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Power to the People: 
The Role of Humans in 

Interactive Machine Learning

Saleema Amershi, Maya Cakmak, W. Bradley Knox, Todd Kulesza1

Machine learning is a powerful tool for transforming
data into computational models that can drive
user-facing applications. However, potential users

of such applications, who are often domain experts for the
application, have limited involvement in the process of
developing them. The intricacies of applying machine-learn-
ing techniques to everyday problems have largely restricted
their use to skilled practitioners. In the traditional applied
machine-learning workflow, these practitioners collect data,
select features to represent the data, preprocess and trans-
form the data, choose a representation and learning algo-
rithm to construct the model, tune parameters of the algo-
rithm, and finally assess the quality of the resulting model.
This assessment often leads to further iterations on many of
the previous steps. Typically, any end-user involvement in
this process is mediated by the practitioners and is limited to
providing data, answering domain-related questions, or giv-
ing feedback about the learned model. This results in a
design process with lengthy and asynchronous iterations
and limits the end users’ ability to affect the resulting mod-
els.

Consider the following case study of machine-learning
practitioners working with biochemists to develop a protein
taxonomy by clustering low-level protein structures (Carua-
na et al. 2006). The project lead recounted their experience
in an invited talk at the Intelligent User Interfaces’s 2013
Workshop on Interactive Machine Learning (Amershi et al.
2013). First, the practitioners would create a clustering of the
protein structures. Then, they would meet with the bio-
chemists to discuss the results. The biochemists would cri-
tique the results (for example, “these two proteins should /
should not be in the same cluster” or “this cluster is too
small”), providing new constraints for the next iteration.
Following each meeting, the practitioners would carefully
adjust the clustering parameters to adhere to the given con-

n Systems that can learn interactively from
their end-users are quickly becoming wide-
spread. Until recently, this progress has been
fueled mostly by advances in machine learn-
ing; however, more and more researchers are
realizing the importance of studying users of
these systems. In this article we promote this
approach and demonstrate how it can result
in better user experiences and more effective
learning systems. We present a number of
case studies that demonstrate how interactiv-
ity results in a tight coupling between the sys-
tem and the user, exemplify ways in which
some existing systems fail to account for the
user, and explore new ways for learning sys-
tems to interact with their users. After giving
a glimpse of the progress that has been made
thus far, we discuss some of the challenges we
face in moving the field forward.
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straints and recompute clusters for the next meeting.
Frustrated by the inefficiency of this laborious
process, Caruana and colleagues went on to develop
learning algorithms that enable interactive explo-
ration of the clustering space and incorporation of
new clustering constraints (Cohn, Caruana, and
McCallum 2003; Caruana et al. 2006). These algo-
rithms were intended to give people the ability to
rapidly iterate and inspect many alternative cluster-
ings within a single sitting.

Their later approach is an example of interactive
machine learning, where learning cycles involve
more rapid, focused, and incremental model updates
than in the traditional machine-learning process.
These properties enable everyday users to interac-
tively explore the model space and drive the system
toward an intended behavior, reducing the need for
supervision by practitioners. Consequently, interac-
tive machine learning can facilitate the democratiza-
tion of applied machine learning, empowering end
users to create machine-learning-based systems for
their own needs and purposes. However, enabling
effective end-user interaction with interactive
machine learning introduces new challenges that
require a better understanding of end-user capabili-
ties, behaviors, and needs.

This article promotes the empirical study of the
users of interactive machine-learning systems as a
method for addressing these challenges. Through a
series of case studies, we illustrate the following
propositions:

Rapid, focused, and incremental learning cycles result
in a tight coupling between the user and the system,
where the two influence one another. As a result it is
difficult to decouple their influence on the resulting
model and study such systems in isolation. 

Explicitly studying user interaction can challenge
assumptions of traditional learning systems about
users and better inform the design of interactive learn-
ing systems.

The ways in which end users interact with learning
systems can be expanded to ways in which practition-
ers do (for example, tuning parameters or defining
new constraints); however, novel interaction tech-
niques should be carefully evaluated with potential
end users.

While the presented case studies paint a broad pic-
ture of recent research in user interaction with inter-
active machine learning, this article does not exhaus-
tively survey the literature in this space. Rather, these
case studies are selected to highlight the role and
importance of the user within the interactive
machine-learning process, serving as an introduction
to the topic and a vehicle for considering this body of
research altogether. We conclude this article with a
discussion of the current state of the field, identifying
opportunities and open challenges for future interac-
tive machine-learning research.

Interactive Machine Learning
The applied machine-learning workflow often
involves long and complex iterations. The process
starts with data provided by domain experts or specifi-
cally collected for the target application. Machine-
learning practitioners then work with domain experts
to identify features to represent the data. Next, the
practitioners experiment with different machine-
learning algorithms, iteratively tuning parameters,
tweaking features, and sometimes collecting more
data to improve target performance metrics. Results
are then further examined both by practitioners and
domain experts to inform the subsequent iteration. At
the end of this long cycle, the model is updated in sev-
eral ways and can be drastically different from the pre-
vious iteration. Furthermore, this iterative exploration
of the model space is primarily driven by the machine-
learning practitioners, who rely on their understand-
ing of machine-learning techniques to make informed
model updates in each iteration.

In contrast, model updates in interactive machine
learning are more rapid (the model gets updated
immediately in response to user input), focused (only
a particular aspect of the model is updated), and incre-
mental (the magnitude of the update is small; the
model does not change drastically with a single
update). This allows users to interactively examine the
impact of their actions and adapt subsequent inputs to
obtain desired behaviors. As a result of these rapid
interaction cycles, even users with little or no
machine-learning expertise can steer machine-learn-
ing behaviors through low-cost trial and error or
focused experimentation with inputs and outputs. Fig-
ure 1 illustrates traditional applied machine learning
and interactive machine learning, highlighting their
contrasting characteristics.

Perhaps the most familiar examples of interactive
machine learning in real-world applications are rec-
ommender systems such as Amazon product recom-
mendations, Netflix movie recommendations, and
Pandora music recommendations. Users of recom-
mender systems are often asked targeted questions
about their preferences for individual items2 (which
they provide by liking or disliking them, for example).
These preferences are then promptly incorporated in
the underlying learning system for subsequent recom-
mendations. If a recommender system begins recom-
mending undesired items after incorporating new
preferences, the user may attempt to redirect the sys-
tem by correcting it or providing different preference
information in the future. 

We next present two case studies that exemplify the
interactive machine-learning process and demonstrate
its potential as an end-user tool.

Interactive Machine Learning 
for Image Segmentation
Fails and Olsen (2003) were the first to introduce the
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term interactive machine learning in the human-com-
puter interaction community, characterizing it with
rapid train-feedback-correct cycles, where users itera-
tively provide corrective feedback to a learner after
viewing its output. They demonstrated this process
with their Crayons system, which allowed users with
no machine-learning background to train pixel clas-
sifiers by iteratively marking pixels as foreground or
background through brushstrokes on an image. After
each user interaction, the system responded with an
updated image segmentation for further review and
corrective input. 

Evaluations of Crayons through user studies
revealed that the immediate output provided by the
system allowed users to quickly view and correct mis-
classifications by adding new training data in the

most problematic areas. As illustrated in figure 2,
after an initial classification, the user provides
Crayons with more data at the edges of the hand
where the classifier failed. When asked what they
were thinking while interacting with the system,
most users stated that they were focused on seeing
parts of the image that were classified incorrectly.

Fails and Olsen’s work on Crayons demonstrated
that users modify their behavior based on a learner’s
outputs, which is an underlying premise for much of
the following research on interactive machine learning.

Interactive Machine Learning 
for Gesture-Based Music
Another example of an interactive machine-learning
system comes from the realm of music composition

Figure 1. Traditional Applied and Interactive Machine Learning.

In machine learning, people iteratively supply information to a learning system and then observe and interpret the outputs of the system
to inform subsequent iterations. In interactive machine learning, these iterations are more focused, frequent, and incremental than tradi-
tional machine learning. The tighter interaction between users and learning systems in interactive machine learning necessitates an
increased focus on studying the user’s involvement in the process.
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and performance. This domain is naturally interac-
tive: musicians are accustomed to receiving immedi-
ate feedback when interacting with a musical instru-
ment. Fiebrink, Cook, and Trueman (2011)
developed the Wekinator, a machine-learning system
for enabling people to interactively create novel ges-
ture-based instruments, such as moving an arm in
front of a web camera to produce different sounds
based on the arm’s position, speed, or rotation. In
this system, a neural network receives paired gestures
and sounds from the user as input and learns how to
interpolate from unobserved gesture positions to a
range of sounds. Users evaluate their instruments
directly by gesturing and assessing the produced
sounds.

While observing students using Wekinator in an
interdisciplinary music and computer science course,
the authors found that as students trained their
respective instruments, the interactive nature of the
system also helped train the students. For example,
the students learned how to recognize noise in their
training samples and provide clearer examples to the
learner. In some cases, students even adjusted their
goals to match the observed capabilities of the learn-
er. In a follow-up investigation with a professional
cellist (Fiebrink, Cook, and Trueman 2011), the cellist
identified flaws in her playing technique while try-

ing to train a gesture recognizer. The process revealed
that the cellist’s bowing articulation was not as pre-
cise as she had believed. By observing the outputs of
the system in real time, Wekinator users were able to
modify their behavior in ways that allowed them to
create instruments to their satisfaction.

Summary
These examples illustrate the rapid, focused, and
incremental interaction cycles fundamental to inter-
active machine learning; it is these cycles that facili-
tate end-user involvement in the machine-learning
process. These cycles also result in a tight coupling
between the user and the system, making it impossi-
ble to study the system in isolation from the user.
This necessitates an increased focus on studying how
users can effectively influence the machine-learning
system and how the learning system can appropri-
ately influence the users. The following section
examines how explicitly studying end users can chal-
lenge assumptions of traditional machine learning
and better inform the development of interactive
machine-learning systems. Many of the case studies
to follow additionally consider less traditional types
of input and output, moving beyond labeled exam-
ples and observations of learner predictions. 
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Figure 2. Interactive Training of the Crayons System.

The system takes pixels labeled as background/foreground as input (provided through brush strokes), and gives a fully segmented image as
output (obtained through a classifier that labels each pixel as foreground/background). The user’s input is focused on areas where the clas-
sifier is failing in previous iterations (Fails and Olsen 2003).

Input Data

Segmentation

Iteration 1 Iteration 2 Iteration 3



Studying User Interaction with 
Interactive Machine Learning

The increased interaction between users and learning
systems in interactive machine learning necessitates
an increased understanding of how end-user involve-
ment affects the learning process. In this section, we
present case studies illustrating how such an under-
standing can ultimately lead to better-informed sys-
tem designs. First, we present case studies demon-
strating how people may violate assumptions made
by traditional machine learners, resulting in unex-
pected outcomes and user frustration. Next, we pres-
ent case studies indicating that people may want to
interact with machine-learning systems in richer
ways than anticipated, suggesting new input and
output capabilities. Finally, we present case studies
that experiment with increasing transparency about
how machine-learning systems work, finding that
such transparency can improve the user experience
in some scenarios, as well as the accuracy of resulting
models.

Users Are People, Not Oracles
Active learning is a machine-learning paradigm in
which the learner chooses the examples from which
it will learn (Settles 2010). These examples are select-
ed from a pool of unlabeled samples based on some
selection criterion (for example, samples for which
the learner has maximum uncertainty). For each
selected sample the learner queries an oracle to
request a label. This method has had success in accel-
erating learning (that is, requiring fewer labels to

reach a target accuracy) in applications like text clas-
sification and object recognition, where oracles are
often paid to provide labels over a long period of
time. However, Cakmak and colleagues (2010) dis-
covered that when applied to interactive settings,
such as a person teaching a task to a robot by exam-
ple, active learning can cause several problems.

Cakmak’s study (figure 3) found that the constant
stream of questions from the robot during the inter-
action was perceived as imbalanced and annoying.
The stream of questions also led to a decline in the
user’s mental model of how the robot learned, caus-
ing some participants to “turn their brain off” or
“lose track of what they were teaching” (according
to their self report) (Cakmak, Choa, and Thomaz
2010). Guillory and Bilmes (2011) reported similar
findings for an active movie recommendation sys-
tem they developed for Netflix. These studies reveal
that users are not necessarily willing to be simple
oracles (that is, repeatedly telling the computer
whether it is right or wrong), breaking a fundamen-
tal assumption of active learning. Instead, these sys-
tems need to account for human factors such as
interruptibility or frustration when employing meth-
ods like active learning.

People Tend to Give More Positive 
Than Negative Feedback to Learners
In reinforcement learning, an agent senses and acts
in a task environment and receives numeric reward
values after each action. With this experience, the
learning agent attempts to find behavioral policies
that improve its expected accumulation of reward. A
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Figure 3. Users Teaching New Concepts to a Robot by Providing Positive and Negative Examples. 

Left: Passive learning: examples are chosen and presented by the user. Right: Active learning: particular examples are requested by the learn-
er. Although active learning results in faster convergence, users get frustrated from having to answer the learner’s long stream of questions
and not having control over the interaction.



number of research projects have investigated the
scenario in which this reward comes as feedback
from a human user rather than a function predefined
by an expert (Isbell et al. 2006, Thomaz and Breazeal
2008, Knox and Stone 2012). In evaluating the feasi-
bility of nonexpert users teaching through reward
signals, these researchers aimed to both leverage
human knowledge to improve learning speed and
permit users to customize an agent’s behavior to fit
their own needs.

Thomaz and Breazeal (2008) observed that people
have a strong tendency to give more positive rewards
than negative rewards. Knox and Stone (2012) later
confirmed this positive bias in their own experi-
ments. They further demonstrated that such bias
leads many agents to avoid the goal that users are
teaching it to reach (for example, the water in figure
4). This undesirable consequence occurs with a com-
mon class of reinforcement learning algorithms:
agents that value reward accrued over the long term
and are being taught to complete so-called episodic
tasks. This insight provided justification for the pre-
viously popular solution of making agents that hedo-
nistically pursue only short-term human reward, and
it led Knox and Stone (2013) to create an algorithm
that successfully learns by valuing human reward
that can be gained in the long term. Agents trained
through their novel approach were more robust to
environmental changes and behaved more appropri-
ately in unfamiliar states than did more hedonistic
(that is, myopic) variants. These agents and the algo-
rithmic design guidelines Knox and Stone created
were the result of multiple iterations of user studies,

which identified positive bias and then verified its
hypothesized effects.

People Want to Demonstrate 
How Learners Should Behave
In an experiment by Thomaz and Breazeal (2008)
users trained a simulated agent to bake a cake
through a reinforcement learning framework. In their
interface, users gave feedback to the learner by click-
ing and dragging a mouse — longer drags gave larg-
er-magnitude reward values, and the drag direction
determined the valence (+/–) of the reward value (fig-
ure 4). Further, users could click on specific objects to
signal that the feedback was specific to that object,
but they were told that they could not communicate
which action the agent should take.

Thomaz and Breazeal found evidence that people
nonetheless gave positive feedback to objects that
they wanted the agent to manipulate, such as an
empty bowl that the agent is in position to pick up.
These users violated the instructions by applying
what could be considered an irrelevant degree of free-
dom — giving feedback to objects that had not been
recently manipulated — to provide guidance to the
agent about future actions, rather than actual feed-
back about previous actions. After Thomaz and
Breazeal adapted the agent’s interface and algorithm
to incorporate such guidance, the agent’s learning
performance significantly improved.

Other researchers have reached similar conclu-
sions. In a Wizard-of-Oz study (that is, the agent’s
outputs were secretly provided by a human) by
Kaochar and colleagues (2011), users taught a simu-
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Figure 4. Two Task Domains for Reinforcement Learning Agents Taught by Human Users.

Left: A cooking robot that must pick up and use the ingredients in an acceptable order (Thomaz and Breazeal 2006). The green vertical bar
displays positive feedback given by a click-and-drag interface. Right: A simulated robot frog that users teach how to navigate to the water
(Knox and Stone 2012).



lated unmanned aerial vehicle (UAV) to conduct var-
ious missions. At any time, these users chose whether
to teach by demonstration, by feedback, or by pro-
viding an example of a concept. They could also test
the agent to see what it had learned. The authors
found that users never taught exclusively by feed-
back, instead generally using it after teaching by the
other available means. Together, these two studies
provide insight into the design of natural interfaces
for teaching agents. 

People Naturally Want to 
Provide More Than Just Data Labels
Labeling data remains the most popular method for
end-user input to interactive machine-learning sys-
tems because of its simplicity and ease of use. How-
ever, as demonstrated in previous case studies, label-
based input can have drawbacks (for example,
negative attitudes toward being treated as an oracle).
In addition, emerging research suggests that in some
scenarios users may desire richer control over
machine-learning systems than simply labeling data.

For example, Stumpf and colleagues (2007) con-
ducted a study to understand the types of input end
users might provide to machine-learning systems if
unrestricted by the interface. The authors generated
three types of explanations for predictions from a
text classification system operating over email mes-
sages. These explanations were presented to people
in the form of paper-based mockups to avoid the
impression of a finished system and encourage peo-
ple to provide more feedback. People were then asked
to give free-form feedback on the paper prototypes
with the goal of trying to correct the classifier’s mis-
takes. This experiment generated approximately 500
feedback instances from participants, which were
then annotated and categorized. The authors found
that people naturally provided a wide variety of input
types to improve the classifier’s performance, includ-
ing suggesting alternative features to use, adjusting
the importance or weight given to different features,
and modifying the information extracted from the
text. These results present an opportunity to develop
new machine-learning algorithms that might better
support the natural feedback people want to provide
to learners, rather than force users to interact in lim-
ited, learner-centered ways.

People Value Transparency in 
Learning Systems
In addition to wanting richer controls, people some-
times desire more transparency about how their
machine-learning systems work. Kulesza and col-
leagues (2012) provided users of a content-based
music recommender with a 15-minute tutorial dis-
cussing how the recommender worked and how var-
ious feedback controls (for example, rating songs,
steering toward specific feature values, and so on)
would affect the learner. Surprisingly, participants

responded positively to learning these details about
the system. In addition, the researchers found that
the more participants learned about the recom-
mender while interacting with it, the more satisfied
they were with the recommender’s output. This case
study provides evidence that users are not always sat-
isfied by “black box” learning systems — sometimes
they want to provide nuanced feedback to steer the
system, and they are willing and able to learn details
about the system to do so. 

Examining transparency at a more social level,
Rashid and colleagues (2006) examined the effect of
showing users the value of their potential movie rat-
ings to a broader community in the MovieLens rec-
ommendation system. Users who were given infor-
mation about the value of their contribution to the
entire MovieLens community provided more ratings
than those who were not given such information,
and those given information about value to a group
of users with similar tastes gave more ratings than
those given information regarding the full Movie-
Lens community.

Transparency Can Help People 
Provide Better Labels
Sometimes users make mistakes while labeling, thus
providing false information to the learner. Although
most learning systems are robust to the occasional
human error, Rosenthal and Dey set out to solve this
problem at the source. They sought to reduce user mis-
takes by providing targeted information when a label
is requested in an active learning setting. The infor-
mation provided to the user included a combination
of contextual features of the sample to be labeled,
explanations of those features, the learner’s own pre-
diction of the label for the sample, and its uncertainty
in this prediction (Rosenthal  and  Dey 2010).

They conducted two studies to determine the
subset of such information that is most effective in
improving the labeling accuracy of users. The first
involved people labeling strangers’ emails into cat-
egories, as well as labeling the interruptability of
strangers’ activities; the second involved people
labeling sensory recordings of their own physical
activity. Both studies found that the highest label-
ing accuracy occurred when the system provided
sufficient contextual features and current predic-
tions without uncertainty information. This line of
research demonstrates that the way in which infor-
mation is presented (for example, with or without
context) can greatly affect the quality of the
response elicited from the user. This case study also
shows that not all types of transparency improve
the performance of interactive machine-learning
systems, and user studies can help determine what
information is most helpful to the intended audi-
ence.
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Summary
Understanding how people actually interact — and
want to interact — with machine-learning systems is
critical to designing systems that people can use effec-
tively. Exploring interaction techniques through user
studies can reveal gaps in a designer’s assumptions
about their end users and may suggest new algorith-
mic solutions. In some of the cases we reviewed, peo-
ple naturally violated assumptions of the machine-
learning algorithm or were unwilling to comply with
them. Other cases demonstrated that user studies can
lead to helpful insights about the types of input and
output that interfaces for interactive machine learning
should support. In general, this type of research can
produce design suggestions and considerations, not
only for people building user interfaces and developing
the overall user experience, but for the machine-learn-
ing community as well.

Novel Interfaces for Interactive
Machine Learning

As many of the case studies in the previous section
showed, end users often desire richer involvement in
the interactive machine-learning process than label-
ing instances. In addition, research on cost-benefit
trade-offs in human-computer interaction has shown
that people will invest time and attention into com-
plex tasks if they perceive their efforts to have greater
benefits than costs (Blackwell 2002). For example,
research on end-user programming has shown that
end users program often (for example, through
spreadsheets, macros, or mash-ups), but do so prima-
rily to accomplish some larger goal (Blackwell 2002).
The act of programming is an investment, and the
expected benefit is using the program to accomplish
their goal sooner or with less effort than doing it
manually. Similarly, this theory suggests that people
will invest time to improve their machine learners
only if they view the task as more beneficial than
costly or risky — that is, when they perceive the ben-
efits of producing an effective learner as outweighing
the costs of increased interaction. Therefore, we
believe there is an opportunity to explore new, rich-
er interfaces that can leverage human knowledge and
capabilities more efficiently and effectively.

In this section, we present case studies that explore
novel interfaces for interactive machine-learning sys-
tems and demonstrate the feasibility of richer inter-
actions. Interface novelty in these cases can come
from new methods for receiving input or providing
output. New input techniques can give users more
control over the learning system, allowing them to
move beyond labeling examples. Such input tech-
niques include methods for feature creation,
reweighting of features, adjusting cost matrices, or
modifying model parameters. Novel output tech-
niques can make the system’s state more transparent

or understandable. For example, a system could
group unlabeled data to help users label the most
informative items, or it could communicate uncer-
tainty about the system’s predictions. 

These case studies also reinforce our proposition
that interactive machine-learning systems should be
evaluated with potential end users. Such evaluations
are needed both to validate that these systems per-
form well with real users and to gain insights for fur-
ther improvement. Many of the novel interfaces
detailed in this section were found to be beneficial,
but some of the case studies also demonstrate that
certain types of input or output may lead to obstacles
for the user or reduce the accuracy of the resulting
learner. Therefore, novel interfaces should be
designed with care and appropriately evaluated
before deployment.

Supporting Assessment of Model Quality
In each iteration of the interactive machine-learning
process, the user may assess the quality of the current
model and then decide how to proceed with further
input. A common technique for conveying model
quality in supervised learning is to present a person
with all of the unlabeled data sorted by their predict-
ed scores for some class (for example, classification
probabilities or relevance rankings). After evaluating
this presentation, a person then decides how to pro-
ceed in training by selecting additional examples to
label for further input. Although straightforward, this
technique inefficiently illustrates learner quality and
provides the user with no guidance in selecting addi-
tional training examples. 

Fogarty and colleagues (2008) investigated novel
techniques for presenting model quality in CueFlik,
an interactive machine-learning system for image
classification (figure 5). Through a user study, the
authors demonstrated that a technique of presenting
users with only the best- and worst-matching exam-
ples enabled users to evaluate model quality more
quickly and, in turn, train significantly better models
than the standard technique of presenting the user
with all of the data. In a follow-up investigation with
CueFlik, Amershi and colleagues (2009) went on to
show that presentation techniques designed to sum-
marize model quality for users while providing them
with high-value examples to choose from as further
input to the model led users to train better models
than the best- and worst-matching technique from
previous work. These case studies demonstrate that
presentation matters and designing interfaces that
balance the needs of both end users and machine
learners is more effective than optimizing user inter-
faces for end users in isolation.

Supporting Experimentation 
with Model Inputs
Interactive machine learning enables rapid and incre-
mental iterations between the end user and the
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machine learner. As a result, users may want to exper-
iment with alternative inputs and examine resulting
model outputs before committing to any model
input. To support end-user experimentation, Amer-
shi and colleagues (2010) augmented the CueFlik sys-
tem (figure 6) discussed previously with a history
visualization to facilitate model comparison and sup-
port for model revision (through undo or redo,
removing labels, and reverting to previous models
using the history visualization). In a user study,
Amershi et al. showed that end users used revision
when it was available and this led them to achieve
better final models in the same amount of time (even
while performing more actions) compared to when
these supports were unavailable. Furthermore, being
able to examine and revise actions is consistent with
how people expect to interact with their applica-
tions. One participant in this study commented that
without revision “it felt a little like typing on a key-
board without a backspace key.” This case study illus-
trates that end users may be willing and may expect
options to experiment and revise their inputs to
machine learners during the interactive machine-
learning process.

Appropriately Timing Queries to the User
As discussed earlier, applying active learning to inter-
active settings can be undesirable to the user when
questions come in a constant stream from the learn-
ing system. To address this problem, Cakmak  and
Thomaz (2010) proposed intermittently active learn-
ing, in which only a subset of the examples provided

by the user are obtained through queries. This brings
a new challenge for the learner: deciding when to
query as opposed to letting the user choose an exam-
ple. Cakmak  and  Thomaz explored two approach-
es. In the first, the learner made queries only when
certain conditions were met. It took into account the
quality of examples chosen by the user and the prob-
ability that the user could randomly provide useful
examples. In the second approach, the user decided
when the learner was allowed to ask questions (that
is, a query was made only when the user said “do you
have any questions?”).

A study comparing intermittently active learning
with fully active and passive learning demonstrated
its advantage over these two extremes (Cakmak,
Chao, and Tomaz 2010). The study showed that both
intermittent approaches resulted in learning as fast
as the fully active approach, while being subjective-
ly preferred over fully active or fully passive
approaches. The interactions with the intermittent-
ly active learners were found to be more balanced,
enjoyable, and less frustrating. When asked to
choose between the two alternative approaches,
users preferred the teacher-triggered queries, men-
tioning that they liked having full control over the
learner’s queries. As exemplified in this case study,
building interactive learning systems that fit user
preferences can sometimes require the modification
of existing methods in fundamental ways.

Enabling Users to Query the Learner
In addition to the learner querying the user as in the

Articles

WINTER 2014   113

Standard presentation using 
a ranked list of examples

Best and worst matching
examples presentation

Figure 5. Comparing the Quality of a Machine-Learned Visual Concept. 

Fogarty et al.’s work (2008) with CueFlik compared two methods of illustrating the quality of a machine-learned visual concept.The stan-
dard method (left) presented users with examples ranked by their likelihood of membership to the positive class. The best and worst match-
es method (right) instead showed examples predicted as positive or negative with high certainty by CueFlik. A user study showed that the
best- and worst-matches technique led users to train significantly better learners than the standard presentation.



active learning paradigm, sometimes the user may
want to query the learner. Kulesza and colleagues
(2011) developed an approach to let users ask a text
classifier why it was behaving in a particular way (for
example, “Why was this classified as X instead of
Y?”). The learner’s responses were interactive, thus
providing a way for users not only to understand
why the system had made a particular prediction, but
also to adjust the learner’s reasoning if its prediction
was wrong. For example, the learner could display a
bar graph showing that it associated the word “job”
with the topic of “news” more than the topic of
“résumés”; if the user disagreed with this reasoning,
he or she could adjust the graph to tell the learner
that “jobs” should be associated with “résumés”
more than “news”.

Most participants exposed to this why-oriented
interaction approach significantly increased the
accuracy of their naïve Bayes text classifiers; howev-
er, every participant encountered a number of barri-
ers while doing so. In particular, participants had
trouble selecting features to modify from the thou-
sands in the bag-of-words feature set. Also, once par-
ticipants did select features to adjust, they had trou-
ble understanding how changes to a single feature
altered the learner’s predictions for seemingly unre-
lated items. This study suggests that for learners with
large feature sets or complex interactions between

features, users will need additional support to make
sense of which features are most responsible for an
item’s classification.

Enabling Users to Critique Learner Output
Some machine-learning systems help users navigate
an otherwise unnavigable search space. For example,
recommender systems help people find specific
items of interest, filtering out irrelevant items. Vig,
Sen, and Riedl (2011) studied a common problem in
this domain: recommending results that are close,
but not quite close enough, to what the user was
looking for. Researchers developed a prototype to
support tag-based “critiques” of movie recommen-
dations. Users could respond to each recommenda-
tion with refinements such as “Like this, but less vio-
lent” or “Like this, but more cerebral,” where violent
and cerebral are tags that users had applied to vari-
ous movies. A k-nearest-neighbor approach was then
used to find similar items that included the user-
specified tags.

This relatively simple addition to the MovieLens
website garnered an overwhelmingly positive reac-
tion, with 89 percent of participants in a user study
saying that they liked it, and 79 percent requesting
that it remain a permanent feature on the site. This
example helps illustrate both the latent desire
among users for better control over machine-learn-
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Labeled positive and
negative examples

Undo and redo

All images
ranked

History
visualization

Figure 6. CueFlik.

CueFlik augmented with a history visualization to facilitate model comparison and support for model revision. Amershi et al. (2010) showed
that these supports for experimentation during interactive machine learning enabled end users to train better quality models than when
these supports were unavailable.
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ing systems and that, by supporting such control in
an interactive fashion, user attitudes toward the
learner can be greatly enhanced.

Allowing Users to Specify 
Preferences on Errors
People sometimes want to refine the decision bound-
aries of their learners. In particular, for some classi-
fiers it might be critical to detect certain classes cor-
rectly, while tolerating errors in other classes (for
example, misclassifying spam as regular email is typ-
ically less costly than misclassifying regular email as
spam). However, refining classifier decision bound-
aries is a complex process even for experts, involving
iterative parameter tweaking, retraining, and evalua-
tion. This is particularly difficult because among
parameters there are often dependencies that lead to
complex mappings between parameter values and
the behavior of the system.

To address these difficulties, Kapoor and colleagues
(2010) created ManiMatrix (figure 7), a tool for people
to specify their preferences on decision boundaries
through interactively manipulating a classifier’s con-
fusion matrix (that is, a breakdown of the correct and
incorrect predictions it made for each class). Given
these preferences, ManiMatrix employs Bayesian deci-
sion theory to compute decision boundaries that min-
imize the expected cost of different types of errors, and
then visualizes the results for further user refinement.
A user study with machine-learning novices demon-
strated that participants were able to quickly and effec-
tively modify decision boundaries as desired with the
ManiMatrix system. This case study demonstrates that
nonexperts can directly manipulate a model’s learn-
ing objective, a distinctly different form of input than
choosing examples and labeling them.

Combining Models 
An ensemble classifier is a classifier that builds its pre-
diction from the predictions of multiple subclassi-
fiers, each of which are functions over the same space
as the ensemble classifier. Such ensembles often out-
perform all of their subclassifiers and are a staple of
applied machine learning (for example, AdaBoost by
Freund  and  Schapire [1995]). A common workflow
for creating ensemble classifiers is to experiment with
different features, parameters, and algorithms
through trial and error or hill-climbing through the
model space. Even for machine-learning experts,
however, this approach can be inefficient and lead to
suboptimal performance. 

To facilitate the creation of ensemble classifiers,
Talbot and colleagues (2009) developed Ensem-
bleMatrix, a novel tool for helping people interac-
tively build, evaluate, and explore different ensem-
bles (figure 8). EnsembleMatrix visualizes the current
ensemble of individual learners through a confusion
matrix. The user can then experiment with and eval-
uate different linear combinations of individual
learners by interactively adjusting the weights of all
models through a single two-dimensional interpola-
tion widget (top right in figure 8). EnsembleMatrix’s
novel interface also allows people to make use of
their visual processing capabilities to partition the
confusion matrix according to its illustrated per-
formance, effectively splitting the ensemble into
subensembles that can be further refined as neces-
sary. A user study showed that EnsembleMatrix
enabled people to create ensemble classifiers on par
with the best published ensembles on the same data
set. Furthermore, they managed to do so in a single,
one-hour session. The study involved participants
ranging from machine-learning novices to experts.

Figure 7. ManiMatrix System.

The ManiMatrix system displays the confusion matrix of the classifier and allows the user to directly increase or decrease the different types
of errors using arrows on the matrix cells. ManiMatrix provides feedback to the user by highlighting cells that change value as a result of
the user’s click (red indicates a decrease and green indicates an increase).
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This case study illustrates that effectively combining
human intuition and input with machine processing
can enable people to create better classifiers in less
time than standard approaches that ignore these
powerful human capabilities.

Summary
Whether a new interface will improve the user’s
experience or the system’s performance can only be
assessed through evaluation with potential end
users. In the case studies above, permitting richer
user interactions was often beneficial, but not always
so. Different users have different needs and expecta-
tions of the systems they employ. In addition, rich
interaction techniques may be appropriate for some
scenarios and not others. Thus, conducting user
studies of novel interactive machine-learning sys-
tems is critical not only for discovering promising
modes of interaction, but also to uncover obstacles
that users may encounter in different scenarios and

unspoken assumptions they might hold about
machine learners. The accumulation of such research
can facilitate the development of design guidelines
for building future interactive machine-learning sys-
tems, much like those that exist for traditional soft-
ware systems (for example, Shneiderman et al.
[2009]). 

Discussion
Interactive machine learning is a potentially power-
ful technique for enabling end-user interaction with
machine learning. As this article illustrates, studying
how people interact with interactive machine-learn-
ing systems and exploring new techniques for
enabling those interactions can result in better user
experiences and more effective machine learners.
However, research in this area has only just begun,
and many opportunities remain to improve the
interactive machine-learning process. This section

Articles

116 AI MAGAZINE

Figure 8. EnsembleMatrix.

EnsembleMatrix visualizes the current ensemble (left) of individual learners (bottom right) through a confusion matrix. Users can adjust
the weights of individual models through a linear combination widget (top right) to experiment with different ensembles. Users can also
partition the confusion matrix to split and refine subensembles.
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describes open challenges and opportunities for
advancing the state of the art in human interaction
with interactive machine-learning systems.

Developing a Common Language 
Across Diverse Fields
As shown by the variety of case studies presented in
this article, many fields of computer science already
employ interactive machine learning to solve differ-
ent problems, such as search in information retrieval,
filtering in recommender systems, and task learning
in human-robot interaction. However, different fields
often refer to interactive machine learning or parts of
the interactive machine-learning process in domain-
specific terms (for example, relevance feedback, pro-
gramming by demonstration, debugging machine-
learned programs, socially guided machine learning).
This diversity in terminology impedes awareness of
progress in this common space and can potentially
lead to duplicate work. Seeking to develop a common
language and facilitate the development of new
interactive machine-learning systems, some
researchers have begun to examine this body of work
and abstract away domain-specific details from exist-
ing solutions to characterize common variables and
dimensions of the interactive machine-learning
process itself (for example, Amershi [2012]; Porter,
Theiler, and Hush [2013]). 

For example, Amershi (2012) examined interactive
machine-learning systems across several fields
(including information retrieval, context-aware com-
puting, and adaptive and intelligent systems) and
identified specific design factors influencing human
interaction with machine-learning systems (for
example, the expected duration of model use, the
focus of a person’s attention during interaction, the
source and type of data over which the machine will
learn) and design dimensions that can be varied to
address these factors (for example, the type and visi-
bility of model feedback, the granularity and direc-
tion of user control, and the timing and memory of
model input). In another example, Porter, Theiler,
and Hush (2013) break down the interactive
machine-learning process into three dimensions: task
decomposition (defining the level of coordination
and division of labor between the end user and the
machine learner), training vocabulary (defining the
type of input end users can provide the machine
learner), and the training dialogue (defining the lev-
el and frequency of interaction between the end user
and the learner). Design spaces such as these can help
to form a common language for researchers and
developers to communicate new interactive
machine-learning solutions and share ideas. Howev-
er, there are many ways to dissect and describe the
various interaction points between people and
machine learners within the interactive machine-
learning process. Therefore, an important opportuni-
ty remains for converging on and adopting a com-

mon language across these fields to help accelerate
research and development in this space.

Distilling Principles and Guidelines for
How to Design Human Interaction with
Machine Learning
In addition to developing a common language, an
opportunity remains for generalizing from existing
solutions and distilling principles and guidelines for
how we should design future human interaction
with interactive machine learning, much like we
have for designing traditional interfaces (for exam-
ple, Schneiderman et al. [2009]; Moggridge  and
Smith [2007]; Dix et al. [2004]; Winograd [1996];
Norman [1988]). For example, Schneiderman’s gold-
en rules of interface design advocate for designating
the users as the controllers of the system and offer-
ing them informative feedback after each interac-
tion. 

Some principles for designing traditional inter-
faces can directly translate to the design of interac-
tive machine learning interfaces — interactive
machine-learning systems inherently provide users
with feedback about their actions and, as this article
discusses, giving users more control over machine-
learning systems can often improve a user’s experi-
ence. However, interactive machine-learning sys-
tems also often inherently violate many existing
interface design principles. For example, research has
shown that traditional interfaces that support under-
standability (that is, systems that are predictable or
clear about how they work) and actionability (that
is, systems that make it clear how a person can
accomplish his or her goals and give the person the
freedom to do so) are generally more usable than
interfaces that do not support these principles. Many
machine-learning systems violate both principles:
they are inherently difficult for users to understand
fully and they largely limit the control given to the
end user. Thus, there is an opportunity to explore
how current design principles apply to the human-
computer interaction in interactive machine learn-
ing.

Some researchers have started to suggest new prin-
ciples for designing end-user interaction with gener-
al artificial intelligence systems, many of which
could translate to end-user interaction with interac-
tive machine learning (for example, Norman [1994];
Höök [2000]; Horvitz [1999]; Jameson [2009]). For
example, Norman (1994) and Höök (2000) both
identified safety and trust as key factors to consider
when designing intelligent systems, referring to the
assurance against and prevention of unwanted adap-
tations or actions. Others have stated that artificial-
ly intelligent and machine-learning-based systems
should manage expectations to avoid misleading or
frustrating the user during interaction (for example,
Norman [1994]; Höök [2000]; Jameson [2009]). In
Horvitz’s formative paper on mixed-initiative inter-
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can deal with this problem through
more iterations, algorithms that are
both fast and accurate would improve
the quality of learned models and
reduce the number of iterations need-
ed to obtain useful models. Second, as
some of the case studies described in
this article showed, users may desire to
interact with machine-learning sys-
tems in ways that are not supported by
existing machine-learning methods.
Addressing this challenge requires the
development of new frameworks and
algorithms that can handle different
inputs and outputs that are desirable
and natural for end users. 

Increasing Collaboration 
Across the Fields of Human
Computer Interaction and
Machine Learning
The inherent coupling of the human
and machine in interactive machine
learning underscores the need for col-
laboration across the fields of human-
computer interaction and machine
learning. This collaboration will bene-
fit human-computer interaction
researchers in solving the algorithmic
problems discussed above and provide
more powerful tools to end users. In
turn, machine-learning researchers
would benefit by having new methods
evaluated with potential users to
address practical issues and by devel-
oping new frameworks that support
realistic assumptions about users.

Finally, we believe that the diversity
of perspectives will benefit both com-
munities. For example, when dealing
with noisy problems, machine-learn-
ing researchers have often attempted
to develop algorithms that work
despite the noise, whereas human-
computer interaction researchers often
try to develop interaction techniques
to reduce the noise that end users
induce. Collaboration between these
two communities could leverage the
benefits of both solutions.

Conclusion
The case studies presented in this arti-
cle support three key points. First,
interactive machine learning differs
from traditional machine learning.
The interaction cycles in interactive
machine learning are typically more

faces (1999), he proposed several prin-
ciples for balancing artificial intelli-
gence with traditional direct-manipu-
lation constructs. For example, Horvitz
emphasized consideration of the tim-
ing of interactive intelligent services,
limiting the scope of adaptation or
favoring direct control under severe
uncertainty, and maintaining a work-
ing memory of recent interactions.
While these suggestions can help guide
the design of future systems, more
work remains to develop a compre-
hensive set of guidelines and principles
that work in various settings. Often
such design principles are distilled
from years of experience developing
such interactions. Alternatively, we
may accelerate the development of
such guidelines by extracting dimen-
sions that can be manipulated to
design interactive machine-learning
systems and systematically evaluating
general solutions in varying settings.

Developing Techniques and
Standards for Appropriately
Evaluating Interactive 
Machine-Learning Systems
Although systematic evaluation can
facilitate generalization and transfer of
ideas across fields, the interleaving of
human interaction and machine-
learning algorithms makes reductive
study of design elements difficult. For
example, it is often difficult to tease
apart whether failures of proposed
solutions are due to limitations of the
particular interface or interaction
strategies used, the particular algo-
rithm chosen, or the combination of
the interaction strategy with the par-
ticular algorithm used. Likewise, inap-
propriately attributing success or fail-
ure to individual attributes of
interactive machine-learning solutions
can be misleading. Therefore, new
evaluation techniques may be neces-
sary to appropriately gauge the effec-
tiveness of new interactive machine-
learning systems. In addition, as our
case studies illustrated, some interac-
tion techniques may be appropriate for
certain scenarios of use but not others.
Evaluations should therefore be careful
not to overgeneralize successes or fail-
ures of specific interaction techniques.
Rather, the scenarios and contexts of
use should be generalized to better

understand when to apply certain
techniques over others.

Leveraging the Masses During
Interaction with Machine
Learning
Most of the case studies in this article
focused on a single end user interact-
ing with a single machine-learning sys-
tem. However, the increasing prolifera-
tion of networked communities and
crowd-powered systems provides evi-
dence of the power of the masses to
collaborate and produce content. An
important opportunity exists to inves-
tigate how crowds of people might col-
laboratively drive interactive machine-
learning systems, potentially scaling
up the impact of such systems. For
example, as interactive machine learn-
ing becomes more prevalent in our
everyday applications, people should
be able to share and reuse machine
learners rather than have to start from
scratch. Moreover, people should be
able to bootstrap, build upon, and
combine learners to configure more
sophisticated data processing and
manipulation. A few have started to
explore such opportunities (for exam-
ple, Hoffman et al. [2009]; Kamar,
Hacker, and Horvitz [2012]; Law and
von Ahn [2009]), but more work
remains to fully understand the poten-
tial of multiple end users interacting
with machine-learning systems. For
example, work remains in understand-
ing how people can meaningfully
describe, compare, and search for exist-
ing machine learners in order to build
upon them, in understanding how
learners can be generalized or trans-
formed for new situations and purpos-
es, in understanding how we can cre-
ate composable learners to enable
more powerful automation, and in
understanding how we can coordinate
the efforts of multiple people interact-
ing with machine-learning systems.

Algorithmic Problems in 
Interactive Machine Learning
Research on user interactions with
interactive machine learning raises two
important technical challenges. First,
the requirement for rapid model
updates often necessitates trading off
accuracy with speed. The resulting
models are therefore suboptimal.
Although interactive machine learning
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rapid, focused, and incremental than
in traditional machine learning. This
increases the opportunities for users to
affect the learner and, in turn, for the
learner to affect the users. As a result,
the contributions of the system and
the user to the final outcome cannot
be decoupled, necessitating an
increased need to study the system
together with its potential users.

Second, explicitly studying the users
of learning systems is critical to
advancing this field. Formative user
studies can help identify user needs
and desires, and inspire new ways in
which users could interact with
machine-learning systems. User stud-
ies that evaluate interactive machine-
learning systems can reveal false
assumptions about potential users and
common patterns in their interaction
with the system. User studies can also
help to identify common barriers
faced by users when novel interfaces
are introduced. 

Finally, the interaction between
learning systems and their users need
not be limited. We can build powerful
interactive machine-learning systems
by giving more control to end users
than the ability to label instances, and
by providing users with more trans-
parency than just the learner’s predict-
ed outputs. However, more control for
the user and more transparency from
the learner do not automatically result
in better systems, and in some situa-
tions may not be appropriate or
desired by end users. We must contin-
ue to evaluate novel interaction meth-
ods with real users to understand
whether they help or hinder users’
goals.

In addition to demonstrating the
importance and potential of research
in interactive machine learning, this
article characterized some of the chal-
lenges and opportunities that current-
ly confront this field. By acknowledg-
ing and embracing these challenges,
we can move the field of interactive
machine learning forward toward
more effective interactions. We believe
this will lead not only to more capable
machine learners, but also more capa-
ble end users. 

Notes
1. All authors contributed equally to this
article.
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2.  In this article we examine interactive
machine-learning systems in which the
human is consciously interacting with the
machine learner in order to improve it. That
is, we do not consider interactive machine-
learning systems that obtain user feedback
implicitly (for example, websites that may
automatically adapt their presentation to a
user’s click history without the user’s
knowledge).
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