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task, or system state provides mean- a number of potential benefits for efficient teaming and

ing and advances understanding that collaborative task accomplishment for human-robot teams.

can affect future decisions or actions. s . . . . .
For military teams in particular, integration of context into

Although people are naturally good
at perciiviﬁg Izonmmal und;sén - AT architectures is essential to facilitate collaboration and

W Applying context to a situation, Integrating context to support Al development provides

ing and inferring missing pieces of successful operation in complex and dynamic environ-
information using various alternative ments. Take, for example, when a soldier reports that a
sources, this process is difficult for hostile threat is in a target area. Given this information,
Al systems or robots, especially in a robot could be expected to change how it navigates to

high-uncertainty and unstructured op-
erations. Integration of context-driven
Al is important for future robotic capa-
bilities to support the development of
situation awareness, calibrate appro-
priate trust, and improve team perfor-
mance in collaborative human-robot
teams. This article highlights advances
in context-driven Al for human-robot
teaming by the Army Research Labo-
ratory’s Robotics Collaborative Tech-
nology Alliance. Avenues of research
discussed include how context enables
robots to fill in the gaps to make
effective decisions more quickly, supports
more robust behaviors, and augments
robot communications to suit the needs
of the team under a variety of environ-
ments and team organizations and
across missions.
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the target environment, make its primary objective
enemy detection, and provide guidance for the
movements and future actions of both friendly and
adversarial human counterparts so that team mem-
bers can remain undetected. However, a human
teammate’s interpretation of the robot’s behaviors
is directly influenced by the robot’s ability to ade-
quately communicate reasoning for its own previ-
ous and current actions. Otherwise, its behavior
may appear ambiguous or incorrect from a human
perspective. Therefore, the robot needs to under-
stand both how context will or could affect its
own decisions as well as how it could affect team
members’ decisions. Integrating contextual undez-
standing allows shared situation awareness and
shared mental model development, improves joint
decision making and categorization of data, provides
better processing times, and enhances learning both
online and offline for the team.

Challenges in
Developing Context-Driven Al

Although our early work identified the potential
benefits of incorporating context in inference
and planning models to enhance shared situation
awareness and improve intent-based communica-
tion of human-robot teams, we have also identi-
fied a number of open research challenges in mak-
ing these types of advances (Schaefer et al. 2017;
Schaefer et al. 2019). These identified gaps in the
scientific research community include a large
number of unknowns about what constitutes con-
text, differing opinions on how to reason about
context, differing recommendations for how to
acquire new contextual knowledge, and even the
specific means to transfer or communicate the
teammate’s knowledge of context to other mem-
bers of the team. We explain these open challenges
in detail in the following subsections and then de-
scribe how the current work by the Army Research
Laboratory’s Robotics Collaborative Technology
Alliance (RCTA) has been addressing and advanc-
ing research in this area.

Representing Context

Context means different things to different peo-
ple. One well-cited, yet broad, definition suggests
that context is “any information that can be used
to characterize the situation of an entity [whereby
an] entity is a user, a place, or a physical or com-
putational object that is considered relevant to
the interaction between a user and an application,
including the user and application themselves”
(Dey, Abowd, and Salber 2009, p. 106). Long, all-
encompassing definitions like this one, with a

lack of consensus for an agreed upon operational
definition, have resulted in large variability in the
representations of context across the scientific
community. Depending on the problem, context
might refer to a relevant part of the state-space
(Xiong and Huber 2010), a probability distribution
over the concepts in an environment (Singhal,
Luo, and Zhu 2003), a set of relationships between
objects (Rabinovich et al. 2007), logical statements
that represent cause and effect (Zettlemoyer and
Collins 2009), or a function to select relevant
features for object recognition (Heitz and Koller
2008). Although these representations can cap-
ture some aspects of contextual knowledge, none
of them are applicable to general settings because
of their strong dependence on domain-specific
knowledge. Overall, the key gaps are linked to rec-
onciling different views of context and developing
a coherent representation that can be used in var-
ious ways.

Inferring Context

In the current literature, inferring context from the
world occurs primarily through use of visual and
language-based sensor data. However, limitations
in current perception systems can inhibit infer-
ence capabilities. For example, the presence of a
highly cluttered environment, dynamic objects, and
even changes in the image resolution can cause
failures in accurate scene detection and infer-
ence processing. Similarly, inference models for
natural language understanding might struggle
in the presence of arbitrary sentences with com-
plex grammatical structure and untrained words.
Therefore, a future goal is to extend the appli-
cation areas of existing inference methods and
models for generalization. A second goal is to use
sensor data other than vision or language, such as
temperature, humidity, smell, and audio, to pro-
vide additional, and possibly redundant, sources
of information to support these inference models.
In a mixed-initiative team, these factors (such as
heat exhaustion, distraction, inability to hear) may
influence performance of human team members,
requiring adaptations to robot behavior for optimal
collaboration. Moreover, temperature and humidity
support inferences about potential changes in
weather conditions (for example, fog, wet road-
ways), smells indicate the presence of chemicals
affecting safety, and auditory sensing can be cru-
cial in inferring changes in the scene, such as
approaching vehicles or people or imminent
danger. Overall, the challenge is in the identifi-
cation of which combination of sensory infor-
mation gives an efficient way for better under-
standing of context to improve decision making.
A major limitation to this area of research is

Context
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the limited knowledge on how to derive the
required types of sensor data in terms of mission
specifications that may might make for an efficient
context inference.

Learning New
Classification Schemes

Given a finite set of features of a context model
(for example, indoor versus outdoor spatial areas),
it is possible to learn classification schemes to deter-
mine the current context. However, prespecified
contextual features are unlikely to be sufficient for
long-duration robots operating in populated envi-
ronments. Because people naturally grow their
sense of context over time, it is desired for robots
to have the same capability for resilient team-
based operation. It is not realistic to assume that
all possible contextual features are known before
a mission. In this sense, mining new contextual
knowledge online and incorporating it into con-
text models are two crucial issues for improving
the performance of robots that are likely to col-
laborate with humans. Researchers are developing
algorithms to acquire new knowledge from the
perceived world and to reconstruct the inference
model as new information is added (Tucker et al.
2017). However, new methods are needed to address
the problem of updating the current context model
in a scalable way for incrementally discovered infor-
mation. The main challenge here is that there is not
a common solution to this problem because the con-
text models are diverse, application dependent, and
incapable of accommodating all types of contextual
knowledge.

Communicating
Contextual Information

In team collaboration, any contextual variable that
drives the inference process must be transparent to
team members to build trust and to explain future
decisions based on context derived from sensor data.
People reason about the world in a way that incor-
porates diverse contextual information about logic
concepts, prior sensor data, or time histories of state
estimates. It is possible to use this information in
their inference and reasoning processes to make
decisions. When sharing that level of contextual
understanding with robotic team members, it is impor-
tant to enable direct (for example, language, text) or
indirect (for example, gestures, emotions, posture)
communication methods. Similarly, not all informa-
tion that has been formed through Al is transpar-
ent to humans. For instance, graphical models and
neural networks are powerful representations in a
robot’s inference mechanisms that they can use to
instantiate contextual knowledge from a set of sensor
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data. However, these mathematical representations
without annotated explanations may not necessarily
be meaningful from the perspective of a human.
Thus, similarly to human-to-robot communication,
it is crucial to develop a communication architec-
ture that can also support information transfer
from robot to human in a transparent fashion. In
other words, how do we transform what is in the
black box of machine learning or other algorithms
into something a human can easily understand?
Furthermore, how do we represent this information
through visual or other modes so that comprehen-
sion of the data is quick without overloading human
cognition?

Current Work

This article reviews work on developing context-
driven Al for human-robot teaming conducted by the
RCTA that shows advances to the research gaps noted.
Within the RCTA efforts, context in support of
human-robot teaming is defined as any available
information that can fill gaps, addressing uncertainty,
to enable shared understanding and team collab-
oration. When integrated appropriately, context
supports teaming initiatives for collaborative in-
teractions including planning and prediction,
communication, advanced mission goals, and in-
dependent as well as collaborative robot decision-
making capabilities.

The following sections of this article describe ad-
vances in theoretical and applied contributions, as
well as research and development efforts, to advance
context-driven Al in support of advanced collabora-
tive human-robot teaming. It begins with a general
overview of the research goals of RCTA and how ad-
vancing context-driven Al is an integral component
of that research. The importance of environmental,
mission-specific, and social context for advanced
human-robot teaming is discussed. This discus-
sion is followed by specific RCTA research efforts
advancing the research and development associated
with the aforementioned challenges for developing
context-driven Al. Our work describes the develop-
ment of a multimodal interface (MMI) that supports
advances in context-driven Al related to natural
language, world modeling, and novel concept acqui-
sition. All these technical advances benefit collabo-
rative human-robot teaming.

RCTA

RCTA is a large multidisciplinary research program
that includes a consortia of industry and academic
partners working directly with government organ-
izations to advance the state of the art in human-
robot teaming or, in other words, to revolutionize
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Figure 1. RCTA Multimodal Interface Visual Interface.

The display includes a semantic map (left), video from the robot’s perspective or other imagery data (top right), and the robot’s action and

health status (bottom right).

robots from tools to teammates (Phillips et al.
2011). There are four main research areas and
required capabilities: (1) OPTEMPO maneuvers!
in unstructured environments, including mobil-
ity in dynamic scenes and across rough terrain,
(2) human-robot execution of complex missions
requiring situation awareness of unstructured en-
vironments and distributed mission execution,
(3) mobile manipulation in cluttered spaces, and
(4) integrated research that combines and assesses
capabilities delivered from the other thrusts on
multiple robotic platforms. Although a number of
research interests are being addressed to advance
teaming, context plays an important role in all
of these areas. In particular, subcategories of RCTA
research that drive the advancements in context-
driven AI include advancements in semantic per-
ception, adaptive behavior generation, metacog-
nition, machine learning, and a hybrid cognitive
and metric world model.

Semantic perception moves robotic perception
beyond simply detecting what is or is not an obsta-
cle toward semantic understanding of an environ-
ment in a way similar to how human team members
would perceive or reason about the environment, for
example, by recognizing the types of objects and ter-
rains of interest for a specific task, such as navigation
(Oh et al. 2015a; Oh et al. 2015b; Oh et al. 2016; Shiang
et al. 2017). Adaptive behavior generation combines
previously developed robotic planning algorithms,
machine learning techniques, and semantic under-
standing of an environment within the context of
a high-level task. This enables robots to generate
effective mission plans in partially known and un-
structured environments and to compute these plans
online whenever necessary by following natural lan-
guage commands (Boularias et al. 2015; Boularias
et al. 2016; Paul et al. 2016; Paul et al. 2017; Paul
et al. 2018; Tucker et al. 2017) or navigating while
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Pick up the red block
that is to the left of
the green block

Stay to the right of the vehicle;
navigate to the back of the

= _ ——
Go to the lab; look
| what's on the table
H and tell me.

building that is beyond the vehicle.

Figure 2. Natural Language Understanding Integrated in Various Robot Platforms.

Barret robot arms (left), Clearpath Husky robot (center), and CMU Ballbot (right; see Lauwers, Kantor, and Hollis [2005]). The difficulty
in integrating context-driven Al is in relation to perspective. In the image on the left, perspective is in the word left. What does left of the
green block mean — my left or the robot’s left? In the center image, the key word is back. What is the back of a building? In the image on
the right, there are questions as to which laboratory or which table and what should be told to the human.

adapting to social context (Vemula, Muelling, and
Oh 2017; Vemula, Muelling, and Oh 2018).

Metacognition enables the use of intuitive, human-
level commands for soldier-robot communication
to facilitate the creation of shared mental models
and the development of shared situation awareness
(Ososky et al. 2013). The world model spans a range
including traditional metric data to an associated
semantic understanding to underpin the cognitive
levels of reasoning (Dean 2013). Within the RCTA
goal of advancing robots from tools to teammates,
there are three different but interrelated contexts
that are directly relevant to improve teaming capabil-
ities: an environmental context related to the physi-
cal world, a mission-specific context derived from
the task criteria and goals, and a social context
related to the agents and interaction of agents within
the environment.

Environmental Context

Collaborative team operations occur within an
environmentthatdirectlyinfluencesthe perception of
team members’ actions and actual decision-making
behaviors. The main difficulty is that humans are
very quick to infer meaning from their surround-
ings. However, the process that robots use for
inferring meaning from the world often does not
match the process or capabilities of the human,
leading to different planning and reason-based
decision making (Perelman et al. 2017; Perelman
et al. 2018; Schaefer et al. 2018). Although differ-
ence is not necessarily negative, it does affect the
development of shared situation awareness and
shared understanding among the team (Chen et al.
2014; Wright et al. 2017).
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Context from the environment is semantic
information perceived dynamically or provided a
priori (for example, terrain maps). Traditionally,
the information extracted from the environment
is limited to physical objects and used for navi-
gation and mobility — for example, to go from
point A to point B as quickly as possible. How-
ever, the semantic environment includes much
more than physics, such as additional data de-
rived and inferred from the aggregation of world
model information. It can be attributes associated
with semantic objects in a robot’s world model,
part of short- and long-term memory, or tem-
porary variables computed in decision-making
algorithms. Hence, context is important to under-
standing the scene in terms of functionality and
affordances, inferred relationships between objects,
and influences of the world on the people in that
world. Functionality and affordances provide con-
textual understanding through interpretation of a
scene. For example, a person may be sitting on a
box, but a box also holds things. What is in the
box could change the amount of risk associated
with operating in that particular area of the en-
vironment. Inferred relationships between objects
can also directly affect navigation and mobility.
For example, a tree is usually an object that should
be avoided during path planning, but trees pro-
vide cover; operating within close proximity to a
tree line could improve stealthy maneuver. It is
also important for a robot to be able to interpret
and infer how environmental context can influ-
ence people (that is, psychophysiological states
including stress, fatigue, and workload). Overall,
this type of data supports priming of perception



Figure 3. How Fusing Vision and Language Can Improve Object Recognition Results.

The blue boxes represent the correct classification by vision, the red boxes represent misclassification by vision, and the yellow
boxes represent those that have been corrected by using language with one to three spatial descriptions (for example, the chair is

near the table).

systems to better focus on what should be versus
what might be in a scene.

Advancement of environmental context-driven
Al will produce a better understanding of social sit-
uations, as well as improved detection of specific
environmental features that enhance scene under-
standing and reasoning for observed behaviors.
The RCTA research is specifically looking at how
the integration of Al can incorporate elements of
environmental context into the decision-making
process, which would offer two major benefits.
First, it would allow the robot to reason about the
world, which could affect its subsequent decision-
making process, and second, it would support natural
language and bidirectional communication between
the robot and other team members to facilitate col-
laborative decision making for mission execution.

Mission-Specific Context

A task or complex mission goal given to a robot is
a rich source of information to be included in Al,
and it must be able to support decision making that
accounts for rules of engagement, social norms, and
the prioritization of objectives. This context can
therefore reduce the solution space of actions related
for a given decision with heuristics or optimize
selections within the space with improved weight-
ing of variables. In line with the earlier example of
an enemy reported in an area, the type of mission
underway will dictate the robot’s goal prioritization
and behaviors. For example, should the robot try
to scout ahead, stay in formation with the team, or
take steps to avoid detection? Thus, context influ-
ences the robot’s selection of an actions execution.
From a team dynamics perspective, to accomplish a
task, each member has its own set of objectives and
goals that may be shared or may be independent of
each other and the robot. Task or mission context
directly tells the robot what role it should be in and
what roles others will take, such that each individual

is doing what is best for overall team performance,
especially if the team is distributed throughout an
area and not collocated. The RCTA research is specif-
ically looking at how the decomposition of the over-
all mission goal into tactical behaviors is sensitive
to the context of the instruction given by a human
teammate related to both the events in the overall
environment and to the specific goals of all the team
members.

Social Context

Social context is important for teaming because
it supports collaborative decision making, includ-
ing decision making associated with navigation
and how both robots and humans can operate
in a shared space (Schaefer et al. 2016; Schaefer
et al. 2017; Straub and Schaefer 2018), advanced
robot awareness and its understanding of human
behavior such as inferring human intent through
pose, location, and social signals (Fiore et al. 2013;
MacArthur, Stowers, and Hancock 2017; Schaefer,
Hill, and Jentsch 2018; Wiltshire et al. 2016), and
prediction of future activities based on context
related to the scene, objects, and people. Social
context guides the robot’s interactions with ambi-
ent society where people are not bound to mission
roles or context and supports detection of team
member cues that may result in behaviors outside
of mission norms. Each member of a team navigat-
ing through crowded environments is required to
have effective models of what the other members
of the team are doing at any given time. For robotic
team members, the need for real-time aware-
ness of human activity is addressed by studying
approaches to recognizing and anticipating the
motion of humans, social signals, and the activi-
ties in which they are engaged. RCTA efforts are
developing approaches to recognize and make infer-
ences about people’s actions from the robot’s visual
data streams to track and predict future actions of
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Figure 4. An Example of How People Plan in Context.

This figure illustrates how people plan for the command, “Stay to the left of the building; then go to the barrel behind the building,” given
the leftmost image showing an outdoor environment. On the right are two examples of plans drawn by human subjects for the given com-
mand, depicting the start position of the person, the assumption of where the barrel will be located behind the building, and the person’s
planned path for attempting to reach the barrel.

people and other dynamic objects. Here, human
pose features can be used to provide context to
the human’s current or potential future activities.
Understanding social interactions includes not only
being able to predict the actions of other agents
but also reasoning about how one’s own actions
can affect those of other agents. This idea has led
the RCTA investigation to socially compliant nav-
igation planning and computational models for
representing such social interactions, for exam-
ple, using a variation of Gaussian processes (Vemula
et al. 2017) and a deep learning model known
as social attention (Vemula et al. 2018). These
models use context to better support the effective-
ness of team communications, minimize the asso-
ciated cognitive burdens for each teammate, and
improve synchronization of human-robot team
member tasks.

Research Advances
in Context-Driven Al

Today’s soldiers are required to operate within
inherently complex, dynamic environments. Working
within teams, regardless of the presence of a robot,
includes multiple activities during which these sol-
diers must pay attention to their own task execution
and their teammates. Inclusion of robots can easily
result in teammate overload for a number of reasons.
First, robots do not communicate or think like
human teammates. Second, while they are equipped
with advanced sensors capable of streaming large
amounts of data, the data still must be parsed for
human consumption. Third, there is a degree of
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required oversight and additional attention for op-
erations based on the capabilities of the autonomy.
Research conducted through RCTA has sought to
address these issues through natural and intuitive
bidirectional communication. These efforts have led
to the development of an MMI (Barber et al. 2015;
Barber, Howard, and Walter 2016) that facilitates
the exchange of environmental, mission, and social
context to Al efforts (see figure 1). Specifically, this
technology and associated research supports the
development of a common ground where shared
understanding allows for joint decision making and
collaborative operations.

The RCTA MMI has leveraged work in speech
recognition, natural language understanding, ges-
ture recognition, synthetic speech, tactile displays,
and visual displays that model human-robot com-
munication after human-human communications,
providing natural and redundant communication
channels (see, for example, the work of Duvallet
et al. 2016; Elliott, Hill, and Barnes 2016; Mortimer
and Elliott 2017). These modalities (audio, visual,
and tactile) provide additional ways to tailor the
MMI to adapt the communication of information
between teammates to ensure message delivery,
robust (fault-tolerant) communication, and shared
situation awareness. For example, if a robot deter-
mines a soldier is fatigued or under high workload,
the MMI could enable haptic feedback and increase
the frequency of radio communications to ensure
a message receipt. Moreover, understanding where
a soldier is looking or pointing can add context
to the robot’s understanding to resolve an ambig-
uous command, such as to go behind a building,
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Figure 5. Assumptive Planning Approach.

This is an example illustration of the assumptive planning approach for a robot given the command, Stay to the left of the building; then
go to the barrel behind the building (Oh et al. 2015b). Steps 1 and 2 show the camera and LIDAR sensor data. Steps 3 to 6 represent the
hypothesized space for robot reasoning about the spatial constraint behind the building needed to locate the hypothesized barrel as a
target goal and generate a plan. Steps 7 and 8 demonstrate the robot’s ability to continuously update its world model of the environment
and its subsequent plan as it perceives more information about the actual environment.

by denoting a specific building or what structures
in the environment the team considers buildings.

The MMI is a gateway device toward a shared
context between robot and human teammates.
It provides flexible methods for a soldier to give
high-level commands to a robot, such as, “Screen
the back of the building,” down to specific goal-
driven semantic navigation, such as, “Go to the
town square.” It also enables bidirectional commu-
nication of a robot’s state on a continual basis or
through speech dialogues to request scene descrip-
tions or explanations of its behavior (for example,
“Where are you going?” or, “What do you see?”).
Beyond the provision of dialogue with the robot
and a command input, the MMI further attempts
to classify the human teammates’ states to contrib-
ute to the others’ environmental context. Infor-
mation about what is in the environment informs
the MMI about factors that may be changing the
soldier’s decision-making behaviors. Hence, the
MMI is not just a portal into the robot for human
teammates but also a sensor about the humans for
the robot. This sensor facilitates the acquisition
of information for all three categories of context,
capturing what each soldier is doing, where they
are, physiologic and cognitive capacity, and what
information they are communicating to all sup-
porting actors. These specific technical advances to
context-driven Al support natural language commu-
nication, world model development, and novel
concept acquisition.

Context-Driven
Al and Natural Language

One important component of the MMI is develop-
ment that could support natural language commu-
nication. Natural language is a capability critical to
facilitating direct human-to-robot mission-specific
communication. Speech is the most commonly used
method of interaction among human teammates.
When a team of agents (human and robot) is per-
forming a shared task, the clarity of the communica-
tion and how the context is understood are crucial
for the team'’s success. How language is understood
directly affects development of the shared context,
that is, whether teammates interpret the task and
the environment in the same way such that they
can perform the task as one cohesive team. However,
our work in developing AI for natural language
processing brought to light a number of chal-
lenges with integration of robot perception and as-
sociated cognition for interpreting human-to-robot
communication and performing associated actions
that support the team leader’s intent. The key find-
ing in this research was that the addition of visual
descriptors alone does not provide enough contex-
tual understanding to initiate appropriate robot re-
sponse (figure 2).

Natural language processing can also support
reduction of ambiguity and improved shared situa-
tion awareness by leveraging teammates’ inferences
of environmental or social context. This added ca-
pability can support current technical limitations
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t = 0 seconds t =25 seconds t = 50 seconds

Figure 6.0nline Concept Acquisition in Complex Partially Known Workspaces.

This figure demonstrates a grounding scenario (left image) with the TurtleBot mobile platform in an environment populated with objects
(that is, box, jar, can, and fruits in clockwise order) from the YCB data set (Calli et al. 2015). The robot is equipped with a Kinect sensor
with a limited field of view (62° x 48.6°). The goal is to acquire new grounding symbols (right images; see Tucker et al. [2017]). For example,
the robot has a model for grounding a jar object but was not trained to recognize or ground a box object. The robot receives a command
move to the box. Due to the presence of an unknown object in its perceived world, the model grounded the unknown phrase the box to the
unknown object and drove to the box. Online retraining was performed with the acquired set of visual observations and the lexical token

the box. Inference occurred in 2.34 seconds.

in robot perception. Although recent advances
in computer vision show a promising future, to
date, robotic perception in real-life environments
remains a difficult challenge for context because
of variations in lighting conditions, illumination,
weather, seasons, and more. For instance, recog-
nizing objects in an outdoor environment based
only on computer vision can include both false
positive and false negative errors that can result
in serious misinterpretation of higher-level tasks.
Leveraging language-understanding skills, robots
may harvest additional context information to
improve their understanding, such as through lis-
tening to human teammates in the same environ-
ment. For example, consider the navigation task
in figure 2, in which a person commands a robot
to navigate to the building that is behind a vehi-
cle. Even if the two team members are in the same
environment, the way they see the environment
may be different. For instance, because of its im-
perfect perception, the robot may misperceive the
camouflaged vehicle for part of the background
environment, such as a tree. From the robot’s per-
spective, the command to go to the back of the
vehicle, which does not exist in its world model,
does not make sense because it is unlikely that the
human teammate would use a landmark not close to
the robot. Within the context of this task, the robot
may update its world model to be more consistent
with the command so that the object the robot first
recognizes as a tree may be the vehicle of interest.
To account for these issues, the RCTA has looked
into how language understanding improves vision-

36 AI MAGAZINE

based object recognition on an open data set
(NYU Depth Dataset V2, [Silberman et al. 2012]).
Context-based reasoning is modeled as multimodal
understanding whereby the robot continuously
updates its task context by fusing new information
from vision and language understanding (figure 3).
Graphical model approaches such as random
walk (Shiang et al. 2017) and conditional random
fields (Shiang, Gershman, and Oh 2017) use con-
text for object recognition, whereby the nodes
and the edges of a graph represent objects and
their relationships, respectively. These models
represent the robot’s world model, where the con-
textual relationships among object types can be
updated using both vision and language. This gen-
eral idea has been applied to various human-robot
teaming problems to enable RCTA robots to per-
form complex tasks in natural language (Boularias
et al. 2015; Oh et al. 2015b; Oh et al. 2016). Our
intelligence system for multimodal understand-
ing has been integrated on several physical robot
platforms with varying capabilities (figure 2). These
examples demonstrate the use of domain-specific
contextual information for various tasks, includ-
ing manipulating tabletop objects and navigating
in outdoor environments, and in indoor perception.

Context-Driven
Al and World Modeling

Context can be useful when robots operate in an
unknown or partially known environment. Consider



a navigation command, “Go to the barrel behind the
building,” when an agent is situated as pictured in
figure 4 (left image). When this task is given to
humans, most people come up with a plan in which
they hypothesize the rear side of the building not
shown in the picture, the space behind the building,
and a path toward an imaginary goal.

The RCTA robot planning approach follows
this humanlike planning concept, known as
assumptive planning, whereby the robot must
hypothesize the unseen part of an environment
to fill the gap between the given command and
its world model. The idea of assumptive planning
enables the robot to plan and execute commands
that require environmental context reasoning in
an unknown or partially known environment.
Figure 5 illustrates how the robot solves the same
navigation command using camera and three-
dimensional LIDAR sensors. The semantic analysis is
based solely on what has been sensed. The robot
then gradually propagates the information to
include the hypothesized space. At the same
time, the robot computes a metric cost map rep-
resenting the commander’s preference — stay to
the left of the building — with the knowledge it
has gained from having been trained offline via a
machine-learning technique called imitation learn-
ing, in which experts demonstrate desired behav-
iors (Boularias et al. 2015; Boularias et al. 2016).
The robot continuously updates its world model
of the environment, known as the world model,
and its subsequent plan as it perceives more infor-
mation. Using context, the robot is able to accom-
plish tasks that it had previously been unable to
complete because of missing information. In two
sets of extensive outdoor experiments during the
RCTA assessments, the task-level performance for
navigation improved from 50 percent to 75 to 93
percent under conditions with varying difficulties
(Oh et al. 2016).

Context-Driven Al and
Novel Concept Acquisition

A robot must be able to communicate known and
unknown information. Quantifying what is un-
known makes it possible to dictate needs for con-
textual understanding to fill the gaps in a robot’s
knowledge and reasoning process. A model was
developed under the RCTA research efforts to enable
learning the meaning of a large variety of phrases
in complex environments, facilitating learning
new words and objects online. The model con-
tributed to language-guided models that enabled
online concept acquisition in complex partially
known work spaces (Tucker et al. 2017). For exam-
ple, the leftmost picture in figure 6 illustrates a
robot and four objects in the environment. Initially,

the robot perceives an unknown object and a jar
and does not know the box. When the robot is given
a command such as “Go to the box,” it incorpo-
rates environmental context into its decision mak-
ing (that is, reasoning about the existence of a box
object around itself) and infers that the perceived
unknown object is supposed to be a box, then
approaches. Moreover, as it approaches, it collects
various visual images of the object and uses this
information in its model to recognize boxes in
future instances. This approach aids reasoning about
a world that contains known and unknown objects
and gaining new knowledge through human-robot
communication.

Humans are good at understanding abstract
notions such as a group of cars, a row of blocks in
front, or the nearest door of a row of three doors.
Recent work has extended existing grounding
models to accommodate abstract notions (Paul et al.
2016) or acquire factual knowledge (for example,
lift the box that I put down, or, this is my hel-
met, pick it up) from natural language instructions
(Paul et al. 2017). These works significantly extend
the space of commands that robots can understand
and enable a better understanding of temporal
and spatial context for more effective and efficient
human-robot interaction.

Conclusions

The RCTA research efforts have demonstrated
that environmental, task, and social context
can significantly support human-robot teaming
through the development of effective bidirection-
al communication. To date, the primary work has
been in improving robot perception and learn-
ing to support tasks related to navigation. The
development of an MMI has facilitated major
improvements in the development of context-
driven AI through natural language understand-
ing, updating the world model, and learning
through identification of unknown objects. Addi-
tional investigations are underway to understand
how to improve the robot’s understanding of
context through effective bidirectional dialogues.
These dialogues include natural language under-
standing capabilities to better categorize speech
into commands, queries, and reports for the joint
construction of context using the research we de-
scribed here.

Future human-robot teams are envisioned to
operate in high-risk OPTEMPO and cluttered
environments. Therefore, the robot must be able
to autonomously adapt its communication modal-
ities and the types of information it possesses to
better support team member needs in times of high
workload or stress. One of the ongoing research
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efforts within RCTA aims to integrate a better
contextual understanding of the human team
member through the real-time classification of a
human’s state using wearable technologies (for
example, heart rate sensors) to infer human work
load, stress, and possibly even trust. This source of
information will allow the MMI to adapt a relevant
modality of communication, frequency of com-
munication, and types of information transmitted
among human and robot teammates while also
supplying additional input to Al decision-making
modules to maximize effectiveness of interactions
and decision making.
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Note

1. Operations tempo for pace of an operation, its planning,
and resupply (Castro and Adler 1999).
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