
According to folk definitions of planning and schedul-
ing commonly used in the AI community, planning is
deciding what to do, while scheduling is deciding when

and how to do it. Neither of these terms are fundamental cat-
egories. Scheduling applications are simply those that can be
addressed using scheduling tools and techniques. Using a few
examples drawn from personal experience spanning more
than two decades, in this column I provide one perspective
on how those tools and techniques have evolved, as well as
the resulting effect on the scope and scale of applications that
can be addressed.

Between 1993 and 1995, a group of us at Honeywell imple-
mented a constraint-based scheduler for the Airplane Infor-
mation Management System (AIMS) that was developed for
the Boeing 777. The initial AIMS scheduling problem encom-
passed 29,000 discrete activities, subject to 97,000 complex
metric constraints specified by AIMS applications developers.
Generating feasible schedules was an essential requirement
for operating the 777, potentially threatening a Boeing
investment of almost 10 billion dollars. The scale and com-
plexity of this problem were unprecedented, and there were
very few applicable tools or standards. Input requirements
were provided as text, with a semantics negotiated and main-
tained through frequent discussion. As this was one of the
earliest schedulers based on the simple temporal problem
(STP), we implemented methods for incremental updates and
bounds computation, as well as integrating the STP model
with a large set of discrete decision variables. The solver used
a locally implemented adaptation of Ginsberg’s recently pub-
lished Dynamic Backtracker, a systematic search algorithm
combining stack reordering (not just conflict-directed back-
jumping) with what would later be called clause learning, as
well as several customized constraint propagators (Boddy and
Goldman 1994). Notable in this development effort was the
extended process of negotiation with the AIMS developers as
they sought to preserve functionality, repeatedly providing
sets of requirements that we demonstrated to be unsatisfi-
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n The available tools and support for
building planning and scheduling sys-
tems and applications have been steadi-
ly improving for decades. At the same
time, the scope, scale, and complexity of
the problems to be addressed have been
increasing. In this column, I discuss sev-
eral different scheduling applications
developed over the past 25 years and
then describe the tools and techniques
used in addressing these problems,
showing how improved tools simplified
(and in some cases enabled) the solu-
tion of problems of increasing difficulty.



able, using tools implemented specifi-
cally for that purpose.

Subsequently, tooling support for
building planning and scheduling sys-
tems became more prevalent. For
example, ilog Solver and Scheduler
provided constraint modeling and
solving capabilities, including special-
ized implementations of global con-
straints such as all-different. These
tools used an extension of the Prolog
goal stack, rendering them of limited
utility where explicit control of the
search process was required. Advances
in understanding the relationship
between propositional reasoning and
integer programming widened the set
of solvers available, while improve-
ments in tools like CPLEX and a range
of constraint-satisfaction problem
(CSP) solvers including but not limited
to iLog tools such as OPL further
reduced the amount of implementa-
tion needed for a new application.
Scheduling-specific ontologies and
specialized constraints, custom control
over constraint propagation, and sup-
port for backjumping during search
made these systems increasingly use-
ful. By 2010, these improvements in
integration and scale enabled us (now
at Adventium) to implement a system
modeling processing and communica-
tion demands in large networks
(10,000 to 1,000,000 nodes). Newly
developed tools and standards played
a key part: the domain and problem
instances were represented in the
Architecture Analysis and Design Lan-
guage (AADL), from which we extract-
ed a set of constraints in the high-lev-
el constraint language MiniZinc,
translated from there into a linear pro-
gram, which solved in single-digit
minutes, using stock hardware
(Michalowski, Boddy, and Carpenter
2010).

Then in 2013, very nearly 20 years
after the AIMS scheduler, we con-
structed a prototype scheduler for a
modern avionics system for a large
commercial jetliner. The problem was
larger, more complex, and significant-
ly more diverse than that addressed by
the AIMS scheduler. Instead of a single
integrated network with external sen-
sor interfaces, there were multiple net-
works with gateways between them.
Instead of one communication proto-

col (and thus one scheduling model)
there were several. Instead of functions
preassigned to processors, that assign-
ment was part of the problem. Multi-
ple, gatewayed networks with different
communication protocols were a par-
ticular issue, requiring enforcement of
timing guarantees across multiple
asynchronous boundaries. Fortunately,
the available tools were much
improved as well, to the point where
the application could be assembled
largely by integrating existing tools.
Instead of hand-rolled domain models,
we used AADL. Instead of manual inte-
gration of discrete and continuous
parts of the problem as had previously
been required, we used satisfiability
modulo theories (SMTs). Instead of
hand-implemented search control, we
used an off-the-shelf solver. The largest
remaining implementation task was to
translate from the AADL model to a
formulation suitable for the SMT
solver.1 This tool remains in a proto-
type form, but the models and integra-
tion methods have been used for other
applications.

Most recently, we have integrated a
scheduling engine into design tools for
integrated, heterogeneous embedded
software systems. These tools have
been evaluated by system developers,
and are now being provided as Gov-
ernment Furnished Equipment for the
preliminary design phase of a major
aircraft development program.2 In our
view, this kind of integration is where
the main challenge of the future lies.
Public infrastructure is increasingly
distributed and integrated, while
embedded systems grow increasingly
complex and interdependent. Individ-
ual components of these large systems
may have very different dynamics and
may be provided by vendors desiring
to protect proprietary information.
Addressing these problems requires
integrating diverse tools, sharing limit-
ed information, with a rigorous seman-
tic mapping among them.

Over the past 20 years, there has
been significant progress in the tools
available to support all aspects of
defining and implementing con-
straint-based scheduling applications.
This process is ongoing; examples of
current research technologies with
promise for real applications include
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various refinements of Monte-Carlo
tree search, and the synthesis of spe-
cific algorithms for problem instances,
as for example in ongoing work by
Doug Smith at Kestrel. At the same
time, the increasing complexity and
integration of computing systems con-
tinues to provide more, larger, and
more complex problems to solve. This
class of applications should provide a
fruitful source of new modeling and
solution challenges for years to come.

Notes
1. See nari.arc.nasa.gov/sites/default/files/
Boddy SPICA PhaseI FinalReport r2.pdf

2.  www.adventiumlabs.com/our-work/
products-services/model-based-engineer-
ing-mbe-tools
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