good for de- 
sign. 

The ability to generate machine explanations of a dc- 
signed artifact, is not an add-on feature; it strongly influ- 
ences the design process, since it requires a design ratio- 
nale so detailed that the most feasible way to construct it 
is for the design to be generated by machine. Building in 
an explanation capability forces the reasoning behind the 

design to be made explicit-which tends to lead to a more 
principled design (Swartout). 

Understanding how to control the design process. 

How do designers decide what to do next? We need to 
uncover the reasoning behind such decisions and represent 
it explicitly. 

Issue #5. We need to explicate strategies for how to han- 
dle interacting goals. 

Given two goals, various relationships between them 
are possible: 

l Independence: The goals do not affect each other. 
l Cooper&on: Achieving one goal makes it easier to 

achieve the other. 
l Competitzon: One goal can be achieved only at the 

expense of the other. 
l Interference: One goal must be achieved in a way that 

takes the other goal into account. 

Some research questions concerning multiple goals are: 

How can the relationship between two goals be in- 
ferred? 
What control strategies are appropriate to this rela- 
tionship? 
If more than one control strategy is appropriate, which 
one should be used? 

Questions 1 and 3 appear to be open problems. Ques- 
tion 2 is partly addressed below by listing some control 
strategies suited to the various goal relationships. 

Independent goals can bc achieved in any order, with 
the same net result. Thus no special control strategy is 
needed to order them; this decision can be made arbitrar- 
ily, or based on other factors, e.g., relationships to other 
goals. 

Cooperative goals should be achieved in whichever order 
best exploits the relationship among them: 

l Achieve prerequisite first: If one goal satisfies a pre- 
condition for achieving the other, achieving it first may 
generate information (e.g., variable bindings) needed 
to solve the second goal. 

l Achieve more general goal jirst: If one goal subsumes 
the other, achieving it first satisfies the less general 
goal without any additional work. This usually makes 
more sense than solving the simpler goal first and then 
trying to extend the solution to cover the more general 
case-but not always: 

0 Learn hy solvzng easier goal first: If two goals are sim- 
ilar but one is harder, solving the easier goal first rnay 
serve as a way to generate additional knowledge use- 
ful in solving the harder goal. This strategy can be 
effective if the designer is capable of learning from ex- 
perience. 
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Competitive goals must be integrated according to their 
relative importance: 

0 Sacrifice less important goal: If one goal completely 
dominates the other, ignore the less important goal. 

l Relax goal: If both goals are important, relax one of 
them to a version that is weaker than the original but 
compatible with the other. 

l Treat as trade-off: If the goals are relative preferences 
rather than absolute predicates, treat the competitive 
relationship (e.g., between time-efficiency and space- 
efficiency) as a tradeoff, and choose a compromise so- 
lution to optimize (or sat&ice) some overall utility 
function (e.g., minimize a weighted sum of time and 
space). 

Interacting goals can be achieved in several ways, depend- 
ing on the nature of the interaction. For example, suppose 
one goal is to implement function F as a VLSI circuit, and 
another goal is to make the circuit fit on a single chip. 
Several strategies are possible: 

l Achieve goals sequentzally: First solve one goal, and 
then transform its solution to achieve the other goal. 
For example, first implement a circuit to compute F 
without worrying about area, and then use a com- 
paction algorithm to make it fit on one chip. This 
strategy runs into difficulty when commitments made 
in the course of solving the first goal make it hard to 
solve the second. 

l Defer commitments: Order the goals so as to start 
with whichever decisions impose fewest restrictions on 
the form of the solution. The idea is to postpone 
decisions not forced by the problem, thereby leaving 
as much freedom as possible for achieving subsequent 
goals. 

l Make critical decisrons first: Order the goals so as to 
start with whichever decisions are most constrained 
by the problem. For example, design the most con- 
strained component first. Postponing the constrained 
decision until later in the design would increase the 
risk of dead ends, since design commitments made 
in the interim might well render the already highly 
constrained decision over-constrained. By solving the 
most constrained problem first, before making such 
commitments, such dead ends can be avoided. This 
idea is closely related to but distinct from the notion 
of deferring commitments. The critical path strategy 
says to make a decision as early as possible if it is 
highly constrained by the design task, while the de- 
ferred commitment strategy says to postpone a deci- 
sion as long as possible if it is not. 

l Merge goals: Conjoin the two goals into a single spec- 
ification and implement it. In the example at hand, 
that would correspond to the single goal “Implement- 
F-on-a-chip,” which might be useful given methods for 
solving that goal directly. For this example, however, 
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the strategy appears useless, perhaps because the two 
goals address such different aspects of the design (func- 
tionality and area-efficiency). Goal merging may be 
more feasible for goals with a common generalization, 
For example, the goals “implement a circuit to com- 
pute A*x + y” and “implement a circuit to compute 
x + B*y” can be merged into the single goal “imple- 
ment a circuit to compute A*x + B*y” (assuming one 
circuit can be shared for both purposes). 
Use goal as selection criterion: Use one goal as a cri- 
terion for selecting among different solutions to the 
other, in the hope that the goal being used as a selec- 
tion criterion will be achieved as well. For example, 
as the function F is decomposed into primitives that 
can be implemented in hardware, choose the smallest 
implementation for each primitive. With luck, the re- 
sulting circuit will fit on one chip. This method of 
integrating two goals is not guaranteed to solve them 
both. 
Combine orderings: If both goals can be used as selec- 
tion criteria to order some set of choices, they can be 
combined erging the orderings into a partial or total 
ordering. For instance, suppose the choices are alter- 
natives for how to implement some function, and the 
goals are “optimize time” and “optimize space.” Each 
goal induces a different ordering on how the function is 
implemented. For example, if a goal constrains some 
resource consumed by the design, it can be used to 
order implementation alternatives according to some 
metric on the amount of resource they consume. Two 
such goals can be merged into a single selection crite- 
rion by using some function to combine the two met- 
rics, e.g., “minimize A*time + B*space”, where A and 
B reflect the relative importance of the two goals. Al- 
ternatively, if one goal is absolutely more important 
than the other, the secondary goal can be used solely 
to break ties-i.e., to choose among the alternatives 
ranked best by the primary goal. 
Use goal to budget: Decompose one goal into subgoals 
parallel with the decomposition of the other. For ex- 
ample, given a decomposition of F into parts, split 
the total chip area into allocations for each part. If 
each part is implemented so as to fit into its budgeted 
area, the circuit will fit. This strategy requires a good 
decompositionPin this case, an accurate estimate of 
the area required for each part of the circuit. When 
such estimates fail, some negotiation is needed to ad- 
just the allocations. 

In practice, these control strategies are used in com- 
bination. For example, consider the interactions between 
the goals of testability and area-efficiency in the design of 
a VLSI chip. A designer might achieve these goals sequen- 
tially by first transforming the circuit to make it testable 
(i.e., make each piece of circuit state settable and observ- 



able), and then applying a compaction algorithm to pro- 
duce an area-efficient layout. However, there are several 
methods for achieving testability, which vary greatly in the 
amount of chip area they use. Thus area-efficiency should 
be used as a selection criterion in choosing among them. 
Alternatively, the designer might use an area budget, al- 
locating a certain amount of chip area for test circuitry. 
This constraint would then constrain the solution of the 
testability goal. 

It is particularly interesting to study how goals inter- 
act prior to the point where they can be integrated with 
each other or incorporated into a functional specification. 
For example, what reasoning does a designer use in refor- 
mulating a goal like area-efficiency into a selection criterion 
or budget? 

Since design must solve many goals simultaneously, it 
is important to study and encode general strategies for 
integrating goals. The list of strategies mentioned here 
should be refined and extended. 

Idea #12. One way to decompose a design problem is to 
design components separately and then design interfaces 
between them. 

Interface design is an important part of bottom-up 
design, in which components are designed in detail before 
being assembled into a higher-level structure. The SYS 
program for designing systolic circuits (Lam & Mostow) 
provides an example of this process. SYS identifies the 
primitive computations in a given algorithm and designs 
cells (at the functional level) to compute them. To fit them 
together into a circuit that implements the algorithm, it 
must decide which outputs to connect to which inputs, 
and what delay elements to insert between cells so that 
the timing works out correctly. That is, to glue subcircuits 
together, it must design an interface between them. 

A similar process may arise in semi-customized design 
systems that use libraries of VLSI cells, subroutines, de- 
sign histories, or domain specifications. For example, the 
REDESIGN system (Mitchell et al., 1983) deals with digi- 
tal circuits composed out of commercially available chips. 
Using a chip to implement an abstract component may re- 
quire designing an interface to satisfy constraints on the 
abstract component that are not satisfied by the chip. For 
instance, if the chip produces parallel output, but the com- 
ponent needs to produce serial output, the interface can 
be a shift register. An example of the interface problem in 
the software domain is the cut-and-paste process of meld- 
ing together different, possibly overlapping or inconsistent 
formalizations of the same domain (Fickas, 1984b). 

An interesting issue is how to design reusable building 
blocks that can be easily combined. Adopting standard 
interface conventions is one example of a design strategy 
that promotes reusability. 

Issue #S. We need to integrate heuristic and algorithmic 

methods to perform design tasks involving large amounts 
of search. 

The TALIB system (Kim) illustrates a nice clean ap- 
proach to integrating algorithms and heuristics: use al- 
gorithms that take advice, speeding up as they get more 
knowledge. TALIB’s layout algorithm accepts topological 
constraints and searches for a layout that satisfies them. 
Adding constraints can speed up the search. 

Roach (1984) investigates the problem of integrating 
heuristic and algorithmic knowledge to generate circuit 
layouts. 

Idea #13. Symbolic execution and test-case simulation 
are a crucial part of the design process. 

Symbolic execution calls attention to missing and in- 
consistent components (Kant & Newell, Adelson & Solo- 
way). Trying out concrete test cases allows humans to 
apply knowledge they can’t use in the general case--for ex- 
ample, a person can use visual reasoning to draw a convex 
hull around a particular set of points, and then generalize 
observations about the example into conclusions useful for 
designing an algorithm. In particular, such an observation 
may provide an “Aha!” solution to an unsolved goal for a 
mind prepared by a previous attempt to solve it. That is, 
“Aha!” design may consist of creating structure to solve 
one problem, and then perceiving in it the solution to an- 
other (Kant & Newell). 

Issue #7. We need to model compiled goals and choices. 

A comprehensive deep model of a rational design pro- 
cess ought to make its goal structure explicit. However, 
the fact that a process has some goal doesn’t necessarily 
mean that a system for achieving that goal must repre- 
sent it as an explicit data structure and manipulate that 
structure in the course of the process. In both people and 
programs, certain design concerns are compiled out. For 
example: 

People are not aware of all the goals in their men- 
tal processing; work on human problem-solving has 
showed how goal-oriented novice behavior 
evolves into more procedural expert behavior (Larkin, 
Anderson et al.). An accurate cognztive model of ex- 
pert behavior on routine design tasks would quite prop- 
erly leave implicit many goals that the experts don’t 
think about while designing. 
In the register allocator of a compiler, goal structure 
and choice points have been compiled out. Rather 
than trying different assignments of variables to regis- 
ters in order to find a good one, the allocator uses an 
algorithmic method to achieve the same effect. That 
is, some of the constraints on the designed artifact 
have been compiled into the design method-a char- 
acteristic of good design, according to (Tong, 1984). 
The transformational paradigm as a whole compiles 
in the general correctness goal of making the designed 
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artifact satisfy its specification. It does this by re- 
stricting the set of available implementation operators 
to correctness-preserving transformations. 

Issue #9. Learning about a specific design problem is an 
important but poorly understood process requiring further 
study. 

Thus a design system need not represent all goals of Human designers deliberately learn about a design 
a design explicitly. Nonetheless, a complete explanation problem by doing one or more rough designs. What they 
of the system (or the design it produces) should recognize learn in the process enables them to produce a better de- 
these goals and describe how the system achieves them. sign the next time around. 

Issue #S. Cognitive models of design deserve further in- 
vestigation. 

One reason for psychological study of design is to im- 
prove our models of the design process (Adelson & Soloway, 
Brown & Chandrasekaran 1984, Kant & Newell). Top- 
down, goal-directed processing is only one way to control 
design. Evidence from protocol studies reveals other con- 
trol mechanisms at work. For example, designers seem 
to create demons that remind them to resume some goal 
when missing required information becomes available (Ad- 
elson & Soloway). They have effective strategies for recov- 
ering from failures (Brown & Chandrasekaran 1984) and 
repairing bugs (Sussman 1973, Kant & Newell). While 
much of design operates breadth-first, expert designers 
are good at identifying critical components and plunging 
depth-first to investigate them, sometimes by carrying out 
a rough design that approximates other elements (Adel- 
son & Soloway, Brown & Chandrasekaran 1984, Kowalski 
& Thomas). 

Design systems exist that incorporate this capabil- 
ity to some degree. The TALIB system (Kim) critiques 
the layout it designs, generating additional constraints to 
guide the next iteration. Some other design systems go 
through a rough-design phase (Brown & Chandrasekaran, 
Kowalski). Such problem-specific learning is a powerful 
technique for reducing the search through the design space. 

Idea #14. Search can be viewed as a kind of learning. 

Another reason for cognitive studies of design is to 
help us develop paradigms for human-machine coopera- 
tion based on a principled division of labor that exploits 
each party’s strengths and compensates for their weak- 
nesses (Mitchell et al., 1984b). (Mostow, 1984b) presents 
a taxonomy of 15 possible divisions of labor based on who 
(human or machine) does what (makes a decision or carries 
it out) when (before, during, or after machine execution). 
For example, in an interactive transformational model, the 
human repeatedly selects a transformation and the ma- 
chine applies it. In an annotated-input model, the human 
annotates components of the input specification to show 
how they should be implemented, and the machine later 
implements them accordingly. Both thcsc models combine 
human expertise in decision making (hard to explicate in 
machine-understandable terms) with the machine’s ability 
to manage all the details (hard for humans to remember) 
involved in carrying out a design decision. 

Consider a search through some space. Each time a 
candidate solution fails, the searcher “learns” not to try 
that particular solution. (This assumes that the searcher 
doesn’t consider the same solution more than once.) A 
sophisticated searcher may eliminate a whole branch of 
the search based on such a failure; that is, it ‘Yearns” 
not to try a more general class of solutions. Moreover, 
it may also use this information to decide where to look 
next. Thus learning about a problem can be viewed as an 
extremely sophisticated form of search, which exploits in- 
formation about previous attempts to eliminate large por- 
tions of the search space and steer subsequent attempts in 
more promising directions. People use this kind of learn- 
ing to converge rapidly on a solution; we need to find out 
how they do it. 

Idea #15. Learning by watching over an expert’s shoul- 
der is a fruitful paradigm for acquiring design knowledge. 

For example, Mitchell et al. (1984a) proposes a Learn- 
ing Apprentice to acquire rules for implementing and de- 
composing components. It relics on the ability to construct 
and generalize a proof that a manually designed circuit sat- 
isfies its specification (Mahadevan, 1984). The generalized 
proof is converted into a general rule for implementing (or 
decomposing) similar components in the future, just as 
ABSTRIPS (Fikes et al., 1972) generalized its robot plans 
for future use. 

Issue #lo. Techniques for acquiring informal design 
knowledge need to be developed. 

Investigating the role of learning in design 

It has been hypothesized that “problem solving and 
learning are inalienable, concurrent processes in the hu- 
man cognitive system” (Carbonell, 1981). People acquire 
various sorts of design knowledge when they solve (or fail 
to solve) a design problem. This includes both knowledge 
about the specific problem and general knowledge about 
design in the problem domain. 

While generalizing a correctness proof into an imple- 
mentation rule is an elegant way to acquire one kind of 
design knowledge, what about other kinds of design knowl- 
edge, where such proofs are infeasible? 

For example, consider the problem of acquiring the 
knowledge used to choose which method should be ap- 
plied to a given goal. Human designers select one design 
method over another based on such factors as the ease of 
applying it, the likelihood that it will lead to a dead end 
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(e.g., require unavailable information), and its predicted 
impact on the eventual design. 

It is not feasible to learn these factors by watching an 
expert designer and formally proving that he or she chose 
the “right” method (relative to some criterion such as op- 
timal result or minimal design cost). Such a proof would 
necessarily refer to such external factors as the competing 
methods for this choice, the methods available to complete 
the design, and the form of the eventual final design, which 
is not known at the time the decision is made (Mostow, 
1984b). 

People use informal rationales to justify design deci- 
sions, based on such empirical reasons as “this method has 
worked well for me in the past.” An interesting research 
problem is how to infer such informal rationales (perhaps 
given some hints from the designer) and generalize them 
into heuristics for selecting methods. DeJong (1983) deals 
with the related problem of understanding the actions of r 
a character in a story and abstracting them into a general 
plan. 

Issue #ll. We need to find out how to acquire general 
design knowledge from experience. 

Somehow people manage to acquire knowledge that 
helps them guide the design process. Automating this ac- 
quisition of search control knowledge for design is a chal- 
lenging research task. It has been studied for certain sim- 
pler kinds of problem solving. 

For example, Langley (1983) describes the SAGE 2 sys- 
tem, which learns search heuristics for solving puzzles. 
Given the results of a breadth-first search through a state 
space, SAGE.2 assigns credit to moves on the solution path. 
It assigns blame to moves leading off the path, to previ- 
ously visited states, or to dead ends; the latter two heuris- 
tics allow SAGE.2 to start learning before the search termi- 
nates, even if it proves unsuccessful. SAGE.2 uses discrim- 
ination learning to develop search control rules that tend 
toward a shortest-path solution by favoring good moves 
and avoiding bad ones. 

Mitchell (1983) describes the LEX system for learning 
selection heuristics for symbolic integration. Each heuris- 
tic specifies a class of integration problems (goals) for which 
a particular integration operator is appropriate-z. e., the 
operator leads to a solution (or a shortest-path solution, 
depending on the learning criterion used). While LEXl 
used version space induction to learn heuristics, LEX2 used 
the technique later adopted in the Learning Apprentice: 
given an integration problem solved by a sequence of op- 
erators found using brute force, prove that this sequence 
leads to a (shortest-path) solution, and extract from the 
proof the general conditions under which this will occur. 

Learning how to guide the design process will require 
more sophisticated techniques than those used in SAGE 
and LEX. For example, whether a method is appropriate 
for a goal may depend not only on its likelihood of leading 

to a solution and on the cost of applying it, but also on 
the resources (time, space, power) used in the resulting 
design. SAGE.2 and LEX didn’t have to worry about dif- 
ferences between alternative solutions to a given puzzle or 
integration problem. Also, since design involves many in- 
teracting goals, it is important to learn which goal to work 
on next. SAGE 2 operated in a state space with a single 
goal state and no subgoals. In LEX, the implicit goal was 
to get rid of the integral signs; multiple integrals in an 
expression constituted coir.junctivc subgoals, which were 
independent and could therefore be solved in any order. 

EURISKO (Lenat, 1983) can be viewed as learning 
heuristics for (among other things) deciding what to work 
on next. In EURISKO, such heuristics operate by deter- 
mining the priority of proposed tasks on the agenda. In 
practice, these heuristics are based on the results of per- 
forming similar tasks in the past; tasks that ultimately 
lead to interesting results are considered successful, and 
the rules that proposed them and rated them highly are 
reinforced. In principle, heuristics in EURISKO could con- 
trol the order in which tasks are performed by using infor- 
mation about which tasks have already been performed. 
Since EURISKO learns heuristics and has been success- 
fully applied to at least one design problem, it is worth 
investigating the effectiveness of the EURISKO paradigm 
for acquiring heuristics to control an agenda-based design 
process. (Lenat and EURISKO together designed space 
fleets that won a national competition. The design pro- 
cess was evolutionary in nature; fleets that performed well 
were considered highly interesting and were selected for 
further experimentation. EURISKO has also been used to 
discover “high rise” VLSI configurations, but such discov- 
ery is more open-ended than designing an artifact to sat- 
isfy a given specification. In such open-ended tasks, the 
order in which two goals are addressed may not matter 
very much, assuming both goals are eventually achieved.) 

Conclusion 

Idea #IS. Design operates in multiple problem spaces. 

It is already a commonplace in AI that design operates 
at different levels of abstraction. That is, the designed ar- 
tifact is represented (both functionally and structurally) 
at more than one level of detail. However, it is now be- 
coming apparent that design also operates in qualitatively 
different problem spaces (Kant & Newell). That is, the 
space of artifact descriptions is just one of the problem 
spaces involved in design. A comprehensive model of de- 
sign will have to account for the following kinds of entities 
constructed during the design process. 

1. A&fact descrzptions represent the designed arti- 
fact, or a fragment of it, at some level of detail. Func- 
tional descriptions represent the artifact in terms of its 
desired properties. For example, an input-output specifi- 
cation can be used as a functional description of a circuit 
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or procedure. Structural descriptions represent the arti- 
fact in terms of its parts. A schematic is a structural de- 
scription of a circuit, while executable code is a structural 
description of a procedure. 

2. Goals prescribe what to do to the artifact de- 
scriptions, e.g.-“reformulate <specification> in terms of 
implementation-level constructs” or “reduce the space used 
by <structure>.” Constraints are attached to component 
descriptions to represent properties the design should sat- 
isfy. This is often achieved by propagating the constraint 
to a component that can be implemented in a way that 
satisfies the constraint. A selection criterion is a goal used 
in selecting among alternatives. Using a goal as a selec- 
tion criterion is a way to integrate two goals (Issue #5). 
Typically one goal has the form “implement <functional 
specification>” and the other goal has the form “make 
the result satisfy <design desiderata>.” The goals are in- 
tegrated by using the second, vaguer goal as a selection 
criterion for comparing alternative solutions to the first, 
more concrete goal. Some researchers prefer to reserve the 
term “goal” for the more concrete kind, and use terms like 
“design desiderata” to refer to the fuzzier kind. 

I suspect that very high-level design-the initial phase 
of the design process, which may go on completely in the 
designer’s head, even before the paper and pencil stage- 
operates mostly within the goal space and between it and 
the space of fragment descriptions. This is because very 
high-level goals are hard to integrate at first into a com- 
plete specification. Only subsequently does the design 
problem become sufficiently well structured to allow top- 
down refinement of the complete specification. 

3. Beliefs about a design consist of additional infor- 
mation the designer derives from artifact descriptions by 
means of analysis, simulation, symbolzc execution, heurzs- 
tic assumption, etc. Not every true assertion about a de- 
sign is a belief-only those the designer explicitly knows 
(or assumes). Moreover, not every belief is true-for ex- 
ample, a design may be based on simplifying assumptions 
that only approximate reality (Issue #3). Beliefs repre- 
sent knowledge that is not initially explicit in the artifact 
descriptions, but is generated in the course of reasoning 
about a design and used to guide the design process. 

4. Examples are useful in discovering properties of a 
design. For example, simulating t,he behavior of a design 
on test data can reveal bugs (Idea #13) or generate per- 
formance estimates. 

5. Justifications show how a belief is derived. A for- 
mal proof is derived logically, while an informal rationale 
may rely on heuristic inference rules or empirical findings. 
Justifications can be useful in derivzng (Idea #lo), replay- 
ing (Idea #9), expluznzng (Idea #ll), or generalizing (Idea 
#15) the design. 

6. Decisions -explicitly represent competition among 
alternatives. If these are represented as first-class objects, 
they can be referred to by goals, beliefs, etc. This allows 

reflective design models in which making a decision (in 
particular, selecting which operator to apply) can be an 
explicit goal, solvable using other operators (Issue #4). 

A central aim of current AI research in design is to 
make explicit these various aspects of the design process so 
that they can be formalized and modeled in the machine. 
We need good representations for the successive states in 
the design process; the operators for getting from one state 
to another; the goals pursued in the course of design; the 
decisions that are idcntificd, analyzed, and made; the ra- 
tionales for these decisions; the assumptions on which they 
are based; and the control strategies for guiding the design 
process. 

Representing these entities explicitly should make it 
easier to capture different kinds of design knowledge for 
use in automating design. In fact, a good test of any design 
system or model is whether it can represent and exploit the 
various kinds of knowledge people learn about design. 

Conversely, a good question to ask about a system 
that learns to design is what kinds of design knowledge it 
can acquire. In particular: 

l Can it learn new methods for solving design goals? For 
example, can it acquire new operators for decomposing 
specifications into components, implementing them, or 
optimizing the result? 

l Can it learn criteria for which method to apply to a 
given goal? For example, can it learn to predict the 
relative impact of different methods on the utilization 
of various resources in the eventual design? 

l Can it learn strategies for which goal to work on at 
each point? For example, can it learn to identify the 
critical components that should be designed first? 

A second question that pertains to a learner is the gener- 
ality of what it learns: 

l Does it learn knowledge specific to an individual de- 
sign problem? 

l Does it acquire knowledge applicable to some broad 
domain of design? 

Third, a learner can be classified according to where it gets 
the data from which it learns. For instance: 

l Does it learn from its own design experience? 
l Does it learn by observing the behavior of an expert 

designer? 

These three dimensions define a taxonomy of learning 
in design. For example, doing a rough design (Idea #9) to 
identify critical components is a way to learn a strategy for 
what order to solve goals in a specific problem, based on 
experience. In contrast, generalizing a correctness proof 
for a manually designed circuit (Idea #15) is a way to 
learn a design method applicable over a general domain, 
based on observation. 

The field of machine learning has far to go, and build- 
ing systems that learn about design is especially difficult 
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because we don’t yet know how to represent many of the 
kinds of design knowledge we might want such systems to 
acquire. That the area of learning in design is at a very 
early stage is illustrated by the fact that very few of the 
3 x 2 x 2 combinations defined above are as yet instanti- 
ated in real systems. As the representational problems are 
solved over the next several years, more of these learning 
modes should be explored. 

The various aspects of design discussed in this paper 
must be better understood in order to build design sys- 
tems whose partnership with human designers is based on 
a shared model of the design process. This paper has tried 
to identify these aspects, communicate some of the pow- 
erful ideas for dealing with them emerging from current 
AI research, and point out areas where existing systems 
are limited and further work is required. If the paper has 
expanded the reader’s model of design by providing useful 
insight into the nature of the design process, it has served 
its purpose well. 
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Announcement of Publication 

Handbook of Statistics 
Volumes 8 and 9 

The series Handbook of Statistics has been started to 
disseminate information on a very broad spectrum of top- 
ics in theoretical and applied statistics. Each volume is 
devoted to a specific topic and consists of chapters written 
by prominent workers in that area. 

Volume 8 is devoted to Statistical Methods in Biolog- 
ical and Medical Sciences; Volume 9 is devoted to Compu- 
tational Statistics. 

The editor of both volumes is P. R. Krishnaiah. The 
members of the editorial board for Volume 8 are S. Karlin 
and C. R. Rao. R. Gnanadesikan and E. J. Wegman are 
the members of the editorial board for Volume 9. 

Suggestions for these volumes should be sent to: 

P. R. Krishnaiah, General Editor 
Handbook of Statistics 

Center for Multivariate Analysis 
Fifth Floor, Thackeray Hall 

University of Pittsburgh 
Pittsburgh, PA 15260 U.S.A. 

Phone (412) 624-5814 

CSI LISP 
from Cognitive Systems 
CSI LISP is a new implementation of T, which is 
descended from SCHEME. It was designed without 
compromise to be a powerful, expressive, and porta- 
ble language while maintaining an integrated, bal- 
anced, and clean design. Built to run on top of 
Common LISP and LISP-VM, CSI LISP provides 
portability between computers such as VAX, IBM, 
and Apollo. 

LANGUAGE FEATURES 
Lexical scoping 

Object-oriented programming 
Procedures and lexical closures 

as first-class objects 
Portability between computers 

supporting Common LISP 
and IBM computers 

PACKAGE INCLUDES 
Interpreting 

Run-time Library 
Comprehensive User Guide 

Debugging Tools 
Language Extensions 

Compiling 
Source Code (optional) 

On-Line Help 
Performance Measurement 

Maintenance (optional) 

CSI LISP is easy to learn, easy to read, and easy to 
write, because the language includes a compact but 
comprehensive set of powerful and flexible func- 
tions Almost as important for ease of programming 
is what the language does not include; the language 
is not cluttered with non-mnemonic names or 
groups of functions having nearly identical behavior. 

CSI LISP and T are in use today at commercial and 
academic installations throughout the world. Appli- 
cations include natural language interfaces, expert 
systems, and advisory systems in financial, indus- 
trial, military, and commercial domains. 

For more information, contact: 
Ann Drinan 

Cognitive Systems 
234 Church Street 

New Haven, CT 06510 
(203) 773-0726 




