
Since its origin, the holy grail of artificial intelligence
has been to understand the nature of intelligence
and to engineer systems that exhibit such intelli-

gence through vision, language, emotion, motion, and
reasoning. In such context, AI researchers have always
looked for challenges to push forward the limit of what
computers can do autonomously and to measure the lev-
el of “intelligence” achieved. Competitions have been
and are currently run on conversational behavior (for
example, the Loebner prize1), automatic control (for
example, the International Aerial Robotics Competition2

or the DARPA Grand Challenge on driverless cars3), coop-
eration and coordination in robotics (for example, the
RoboCup4), logic reasoning and knowledge (for example,
the CADE ATP System competition for theorem
provers5), and natural language (for example, the EVALI-
TA competition6 for the Italian language). Historically,
also games have raised the interest of the AI community:
a number of competitions are still being held nowadays
(for example, the World Computer Chess Champi-
onship,7 Mario Championship8 [Togelius et al. 2013] and
its successor Platformer Competition,9 the General Game
Playing competition10). For a high-level overview of the
field of AI in games see the paper by Yannakakis and
Togelius (2014).

Some of these challenges have indeed brought many
insights and advancements on various artificial intelli-
gence fields. We mention in the following three of them,
notable for the achieved results, as well as for their
impact on the media and the consequent dissemination
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� Recently, a number of noteworthy
results have been achieved in various
fields of artificial intelligence, and many
aspects of the problem-solving process
have received significant attention by
the scientific community. In this context,
the extraction of comprehensive knowl-
edge suitable for problem solving and
reasoning, from textual and pictorial
problem descriptions, has been less
investigated, but recognized as essential
for autonomous thinking in artificial
intelligence. In this work we present a
challenge where methods and tools for
deep understanding are strongly needed
for enabling problem solving: we propose
to solve mathematical puzzles by means
of computers, starting from text and dia-
grams describing them, without any
human intervention. We are aware that
the proposed challenge is hard and diffi-
cult to solve nowadays (and in the fore-
seeable future), but even studying and
solving only single parts of the proposed
challenge would represent an important
step forward for artificial intelligence.



of the AI discipline to the general audience. In the last
century, a famous challenge of AI concerned the
game of chess, considered a symbol of complexity,
problem solving, and strategic ability. As widely
known, the competition between humans and the
Deep Blue computer was definitely won by comput-
ers in 1997 when the world chess champion Garry
Kasparov was defeated. A key lesson learned from
Deep Blue’s strength is that efficient heuristic search
can be much more effective than sophisticated rea-
soning guided search. In fact, heuristic search was so
successful that it led Kasparov to exclaim, “I could
feel — I could smell — a new kind of intelligence
across the table” (Time Magazine).11 Despite a very
good result in terms of problem solving, the search-
intensive nature of the solution approach (in terms
of number of configurations explored, memory, and
processing power) was in fact the main criticism to
the experiment. Noam Chomsky commented that
Deep Blue defeating Kasparov in chess was “as inter-
esting as a bulldozer that can win the Olympic
weight-lifting competition.”12 Very recently, comput-
ers won against humans at the game Go, famous for
being one of the last games where humans were still
better players. In March 2016, the AlphaGO (Silver et
al. 2016) prototype by Google won13 against Lee
Sedol, one of the world’s best players. The distinct fea-
ture of AlphaGO is the adoption of deep learning
techniques.

A second challenge is the Robot Soccer World Cup
(RoboCup),14 the international robotics competition
and challenge launched in 1997. The official goal of
the RoboCup challenge is the following:

“By the middle of the 21st century, a team of fully
autonomous humanoid robot soccer players shall win a
soccer game, complying with the official rules of FIFA,
against the winner of the most recent World Cup.”15

Even if we are still far from reaching such an ambi-
tious goal, the RoboCup challenge has promoted AI
techniques in robotics, planning, self-adaptive sys-
tems, and machine vision, showing that even
extremely ambitious and visionary challenges can
bring huge benefits to a research field by approaching
the goal step by step.

The third challenge is about Watson,16 an AI sys-
tem developed by the IBM research team. Watson was
originally developed to answer questions on a quiz
show called Jeopardy. In 2011, Watson competed
against former human winners and won. Watson can
be considered as a very advanced question-answering
system that applies and integrates AI techniques such
as natural language processing (NLP), knowledge
extraction and representation, automated reasoning,
and machine learning. The system is able to access
“millions of pages” of structured and unstructured
content in a very efficient way, thanks to the massive
use of parallel processing. A huge amount of knowl-
edge is learned, processed, and used together with a
number of inference tasks, to perform question

answering in an effective and efficient way. However,
how to integrate more complex problem-solving
capabilities and reasoning techniques is still a matter
of research.

The challenge we propose here goes in the direc-
tion of extracting specific knowledge from general
text and diagrams that is useful for reasoning and
problem solving and can be stated as follows:

By the middle of the 21st century, (a team of) fully
autonomous agent(s) shall win a mathematical puzzle
competition against primary school students, winners
of the most recent competitions.

Mathematical puzzles are recreational games where
a single human player is challenged with a problem,
described by text and diagrams. To solve them, a
human player uses understanding and intuition, as
well as common sense, simple logical and mathemat-
ical or geometry knowledge, causal relations, and
many other reasoning-related capabilities. The main
research question then can be formulated as “What
are the requirements, functionalities, and main soft-
ware components needed for autonomously solving a
mathematical puzzle, with no human intervention?”
The focus is on deep reasoning featuring (1) the
extraction of comprehensive knowledge from multi-
modal descriptions (texts, diagrams, sound and
speech, gesture, and others); (2) the ability of deter-
mining both the proper model and the correspon-
ding reasoning capability; and (3) the capability of
effectively solving the problem (possibly with a feed-
back to the two previous steps). All these steps require
considerable integration of many artificial intelli-
gence techniques such as natural language and dia-
gram understanding, problem solving and search,
modeling, and machine learning. In particular, recent
advances in machine learning open new research
avenues for deep reasoning, as they enable general-
ization over manually collected knowledge.

Recently, a number of similar challenges have been
proposed. We mention here the Aristo Project (Clark
2015), a challenge with the goal of having the com-
puter pass elementary school math and science
exams. Natural language comprehension and dia-
gram understanding are required as fundamental
steps, together with some form of inference and alge-
braic or mathematical solving techniques: for this
reason, the Aristo challenge is quite related to our
proposal. We will discuss Aristo and other challenges
extensively in the related works and challenges sec-
tion. While the large majority of existing systems that
provide end-to-end problem solvers stick to one spe-
cific solution method (for example, mathematical
equations, logic), our challenge is broader, as the
choice of the appropriate model and solution method
is considered a fundamental capability.

We are aware that the proposed challenge is hard
and of difficult solution nowadays, but we strongly
believe that even studying and solving only single
parts of the problem would bring important steps for-
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ward in artificial intelligence. In addition, on the road
to agent autonomy, it would be interesting to study
which level of human intervention and interaction
with the machine is needed to effectively collaborate
to solve the problem.

Mathematical Puzzles
Recreational mathematics is a powerful source of
inspiration. Michel Criton said:

It is a tradition that comes to us with a history of
almost four thousand years. We are talking about
mathematical and logical entertainment puzzles (that
is, recreational mathematics). This tradition has been
transmitted from generation to generation and civi-
lization in civilization, mainly thanks to great scientif-
ic minds that, to relax, spent a bit of their time on
these activities, even if someone considered them as
mere “trifles.” For example, in Albert Einstein’s library,
there was a whole section devoted to recreational
mathematics. (…) Lewis Carroll, Hamilton, Lagrange,
Euler, Descartes, Pascal, Fermat, Cardano, Fibonacci,
Alcuin, Diophantus, Archimedes: for these great minds
the “recreational mathematics” was not only for fun,
but also a powerful source of inspiration.17

Mathematical puzzles are an integral part of recre-
ational mathematics and in general are worked on by
humans, who must find a solution that satisfies the
given problem description. Mathematical puzzles are
very different in nature; they require mathematics to
solve them, but also logic, intuition, and imagination
are essential ingredients. For example, taking into
consideration the puzzles available in the Bocconi
website,18 roughly two-thirds of the proposed games
can be mapped into logic and constraint-satisfaction
problems, or simple algebraic equations. Other puz-
zles instead comprise geometrical or recognition
problems, classification, planning and scheduling
tasks, and others.

There are many competitions in this regard for the
students of primary and secondary schools organized
by associations, research organizations, and universi-
ties. For example, every year the Fédération Française
des Jeux Mathématiques organizes the international
championship of mathematical puzzles,19 where the
competitors should solve a number of puzzles (of var-
ious difficulty levels) in the least possible time. For
Italian students the organization of the games is led
by the center PRISTEM-ELEUSI, part of the Bocconi
University. The competition on mathematical puzzles
consists of a series of games that students must solve
individually in a time of 90 minutes. The degree of
difficulty (level) of the “games” is determined accord-
ing to the various categories of students who partici-
pate. For our purposes a first, yet extremely ambi-
tious, achievement could be for an autonomous
agent to win an official competition with students of
the primary school (first level of difficulty). A large
amount of material (in the Italian language) is avail-
able at the Bocconi University website. Further mate-

rial can be found on the web, where a large instance
set of mathematical and logic puzzles is available.

Challenge Description
In a computer-aided problem-solving process, there is
always a substantial human intervention that enables
the encoding of a problem described by text and dia-
grams in a model and a solution algorithm. Human
intervention is essential for identifying problem com-
ponents (decision variables, constraints, logical rela-
tions, objective functions), and the hidden knowl-
edge in the description of the problem: the human
player enables the transition from the description of
the problem to a model and a solution approach.

In figure 1, human intervention is depicted as a
number of (not necessarily) sequential steps: a
domain expert reads the text and diagrams of the
problem, he/she decides the modeling and solving
approach based on his/her experience, and frames
the model. At this point, an automatic problem-solv-
ing procedure completes the job, producing one or
many solutions if they exist.20 The challenge we pro-
pose is gradually to remove the human intervention
and let the computer perform the whole task
autonomously.

Possible steps for automatic problem solving are
those shown in figure 1: (1) Read and understand text
and diagrams (when available). (2) Identify a suitable
modeling and solving technique. (3) Identify prob-
lem components and hidden knowledge. (4) Frame
the problem model — represent the original problem
and its components by means of an equivalent,
machine-understandable model, suitable for reason-
ing on top of it. (5) Solve the problem by running an
automated problem-solving procedure.

For the sake of understanding, these steps are intro-
duced here as sequential and consecutive. However, it
is a matter of discussion whether they are in the cor-
rect order, if there should be one or more iterations,
and how much each step influences the other ones.
Indeed, many steps and many interactions between
these steps can be conceived for the problem-solving
process. For example, iterations might be required if
the result of one step is not satisfactory for the next
steps, or if the resulting model is not accurate or is
even incorrect. In turn, this opens up a number of
research directions in solution understanding and
model evaluation.

Deep Reasoning in Practice: 
Examples on Mathematical Puzzles

To make our challenge more practical, we propose in
the following a few examples. In particular, two prob-
lems (Three Friends and the 10-Digit Puzzle) illustrate
the need for a deep understanding of a problem
described through natural language text: for the sake
of clarity, we discuss them by showing a possible



mapping of the solving process with regard to the
steps introduced in figure 1. The third problem is pre-
sented to show the need for symbolic reasoning capa-
bilities, such as for example logical inference.

Finally, the fourth and fifth problems are just
sketched (with regard to the solution process), but we
introduce them to stress the needed interplay of mul-
timodal comprehension in deep reasoning: both
problems indeed come with text and diagrams.

Example 1: Three Friends
This first problem belongs to the easiest category,
aimed toward primary school students.

Jacob, Lucy, and Frank are three friends. All together
they are 28 years old. In how many years they will be
together 37 years old?

Step 1: Understanding Text (and Pictures)
Natural language processing techniques allow the
extraction of lexical, syntactical, and semantics infor-
mation contained in the text. Notice, however, that,
in the context of this challenge, understanding a text
means also that a computer has to identify the prob-
lem components like assertions, goals, constraints,
and others. In this specific puzzle, this would mean
discovering at least the explicit knowledge contained
in the text, namely that:

There are three friends.

All together here means the sum operator.

All together refers to the age of each friend.

The sum of their ages now is 28.

Ages and years are natural numbers.

How many refers to a quantity X of years.

In X years the sum of their ages will be 37.

We have to find X.

We highlighted in italic a few words that should have
a semantic link with specific concepts. For example,

the expression “All together” should be related to the
concept of mathematical sum, while “age” and
“years” should be linked with the natural numbers
concept. All the items in the list except the last one
refer to the problem’s assertions. The last item instead
refers to the goal.

Step 2: Identify Modeling and Solving Techniques
The specific problem of the three friends could be
modeled as a system of linear equations. Notice that
once a model has been identified, there is still an
open choice about the best solving technique to be
adopted: one solution might be to adopt some alge-
braic method for linear equations. Another method
would be to exploit constraint-satisfaction problem
(CSP) techniques for problem solving. In both cases
some sort of metaknowledge for reasoning would be
required, in order to select the specific solving tech-
nique.

Step 3: Identify Problem Components and Hidden
Knowledge
The problem components are the following. We have
three variables AJ, AL, and AF that represent the ages
of the three friends. X is the number of years that we
have to find. The three variables as well as X, are inte-
gers. Moreover the domain of X could be defined as X
∊ [0..28].

There is (at least) one other piece of hidden infor-
mation that requires a commonsense knowledge base
about the time and the flowing of time. In particular,
the time will flow with the same speed for all three
friends. Summing up, the information that the three
friends will together be 37 years old can be modeled
as the fact that after X years their ages will be respec-
tively AJ + X, AL + X, and AF + X.

Step 4: Frame the Model 
Given the problem components, we can now state
the following model based on linear equations:
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Figure 1. Human Intervention in a Problem-Solving Process.
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AJ + AL + AF = 28

(AJ + X) + (AL + X) + (AF + X) = 37

Step 5: Solve the Problem
Once the problem has been properly framed into a
(formal) model and a solving technique has been
chosen for solving it, it is possible to run the algo-
rithms and compute the solution.

The solution to this problem is X = 3.

Example 2: 10-Digit Puzzle
The following example, taken from Martin Gardner’s
Mathematical Puzzle Tales (Gardner 1981), is more dif-
ficult for a human player, at least with regard to the
three friends example. Indeed, it is targeted to sec-
ondary school students, and would require more
advanced problem-solving capabilities.

Find a 10-digit number where the first digit is how
many zeros there are in the number, the second digit
is how many 1s in the number, and so on, until the
10th digit, which is how many 9s in the number.

From a human viewpoint, the understanding of the
text and the problem modeling (steps 1–3) should be
straightforward, while solving the problem (step 4) is
more difficult. If a generate-and-test approach has to
be avoided, a number of different reasoning actions
have to be implemented by a human, and a more cre-
ative process is called in.

However, from a computer viewpoint, steps 1–3 are
rather complex, while step 4 (solving the problem)
might be definitely easier, for example by exploiting
constraint-satisfaction techniques aimed at exploring
large search spaces. In the following, we simply
sketch how this problem can be faced by following
the steps previously described.

Step 1: Understanding Text (and Pictures)
Understanding text here would amount to discover-
ing the following:

Find a number made of 10 digits (this is the goal).

A digit is a number from 0 to 9.

“How many zeros” in the number means counting the
occurrences of zeros among the digits of the number
itself. This information should be generalized for all
the other digits by correctly understanding the “and so
on, until …” part of the sentence.

The occurrences of the i value in the list of digits
should be equal to the ith digit. This step is again a
consequence of a generalization from the “and so on,
until…” part of the sentence.

Step 2: Identify the Modeling and Solving Technique
Given the structure of the problem, a constraint
model and a constraint-solving technique based on
backtrack search (with possible propagation) can be
suitable.

Step 3: Identify Problem Components 
and Hidden Knowledge
Since the problem can be encoded into a constraint-

satisfaction problem, the main components that have
to be identified are variables, domains, and con-
straints.

There are 10 variables, each one representing a digit of
the number to be determined.

Each digit has a position (from 0 to 9).

Each variable has an integer domain between 0 and 9.

As a constraint, the number of occurrences of i in the
digits should be equal to the ith digit.

Step 4: Model the Problem
In a constraint model we have variables, domains,
and constraints (expressed in a constraint language of
choice). Using constraint logic programming, it is
possible to model the problem directly as a set of 10
variables, each with domain [0 … 9], and each vari-
able being subjected to a global constraint that cap-
tures the number of occurrences of the ith digit.

Step 5: Solve the Problem
The problem-solving process in this case exploits a
constraint solver that uses propagation algorithms
and search.

The solution of this problem is the number
6210001000.

Notice that more information could be inferred. In
our case such information is not needed for deter-
mining a solution, although this is not the case in
general. For example, we would infer that:

The sum of all digits is 10.

The weighted sum of all digits where the weight is
their position is again 10.

The first digit cannot be a zero, and hence there is at
least one or more zeros.

No digit can take the value 9.

In the constraint-programming literature, these are
called redundant constraints, namely constraints that
are subsumed by other constraints of the problem.
Depending on the technique used to solve the prob-
lem, redundant constraints should either be identi-
fied and removed from the model or should be left in
the model. For example, in linear integer program-
ming solvers redundant constraints do not bring any
advantage to the solving algorithm and are removed
in preprocessing. In constraint programming on
finite domain solvers where propagation is not com-
plete, instead, they might help reducing the search
space and find a solution more quickly.

Example 3: Knights and Knaves
There are many mathematical puzzles that are indeed
logic puzzles, and that are typically aimed at deter-
mining the truth value of a proposition, given some
assertions whose truth value is a priori known. The
following problem is taken from Smullyan (1978).

There is an island where every inhabitants is either a
knight or a knave (exclusive or). Knights always tell the
truth, while knaves always lie. You are a tourist just
arrived in the island, and you met two inhabitant A
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and B. A says “I am a knave, or B is a knight.” What are
A and B?

Step 1: Understanding Text (and Diagrams)
In this case, identifying the problem’s parts or com-
ponents (for example, assertions, goals) amounts to
discovering at least that:

There are two inhabitants A and B.

Either A is a knight, or A is a knave (exclusive or oper-
ator).

Either B is a knight, or B is a knave (exclusive or oper-
ator).

If A is a knight, then A always says the truth. Other-
wise, he always lies.

If B is a knight, then B always says the truth. Other-
wise, he always lies.

A says that A is a knave, or B is a knight (inclusive or
operator).

Is A a knight or a knave? Is B a knight or a knave?

Step 2: Identify Modeling and Solving Techniques
Being a logical problem, a number of different
approaches can be exploited for automatic theorem
proving. This problem can be represented through
propositional logic: as a consequence, techniques
like, for example, truth tables or resolution might be
suitable for solving the problem.

Step 3: Identify Problem Components 
and Hidden Knowledge 
Problem components are four propositional symbols

a_is_knight, a_is_knave

b_is_knight, b_is_knave

with obvious meaning. We have not identified any
hidden knowledge useful to solve this problem.

Step 4: Frame the Model
The problem model is made of the logical, proposi-
tional sentences, together with the goals to be
proved, namely the truth value of a  _is  _knight and b -
 _is  _knight. Given the exclusive or between knights
and knaves, we also have:

a  _is  _knight ex-or a_is_knave

b  _is  _knight ex-or b_is_knave

Finally, from the sentence, A says “I am a knave, or B is
a knight.” we should be able to understand also that:

a  _is  _knight → (a_is_knave ∨ b  _is  _knight)

a_is_knave → ¬ (a_is_knave ∨ b  _is  _knight)

Step 5: Solve the Problem
To solve this problem we can, for example, use reso-
lution (Robinson 1965): taking as the goal the propo-
sitional fact that a_is_knight, it is possible to prove
that A is a knight in two resolution steps. Similarly for
the B inhabitant.

Example 4: Triangles
This example has a very simple text: How many tri-
angles are in figure 2?

Notice that the accompanying picture is quite easy

to understand: generally speaking, pictures can be
much more complex, and could require a deeper
understanding, as well understanding of the textual
part. For example, understanding such an easy pic-
ture would require spatial interpretation and reason-
ing, the ability to cope with spatial and textual
knowledge in a correlated manner, and some form of
abstraction toward simple concepts such as triangles
(Seo et al. 2014).

Example 5: The Castle Puzzle
This problem21 is again defined partly through natu-
ral language text, and partly by means of an accom-
panying diagram: Given the picture in figure 3, which
is bigger: the total area of blue or the total area of
white?

Different ways for solving this puzzle exist. For
example, one way would be to understand that:

The picture is a rectangle 8 units wide and 10 units
height.

In the picture there are two areas: a blue one and a
white one.

The blue part from the picture is composed by two tri-
angles and a rectangle; from the rectangle a small
square has been subtracted.

The question addressed by the problem is to determine
which of the two areas is bigger.

Given this knowledge, and a background knowl-
edge about simple geometry concepts (that is, how to
compute areas of rectangles and triangles), it would
be possible to compare the two areas and solve the
problem by planning a set of actions such as deter-
mining the important data for each shape (number
and type of different geometric shapes composing the
blue or white areas, size of the edges for each rectan-
gle, and edges of the triangles), compute the areas,
and compare them. Note that for the computation of
the blue area the machine should understand that it
can be derived by summing the area of the rectangle
and of the two triangles, and by subtracting from the
total the area of the small white square. Solving the
problem therefore means the ordered execution of
the actions determined by such a plan.

Notice that we assume a background knowledge
about the area of triangles and rectangles. Indeed, a
human player might observe that the two triangles
can be joined to form a rectangle (after a
rotation/translation of one triangle). In such a case,
to solve the puzzle it would suffice to count the num-
ber of square units: no knowledge about the compu-
tation of areas would be needed.

Another approach instead, would be to exploit the
low-level picture representation: a computer, for
example, might solve the problem by simply count-
ing the number of pixels of one color. Such a solution
would not require any understanding of what is in
the image, and we believe it is not a solution
exploitable by a human player.
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Related Works and Challenges
Addressing the automatic solution of mathematical,
geometric, logic, and science problems is an AI
research area that dates back to 1960s. The first
attempt to solve mathematical problems expressed in
(a restricted) natural language is STUDENT (Bobrow
1964). Starting from that seminal work, a number of
systems have been presented, focusing not only on
the mathematical domain, but also in geometry,
physics, mechanics, statistics, and other domains. For
a review, the interested reader can refer to Mukherjee
and Garain (2008). It is worth noticing that the initial
difficulties encountered by the first attempts pushed
the research toward the definition of systems special-
ized on restricted domains and problems. The
advancements in AI witnessed in recent years have
provided new fuel for novel and more general solu-
tions and approaches.

The proposed challenge is grounded in a number
of recent research works that address the automatic
solution of mathematical, geometric, logic, and sci-
ence problems/puzzles. Starting from information,
explicitly stated in text and diagrams, they exploit
deep reasoning and problem-solving capability to
solve the problems, thus going beyond pure question-
answering systems. In the following, we cite just a few
works, with no claim of being exhaustive with regard
to the state of the art.

The Allen Institute Aristo Challenge22 is aimed at
enabling a computer to pass elementary school sci-
ence and math tests. Aristo makes advances in the
areas of knowledge representation, modeling, reason-
ing, and language. With respect to science exams
(Clark, Harrison, and Balasubramanian 2013), Aristo
acquires and stores a vast amount of knowledge in
computable form by using natural language parsing
and processing. Starting from questions, diagrams,
and answer options, it selects or generates the correct
answer by combining knowledge retrieval, statistics,
and inference methods. In addition, Aristo provides
an extensive problem data set that can be used as a
benchmark for further research.

A deeper emphasis on problem solving with respect
to query answering can be found in the Euclid proj-
ect23 (Seo et al. 2014) of the Allen Institute. In Euclid,
an end-to-end system that solves high school math
and geometry problems is developed. In this context,
specific systems providing modeling components
have been presented:

GEOS (Seo et al. 2014, 2015) can be considered as
the first automated system able to solve unaltered
Scolastic Aptitude Test (SAT) problems related to
geometry questions by combining text understand-
ing and diagram interpretation.

ARIS (Hosseini et al. 2014) deals with arithmetic
word problems that involve only sums or subtrac-
tions. In particular, ARIS analyzes each of the sen-
tences in the problem statement to identify relevant
variables and values and then maps this semantic

information into equations that represent the prob-
lem.

Kushman and colleagues (2014) consider algebraic
problems. A link between significant objects in the
text and components of an algebraic equation is
established by selecting and using suitable templates.
The level of uncertainty in inferring this link is
resolved by using probabilistic learning models. A
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Figure 2. Triangles. 
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Figure 3. The Castle.



similar approach is pursued by Zhou, Dai, and Chen
(2015), where quadratic programming is exploited to
decide the best match between the text elements and
the equation template components. Templates, in the
form of equation tree structures, are exploited also by
Koncel-Kedziorski and colleagues (2015), where inte-
ger linear programming is used for generating the
space of trees and machine-learning techniques are
used to select the best matching tree.

Following a semantic approach, Morton and Qu
(2013) use a framework based on fuzzy logic and
ontologies to solve mathematical word problems
with the primary purpose of teaching users. To com-
pute results, the search engine WolframAlpha and its
integration within Mathematica are used.

In the paper by Shi et al. (2015) a new representa-
tion language (DOL) has been designed to bridge nat-
ural language text and math expressions. The parsing
of natural language into DOL is performed using a
context-free grammar. Then, a reasoning step recog-
nizes the text portions of interest in the resolution,
such as mathematical sentences, and these are subse-
quently turned into numerical expressions.

Inference (FOL) and statistical approaches for NLP,
are exploited by Liang et al. (2016) to transform the
text description in a tag-based form, and then into a
first-order logic program. Inference is then performed
to determine the solution.

Solving mathematical puzzles requires also com-
prehension of the role played by quantities in natu-
ral language. In the paper by Roy, Vieira, and Roth
(2015) a series of features are described to support rea-
soning on quantities expressed in natural language.
Two different numerical reasoning tasks are investi-
gated and addressed: quantity entailment, and the
problem of automatically understanding and solving
elementary school math word problems.

The increasing interest in solving mathematical
word problems is also witnessed by the creation of
several data sets. Recently, Koncel-Kedziorski and col-
leagues (2016) proposed a framework for unifying all
these sets into a single repository, with the possibili-
ty of extending it with new problem types and
instances.

The Todai Robot Project24 aims at creating an arti-
ficially intelligent agent obtaining a high score in the
Japan National Center Test for University Admissions
(McGoogan 2015, Strickland 2013), and passing the
entrance exam of the University of Tokyo in 2021.
Natural language comprehension is particularly
stressed in order to support query answering and alge-
braic problems.

Some mathematical puzzles can be viewed as math
word problems, while others can be assimilated to
logic puzzles. An obvious way to solve logic puzzles is
the use of theorem provers for first-order logic. The
translation of a problem (expressed in natural lan-
guage) to a logic semantics (exploitable in automated
reasoning) is a hard and challenging problem for AI.

In the paper by Lev et al. (2004) a method is proposed
that uses an intermediate language called Semantic
Logic, a general-purpose language with events,
groups of variables, modal operators such as “neces-
sary” and “possibly,” and generalized quantifiers. The
representation in the semantic logic can be translat-
ed in first-order logic and then solved by using a suit-
able theorem prover.

In a paper by Mitra and Baral (2015) the system
LOGICIA is introduced. The authors claim it is the first
system able to solve logical grid puzzles in a fully auto-
mated manner. Puzzles are addressed by translating
them to answer set programming (ASP; Gelfond and
Lifschitz [1991]), and then solved by an ASP solver.

A different, more general approach is presented by
Forbus, Klenk, and Hinrichs (2009), where a central
role is given to the analogy reasoning capability typ-
ical of human beings. Analogy is exploited in the
Companions cognitive architecture for matching,
memory retrieval, and generalization tasks. The
approach has been applied in different domains, and
in particular in the test-taking setting for physics
problems. The interesting aspect is that the Compan-
ions architecture does not have, initially, any specific
knowledge about physics, but exploits analogy to
retrieve relevant solutions by looking into previously
accumulated examples and extrapolating/adapting
existing solutions to solve the new problem.

In table 1 we report some related works, classified
with regard to important dimensions of the proposed
challenge: the domain they address; whether they
take as input only natural language descriptions or
diagrams as well; whether they support problem
description using “everyday language” or rather
restrict problem description to a specific, limited lan-
guage; and the solver used to solve the problem mod-
el (once a model has been extracted). We do not
report the AI technique used by each system to iden-
tify or extract a model from the natural and diagram
problem description: roughly speaking, the majority
of the works exploit rule-based, with or without log-
ic inference, and statistical approaches.

Our challenge differs from the mentioned works in
many aspects. In order to address our challenge, in
contrast with some works focused on SAT, no specific
deep knowledge on some disciplines is required (for
example, math, physics, geometry). Instead, com-
monssense reasoning capabilities are needed. Indeed,
mathematical puzzles often require the ability to rea-
son about space, time (qualitative and quantitative),
causality, and events.

Moreover, a number of different puzzle categories
should be addressed within the challenge: some cate-
gories can be assimilated to math word problems,
some are more similar to logical puzzles, and some
ask for a different variety of skills and reasoning abil-
ities. Therefore, the challenge also requires taking
into account the problem of establishing the appro-
priate modeling and problem-solving technique. In
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turn, such choices might have consequences on the
methods used for translating the input problem in a
suitable form, as well as in the process of identifying
problem components.

Discussion and Open 
Research Avenues

The proposed challenge is extremely hard if we con-
sider its ultimate goal, that is, to set a real competi-
tion between computers and humans on mathemati-
cal puzzles. However, it allows for a number of
different intermediate steps with increasing difficul-
ties, thus providing a nice playground for AI
researchers. Having in mind the challenge, and for
the sake of discussion, we cite a few research direc-
tions, knowing that being exhaustive would be
impossible.

Means for Evaluating the Challenge
Given the breadth and the complexity of the chal-
lenge, the reader might question whether it is broad
enough to foster research advances with regard to
existing state-of-the-art solutions. In this respect, an
important feature of research challenges is the possi-
bility of confronting them in a stepwise fashion, thus
providing short-term goals as well as long-term ones.
The stepwise nature of the proposed challenge is
threefold. First, we can approach problems at increas-
ing complexity levels: among mathematical puzzles
of the primary school, we could first approach sim-
pler then more complex problems, providing differ-
ent scores in the competition. Second, we can pro-
ceed gradually, starting from mathematical puzzles
that can be solved using a single technique (for exam-
ple constraint solving) to an ensemble of solution
techniques that should be selected by the agent.
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Table 1. Overview of Recent Related Works and Challenges.

Bibliographic 
Reference 

Domain Diagrams Everyday 
language 

Solving techniques 

Clark, Harrison, 
and Balasub 
ramanian (2013) 

Fourth Grade 
Science Problems 

 Query  Answering  
and Inference 

Seo et al. (2015) Geometric 
Problems 

  Algebraic/Geometric 
Solvers 

Morton and Qu 
(2013) 

Math Word 
Problems 

  Algebraic Solvers 

Shi et al. (2015) Math Word 
Problems 

  Algebraic solvers 

Roy, Vieira, and 
Roth (2015) 

Math Word 
Problems 

  Algebraic Solvers 

Hosseini, et al. 
(2014) 

Math Word 
Problems 

  Algebraic Solvers 

Kushman, et al. 
(2014) 

Math Word 
Problems 

  Algebraic Solvers 

Zhou, Dai, and 
Chen (2015) 

Math Word 
Problems 

  Algebraic Solvers 

Koncel-Kedziorski 
et al. (2015) 

Math Word 
Problems 

  Algebraic Solvers 

Liang, et al. 
(2016) 

Math Word 
Problems 

  FOL Reasoner 

Lev, et al. (2004) Logical Puzzles   FOL Reasoner 

Todai Project24 University Access 
Tests 

  Query  Answering  
and Algebraic 

Solvers 

Forbus,  Klenk,  
and  Hinrichs 
(2009) 

High-Achool 
Physics Tests 

  Analogical 
Reasoning 

Mitra and Baral 
(2015) 

Logical Grid 
Puzzles 

  Answer  Set  
Programming Solver 



Third, the stepwise approach to autonomy could help
to invesigate collaboration between humans and
machines in the problem-solving activity, in line with
the concept proposed by Barbara Grosz and col-
leagues (Grosz, Hunsberger, and Kraus 1999; Gal et al.
2010).

Following these lines of development, tests devot-
ed to assess results and advancements can be
designed to measure the effectiveness of the problem-
solving process and the level of autonomy reached by
the agent: specifically, each step and each advance-
ment should be identified and measured. Firstly we
could consider a single-solution technique and sim-
ply count the number of correctly solved problems.
In this case, given that the solving technique is fixed,
we could consider how good and how appropriate the
devised models are.

Enlarging the scope to multiple solution methods,
again the number of correctly solved problems can be
counted, but also how good and how appropriate the
devised solution techniques are can be evaluated. Of
course, we could also consider how fast the automat-
ic solution process is.

Moving on the road to full autonomy, the chal-
lenge can be approached by using intermediate steps
that require interactions between a machine and
humans. The level of interaction basically measures
the level of human intervention in the solution
process. How effective is the interaction and how
much human intervention is needed are certainly
two ways of measuring the level of achieved autono-
my.

Finally only at a future stage will we be able to eval-
uate the competition against human players. Com-
petitions require an additional set of competencies on
the computer’s side, addressing the strategy for
approaching the competition problems. Indeed,
humans taking part in the mathematical puzzle com-
petitions are evaluated on a number of criteria, such
as the time used for solving problems, the correctness
of the solution, as well as the complexity of the prob-
lem itself (more complex problems bring a higher
score to the human player). To win such a competi-
tion, the computer would need a further reasoning
layer, focused on metaknowledge on its own solving
capabilities, as well as strategies for selecting which
problems to solve (and in which order), and how
much time to allocate to each problem.

Beyond the Turing Test
A number of different challenges have been proposed
in AI in order to establish the level of intelligence
exhibited by machines. The most famous one is sure-
ly the Turing test. To cite some recent ones, we have
the Coffee Test (a machine preparing a coffee in an
average American home (Wozniak and Moon 2007;
Adams et al. 2012), the Robot College Student Test (a
machine enrolling, studying, passing university
courses, and obtaining a degree, by Goertzel25), and

the Employment Test (a machine working in an eco-
nomically important job; Nilsson [2005]).

Within the AAAI 2015 conference, a workshop
titled Beyond the Turing Test26 was aimed at estab-
lishing a structured setting for holding Turinglike
competitions. Inspired from that event, an entire
issue of AI Magazine (spring 2016) was dedicated to a
very interesting discussion on new proposals and
tests for measuring the intelligence of machines.

Here, we just stress that our proposed challenge has
a number of connections with and similarities to
some of the new tests presented in the journal issue.
The test proposal more similar to our challenge is the
one based on standardized tests by Clark and Etzioni
(2016), even if our challenge has a specific attention
to the problem-solving skills. Moreover, our chal-
lenge shares the need of commonsense reasoning as
proposed by Davis (2016) for the SQUABO-Basic test;
it has a multimodal dimension since it takes into
account visual and textual problem description,
which is advocated as important by Zitnick et al.
(2016); it provides many (but not all) of the dimen-
sions as defined by Adams, Banavar, and Campbell
(2016) for the I-athlon Turing test (namely, diagram
understanding, natural language understanding, col-
laboration, competition, reasoning, reasoning under
uncertainty, creativity, learning, planning, and com-
monsense physics). In this light, one of the strengths
of our challenge is that solving mathematical puzzles
advocates for a number of different capabilities or
intelligence dimensions that are typical of human
intelligence and that humans usually exploit in an
integrated manner. However, mathematical puzzles
do not require specialized knowledge, since the tar-
gets are primary school students. Instead, it is the
conjunction of the many different intelligence
dimensions that makes mathematical puzzles and our
challenge so interesting and stimulating for AI.

The Turing test has been recently extended also to
multiagent systems (Grosz 2012, 2013), where it “is
imaginable that a computer (intelligent agent) team
member could behave … in such a way that people
on the team will not notice it is not human.”

Including human actors in the process can be con-
sidered a way of evaluating, in a collaborative setting,
the trade-off between interactive and noninteractive
approaches to artificial intelligence and provides use-
ful insights on the level of human intervention need-
ed and autonomy reached by the problem solver.

Natural Language Processing
Text understanding is a fundamental step in this chal-
lenge, as well as in the other mentioned challenges,
that could be supported by semantic tools such as
WordNet.27

Mathematical and algebraic problems, having a
limited interpretation domain and being formal with
few or no ambiguities, lend themselves to being suc-
cessfully addressed with semantic-based NLP
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approaches. However, some mathematical problems
are described using everyday language and refer to
everyday situations/contexts. This is the typical case
of mathematical puzzles — deeply understanding
them implies a complex semantic analysis, as well as
the integration of different kind of (background)
knowledge and inference techniques.

The complexity of the approach could be reduced
if the text-understanding process can be goal driven,
and if the problem-solving techniques can be taken
into account. For example, in the three friends puz-
zle, the fact that the three children are friends is use-
less from a problem-solving perspective. The same
model could have been extracted in case Frank, Lucy,
and Jacob were not friends, and if they were dogs or
trees. Moreover, if we decide to solve the problem
through constraint satisfaction techniques, the lan-
guage-understanding process could focus on the
identification of decision variables, domains, and
constraints within the problem description, ignoring
useless information. Therefore, we focus on deriving
structured information suitable for reasoning, avoid-
ing the need of a complete semantic understanding.28

Multimodal Information Extraction
A deep understanding of text and images (and in gen-
eral of multimodal problem descriptions) is needed,
possibly in a tight integrated way. The natural lan-
guage processing and image processing communities
have recently achieved noteworthy results (each in its
own field). However, extracting the right knowledge
from multimodal descriptions still offers a huge
opportunity for research: it clearly enables a better
representation of contents and concepts, even if it
introduces a further level of complexity. Indeed, such
integration requires a semantically valid, unifying
paradigm and language for knowledge representation
and extraction (Pastra and Wilks 2004).

Commonsense Knowledge 
and Deep Understanding
Natural language texts invariably assume some
implicit knowledge. In particular, in the mathemati-
cal puzzles domain, a lot of background knowledge
and commonsense reasoning is usually not present in
the problem description, but has to be made explicit
in order to solve the problem. For example, precise
understanding of semantic phenomena like modals
and quantifiers, time and space relations, could be
needed.

To discover hidden knowledge in texts, a large com-
monsense knowledge base is needed. A number of dif-
ferent initiatives in the AI community are going on for
building such a common knowledge base. For exam-
ple, the Open Mind Common Sense project and the
ConceptNet29 are crowdsourcing the contributions of
thousands of people across the world, making such
information available in a number of different formal
languages. Another, very famous attempt to build up

a large, commonsense ontology and knowledge base
is the Cyc project (Lenat 1995), started in 1984 and
currently still being developed and supported.

Machine Learning for Knowledge 
Extraction and Problem Solving
Knowledge extraction, model revision, identification
of the solving technique (to cite some) are all tasks
that could greatly benefit from machine learning, a
discipline that has obtained very valuable results in
the last decades. For example, some recent works
exploit deep networks for extracting specific knowl-
edge (Lippi and Torroni 2015) for reasoning. Howev-
er, they still lack many of the functionalities needed
for achieving our goal entirely. In particular, as point-
ed out in a more general context by Gary Marcus,30

we need to identify and represent causal relation-
ships, integrating commonsense knowledge about
math, logic, geometry, and information about what
objects are, what they are for, and how they are typi-
cally used. Hence, machine learning (and deep learn-
ing in particular) is just one element in a big pletho-
ra of artificial intelligence techniques for knowledge
representation and reasoning that has to be suitably
used and integrated.

Within the challenge scenario, we foresee two
main roles for machine learning. First, it could be
used to improve each step of the process defined in
figure 1; second, it could help the entire process. With
respect to the first role, improving the single steps,
machine learning could be exploited to learn how to
classify for example natural language structures into
model components, how to select a proper solution
technique from a portfolio, and others.

Concerning the second role of machine learning,
we foresee a significant contribution provided by
case-based reasoning to define a similarity measure
among problem descriptions. If we assume that simi-
lar problems can be tackled with the same technique,
we could exploit the experience obtained in the solu-
tion of one problem for those that are considered
close to it. This would help shape the entire process
and make it more efficient and effective.

Specialized Versus General Problem Solvers
An important feature characterizing our challenge is
the emphasis on problem-solving skills. This issue is
recognized by the AI community as a fundamental
goal toward the evolution of autonomous intelligent
agents. For this purpose, we have introduced the chal-
lenge by proposing also a possible, limited number of
steps and interactions/loops: specifically, we devoted
one step to identifying a possible model of the prob-
lem, and a further step to choosing the best solving
technique. This requires some sort of metaknowledge
for reasoning, in order to select the specific solving
technique. For example, if we opt for a CSP, two influ-
ential methods, developed mainly in the field of con-
straint satisfaction and optimization, aim to auto-
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mate this process (Xu, Hoos, and Leyton-Brown
2010): automated algorithm configuration and port-
folio-based algorithm selection. The former has the
advantage of requiring no domain knowledge, but
produces only a single solver; the latter exploits per
instance variation, but requires a set of relatively
uncorrelated candidate solvers. While these tech-
niques are mainly devoted to achieve better perform-
ances (Hutter et al. 2014), the purpose here is to select
a solving technique that is more suitable for the
devised model.

Implicitly, in the previous discussion we took the
assumption of having a plethora of different,
machine-oriented specialized solving techniques and
tools to choose from, following the big switch state-
ment approach, where “… separate narrowly special-
ized programs corresponding to the individual tasks
are combined together in a simplistic harness”
(Adams et al. 2012).

The “big switch statement” can be effective in a
number of different problems and contexts, and
results have been obtained by exploiting this
approach in a number of different AI applications.
However, it has also been criticized, as for example in
the paper by Nilsson (2005), where:

I think AI should strive toward building a small num-
ber of general-purpose machines that are able to learn
and to be taught skills (and to improve on them) rather
than programming a much larger number of machines
each possessing a different individual skill set from the
start.

Clearly, Nilsson puts a bigger emphasis on the artifi-
cial general intelligence (AGI), where the cognitive
and learning processes are one of the main features
to stress. Indeed, tackling the challenge also means
confronting a number of important competency
areas usually associated with human-level general
intelligence, such as memory, communication, learn-
ing, and quantitative reasoning (Adams et al. 2012).
Therefore, we believe that our challenge can be inter-
preted also as a possible scenario within the context
of the AGI landscape.

Computational Thinking 
Versus AI Thinking
The general steps to be performed by an end-to-end
problem solver are very related to some key ingredi-
ents of computational thinking:31 decomposition —
“breaking down data, processes, or problems into
smaller, manageable parts”; pattern recognition —
“observing patterns, trends, and regularities in data”;
abstraction — “identifying and extracting relevant
information to define main idea(s)”; and algorithm
design — “creating an ordered series of instructions
for solving similar problems or for doing a task.”

While computational thinking (Wing 2006) is ori-
ented toward data processing and algorithms, in the
context of our challenge there is a bigger emphasis
toward the problem-solving aspects and the more

general process of artificial intelligence thinking
(Zeng 2013). Compared with computational think-
ing, “AI thinking goes beyond the algorithm-based
perspectives and emphasizes items such as how to
leverage knowledge bases and case bases in problem
solving, how to capture and reason about common-
sense, how to enable processing of semantics and
contexts, and how to deal with unstructured data,
among others.”

Conclusions
Computers beating humans in mathematical puzzles
that are described in terms of text and diagrams is the
challenge proposed in this paper. Even if it is still far
from being achieved, we believe that scientific
research in this direction can provide important
improvements in many AI disciplines and reduce
modern AI fragmentation. In the intermediate steps,
intelligent agents and students could work together,
with different skills and expertise, to solve mathemat-
ical puzzles. Beside bringing insights to collaborative
interactions between humans and machines, this
would also be beneficial for the dissemination of arti-
ficial intelligence in educational settings. Finally, this
challenge could be used to disseminate AI results with-
in the general public, business, and policy makers, as
the challenge is easy to understand but poses, at the
same time, a number of deep and complex issues.

Notes
1. www.loebner.net/Prizef/loebner-prize.html.

2. www.aerialroboticscompetition.org.

3. www.darpa.mil/About/History/Archives.aspx.

4. www.robocup.org.

5. www.cs.miami.edu/ tptp/CASC/.

6. www.evalita.it.

7. www.grappa.univ-lille3.fr/icga/game.php?id=1.

8. www.marioai.org.

9. www.platformersai.com.

10. games.stanford.edu/index.php/homepage.

11.  content.time.com/time/magazine/article/0,9171,984
305,00.html#ixzz1DyffA0Dl.

12. Quoted from Noam Chomsky, Powers and Prospects:
Reflections on Human Nature and the Social Order.

13.  Go Grandmaster Lee Sedol Grabs Consolation Win
Against Google’s AI, https://www.wired.com/2016/03/go-
grandmaster-lee-sedol-grabs-c.

14. www.robocup.org/about-robocup/objective.

15. www.robocup.org/about-robocup/objective.

16. www.ibm.com/watson.

17. Freely translated from the introduction of Les jeux math-
ématiques, Michel Criton, PUF Edition, 1977.

18. matematica.unibocconi.it/giochi-matematici.

19. www.animath.fr/spip.php?rubrique42.

20. Note that, for the sake of this challenge, we restrict our
focus to mathematical puzzles for which a solution always
exists and is unique.
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21. Freely inspired by a similar puzzle by Peter Grabarchuk,
www.peterpuzzle.com/web/MathsIsFun.htm.

22. allenai.org/aristo.html.

23. allenai.org/euclid.html.

24. 21robot.org.

25. www.newscientist.com/article/mg21528813.600-what-
counts-as-a-conscious-thinking-machine. 

26. www.math.unipd.it/ frossi/BeyondTuring2015.

27. https://wordnet.princeton.edu.

28.  See the Workshop on reasoning with the text
projects.ict.usc.edu/rwt2011/ for a general discussion.

29. conceptnet5.media.mit.edu.

30. G. Marcus, Is “Deep Learning” a Revolution in Artificial
Intelligence?’ The New Yorker, 25 November 2012. 

31. www.google.com/edu/resources/programs/exploring-
computational-thinking/index.html#!ct-overview.
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