
Universities and hospitals are under considerable pres-
sure to reduce costs while improving service delivery.
A central component to this effort is the availability

of timetabling systems that can find practical solutions to
maximizing the utilization of teaching resources, such as
facilities and staff, while not compromising on education
quality.

Traditional university timetabling is often concerned with
the task of assigning a number of events, such as lectures,
exams, meetings, and so on, to a limited set of time slots (and
perhaps rooms), in accordance with a set of constraints
(Cambazard et al. 2004). Three main classes of the university
timetabling problem have been identified: school (Kingston
2012), course (Cambazard et al. 2012), and examination
timetabling (Burke et al. 2012). A fundamental constraint
appearing in all the problems is the “event-clash” constraint.
This states that if a student is required to be present for a pair
of events, for example, courses, then these must not be
assigned to the same time slot, as such an assignment will
result in this student having to be in two places at the same
time. This particular constraint can be found in almost all
university timetabling problems (Bonutti et al. 2012; McCol-
lum et al. 2010). The problem restricted to these constraints
alone can be viewed as a graph coloring problem. Figure 1
shows an example. The nodes correspond to events to be
assigned, and the colors denote the different values that can
be asigned. Two nodes are linked if they can not be assigned
to the same time slot, and thus, must be colored differently.
These constraints arise from the conflicts for all participating
students and teachers.

Articles

SPRING 2014 53Copyright © 2014, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

A Constraint-Based
Dental School

Timetabling System

Hadrien Cambazard, Barry O’Sullivan, Helmut Simonis

n We describe a constraint-based
timetabling system that was developed
for the dental school based at Cork Uni-
versity Hospital in Ireland. This system
has been deployed since 2010. Dental
school timetabling differs from other
university course scheduling in that cer-
tain clinic sessions can be used by mul-
tiple courses at the same time, provided
a limit on room capacity is satisfied.
Starting from a constraint-program-
ming solution using a web interface, we
have moved to a mixed integer pro-
gramming-based solver to deal with
multiple objective functions, along with
a dedicated Java application, which
provides a rich user interface. Solutions
for the years 2010, 2011, and 2012
have been used in the dental school,
replacing a manual timetabling process,
which could no longer cope with
increasing student numbers and result-
ing resource bottlenecks. The use of the
automated system allowed the dental
school to increase the number of stu-
dents enrolled to the maximum possible
given the available resources. It also
provides the school with a valuable
“what-if” analysis tool.

Graph coloring is a pure and difficult combinator-
ial problem in its own right and can often become
more challenging when combined with the many
side constraints occurring in the context of
timetabling. Most university timetabling involves a
hard graph coloring subproblem and current
timetabling systems are tailored to address this recur-
rent and common pattern. However, this pattern is
not the main source of difficulty in many medical
and dental school timetabling settings.

While the dental school problem also involves a
coloring subproblem, this subproblem is unlikely to
be the most challenging feature of the problem
because the number of students and events is much
smaller than in traditional university timetabling
problems. The difficulty in dental school timetabling
arises as a consequence of resource availability, such
as specialist equipment and seating, which are very
expensive. Most universities cannot afford to relax
these constraints by increasing resource capacity, so
they rely heavily on good quality timetables. This
resource utilization defines a bin-packing problem.

Figure 2 shows an example of a bin-packing prob-
lem. We have to pack the items (the color / shade
denotes their sizes) on the left into four bins of capac-
ity eight, shown in the middle. A possible assignment
is shown on the right. Note that while we are not

allowed to exceed the capacity of the bins, we can
pack less than the total capacity into some bins, as
shown for the last bin on the right.

The packing problem in our application comes
from the fact that, in medical and dental school
timetabling, we are trying to find a timetable where
the resource limits, for example, for dental chairs, are
not exceeeded, but at the same time resources are also
not left idle. Commercially available timetabling sys-
tems do not deal with dental school timetabling very
well primarily because such systems are designed to
exploit hard coloring subproblems rather than bin
packing. Despite its unique challenges, the
timetabling community has not focused effort in this
direction, so the work presented in this article is nov-
el from both scientific and applications perspectives.

In this article we present a constraint-based dental
school timetabling system that has been in use at the
dental school at the Cork University Hospital since
2010. The system was developed in close collabora-
tion with the management and staff of the dental
school. In 2010 the dental school was facing a sig-
nificant increase in its student intake from approxi-
mately 40 to now 50 students in each year of its pro-
gram. While the timetable up to that point was
created by hand, the dental school could not find a
satisfactory timetable due to the increased resource

Articles

54 AI MAGAZINE

Figure 1. Graph Coloring Example.

1

2

3

4

5

6

7

8 9

Articles

SPRING 2014 55

restrictions imposed by the increase in student num-
bers. In the years 2010 to 2012 the first class of
increased student numbers had a growing impact on
the school’s timetable; this process will conclude in
2013 when all classes will run with the increased stu-
dent numbers. The impact of this was that during the
transition period the timetable of each previous year
was of limited use, precluding the normal process of
updating the existing schedule slightly from year to
year. A new approach was needed. This article pres-
ents the timetabling system that was developed and
discusses the experiences of its deployment over the
past three years.

The remainder of this article is organized as fol-
lows. We first informally describe the problem and
introduce the required notation. We then describe
the solution process and alternative choices for
solvers and interfaces. A constraint-based model of
the problem will then be presented, along with an
example of its output. Finally we will discuss the evo-
lution and maintenance of the system over the three
year deployment period to-date.

Problem Statement
We describe the problem solved by the application in
an informal way, while introducing some notation for
the formal presentation that comes later in the article.

Time Slots
The timetable is generated for each term, and all
weeks in the term run with the same schedule. We,
therefore, deal with generic days (set D) from Mon-
day to Friday, with three time periods (AM, midday,
PM) scheduled for each day. We, thus, assign 15 time
slots (set T) in a week. For each time slot, we have a
period weight pt

cost, which indicates possible prefer-
ences to using the time period. At the moment, all
midday time slots have a cost of 1000 (strong prefer-
ence against using these periods), and Monday morn-
ing and Friday afternoon have a cost of 1 (weak pref-
erence against using them). All other time slots have
a cost of 0. The function onDayt indicates the day to
which time slot t belongs.

Student Groups
The students of each year are organized into groups
comprising 7–10 persons (set G), which are allocated
as a unit in the timetable. Naturally, each group can
only follow one course at a time. When we started in
2010, there were four groups in each year; this has
been increased progressively to five to increase stu-
dent numbers. The groups do not all have the same
size, and the group sizes change from year to year, as
students repeating a year disappear from one group
and are assigned to another group in another year.
Table 1 shows the group sizes for the year 2012; note

Figure 2. Bin-Packing Example.

Items Bins Assignment

that Year 5 (Y5) is still using the lower student num-
bers of the old system, while Years 3 (Y3) and 4 (Y4)
already use the increased numbers. Also note that it
is difficult to increase group size beyond 10, as sever-
al labs have a capacity limit of 10. An exception is the
Dental Hygiene group (Hyg), which follows a differ-
ent curriculum, but which shares some lab space
(OTL) with the other groups.

It is possible to have multiple groupings for the
students, for example, to have smaller groups for
clinics and larger groups for lectures or seminars. Two
such groups that share students cannot be allocated
to the same time slot; this is expressed by incompat-
ibility time slot constraints, described below. At the
moment, this feature, while implemented, is not
used in the actual timetable.

Subjects
The subjects that are allocated in the timetabling sys-
tem are all related to labs and clinics. Unlike most
other courses at universities, the location for these
labs and clinics is automatically given, as each
requires its own special equipment, provided in ded-
icated rooms in the school. Therefore, we are not
concerned about room allocation. Also unlike labs in
other disciplines, it is possible to have groups from
different years in the same clinic at the same time,
provided the room capacity is not exceeded. The
room capacity may be defined by physical con-
straints (for example, treatment chairs), or by the
availability of teaching assistants, when maintaining
a required student-teacher ratio. Table 2 shows the

list of subjects (set S) and the capacity of the labs
(function capacitys) as the first two columns. In 2012,
two seats were added to the restorative clinic room,
bringing the capacity from 34 to 36. This clinic also
contains four additional chairs (in general described
by the function extras) normally reserved for private
practice and postdoctoral work, which can be used if
required. As they are located outside the main clinic
area, this creates problems with supervision and
should only be done if this extra capacity is really
needed. For every use of some extra capacity, a cost
ecost must be paid.

Especially in the first three years, students also fol-
low theoretical courses in lectures and seminars.
These courses are easy to assign manually and use
other rooms and are therefore not handled by the
system.

Curriculum
The curriculum defines how many sessions per week
in each subject must be scheduled for groups of each
year. In our model, we use the function demandgs to
specify how many sessions group g must be sched-
uled in subject s. The current curriculum is shown in
table 2. Note that only the lab- and clinic-based
courses are shown.

Doubling Up
Usually, in a clinic each student works on his or her
own treatment chair, supervized by teaching assis-
tants and lecturers. It is possible to assign two stu-
dents to the same chair, reducing the demand on
chairs in the clinic, but at the same time decreasing
the quality of teaching. For the third-year groups, this
“doubling up” may be acceptable; in general this is
indicated by a predicate doubleUpg. Whether dou-
bling-up is preferable to using extra chairs in a clinic
is a user choice. The function sizegu gives the size of
group g depending on whether they double up (u = 1)
or not (u = 0). The set U denotes the two choices. For
each use of doubling up, a cost dcost must be paid.

Figure 3 shows four different scenarios for the bin
packing of the restorative clinic. Colors again encode
group sizes. The room has capacity 36, with 4 extra
seats that can be used if required. In case (a), we allo-
cate three groups of 10 students each, using 30 seats,
leaving 6 seats empty. This is a bad solution, as that
lost capacity will be hard to recover in the rest of the
schedule. In case (b), we show all combinations of
group sizes that fill the room exactly to capacity.
These are very good assignments, but using only
these patterns may not be possible due to the fixed
group sizes given as input. In case (c) we allocate two
groups of 10 students and two groups of 9 students,
a total of 38 seats, requiring the use of two extra seats.
Finally, in case (d) we pack four groups of 10 students
each into the room, but one group is doubled up,
requiring only 5 seats. This leads to a total of 35 seats
utilized.

Articles

56 AI MAGAZINE

Table 1. Classes and Group Sizes for 2012.

Class Group Sizes
Hyg 16
Y3 10 10 10 10 9
Y4 9 10 10 10 10
Y5 8 8 8 9 9

Table 2. Curriculum.

Subject Cap Hyg Y3 Y4 Y5
OTL 24 1 2 1 –
Restorative Clinic 36 (+4) – 1 3 4
Pros Lab 20 – 2 – –
Dental Surgery 10 – – 1 1
Ortho 10 – – 1 1
Paedo 10 – – 1 1
C and B Lab 10 – – 1 –
Study 18 – – 1 1
Restorative Tutorial 10 – – – 1

Instrument Cleaning
For some of the subjects, the students must use their
personal instrument sets. This is indicated by the
Boolean function needsCleaninggs. After use, these
sets must be sterilized, which takes about 2 hours.
This is easily achieved overnight, but if the instru-
ments are required twice on the same day, the clean-
ing time reduces the time available for practical work.
This should be avoided, if possible. Italic values in
table 2 show which courses require instrument clean-
ing. If a group has to wait for the cleaned instruments
on some day, a cost ccost must be paid.

Allocation Constraint
When the timetable was generated manually, it was
easy for lecturers to request specific time slots for
their courses due to other commitments or personal
preferences. In order to allow these wishes to be
added in our system, we allow optional constraints
that force, forbid, or restrict the assignment of spe-
cific courses to specific slots. These wishes are
expressed in the user interface as tuples of groups,
subjects, time slots and a constraint type, one of
FORCE, FORBID, RESTRICT, or DONTCARE. By carefully
choosing the combinations of groups, subjects, and
time slots, we can minimize the number of rules that
need to be given by a user. The DONTCARE value is use-
ful to temporarily disable some allocation constraints

during the exploration of a scenario, without having
to reenter the constraint later on.

The allocation constraints are also required to
handle the needs of the Hygiene student group,
which uses the OTL lab, but whose timetable is con-
trolled by another university department. After dis-
cussion with their timetable manager, a fixed time
slot on a Monday morning is allocated for the OTL
lab of the Hygiene group.

Incompatibility Subject
It is possible to restrict which groups work together
in the same time slot for a given subject. This might
be required if one teaching assistant is handling, say,
both a Year 3 and a Year 5 group on a given topic.
Then these groups should not be scheduled together
at the same time, in order to maintain a good stu-
dent-to-teacher ratio.

Incompatibility Time Slot
Our model allows for different groupings of students
for different topics, for example, larger groups for
seminars and smaller groups for specific lab work.
Thus, we must require that two groups sharing some
students cannot be scheduled at the same time. As
our model does not deal with individual students, we
must specify rules for all groups of that form.

Articles

SPRING 2014 57

Figure 3. Example Assignments for Restorative Clinic.

(a) (b) (c) (d)

Room Capacity = 36

Extra Capacity = 40

Occurrence
We can limit how many courses a group can be
assigned to on any given day, for example, state that
a group should only have one lab on a Wednesday, as
some other lectures have to be scheduled on that day.
Note that there is some overlap with allocation con-
straints.

Solution Process
In this section we describe the changes in the solu-
tion approach we have been following over a period
of three years.

Initial Approach
When we started the project, we did not know which
solution technology would be best to solve the prob-
lem and whether we would be able to solve the prob-
lem at all. We therefore started with an exploration of
possible solver designs. A first version was imple-
mented with the finite domain constraint-program-
ming system Choco.1 In the model, the variables are
the courses to be assigned, and the values are the pos-
sible time slots. We use finite domain variables wk

gs to
denote the kth session in subject s for group g, which
range over all time slots T. Given the groups and the
assigned curriculum, we need 10 * 9 + 5 * 5 + 1 = 116
decision variables, each having 15 values in its
domain. Capacity constraints for the rooms are
expressed by bin-packing constraints (Cambazard

and O’Sullivan 2010), while many other constraints
turn into disequality or alldifferent (Regin 1994) con-
straints. The alldifferent constraints can drastically
improve the reasoning for the graph coloring com-
ponent of the problem, as they correspond to cliques
in the disequality graph. Figure 4 shows cliques in the
example graph of figure 1. In each clique, each vari-
able must be different from all other variables. Some
of the cliques correspond to well-defined subsets of
the variables, for example, all variables belonging to
the same group. Others can be found heuristically in
a given graph structure. Finding all, overlapping
(maximal) cliques is a hard combinatorial problem in
itself, but this is not required for our problem, as long
as all disequalities are enforced.

While initial solutions for feasible problems could
be found quite quickly, it was hard to prove optimal-
ity or to show infeasibility of overconstrained sys-
tems. A specific problem were the symmetry con-
straints due to groups in the same year, that is, with
the same curriculum, and identical group sizes. These
symmetries cause a large number of equivalent solu-
tions, but are not easily removed completely. Other
symmetries due to repeated courses for the same
group can be handled with inequality constraints.

As an alternative, a mixed integer programming
(MIP) model for the basic problem was considered,
using the CPLEX2 solver. This model initially did not
consider doubling up on courses, and did not have
the cleaning constraints.

Articles

58 AI MAGAZINE

Figure 4. Cliques in Graph Coloring Example.

1

2

3

4

5

6

7

8 9

Operationally, the 2010 problem still had many
specific preferences to force classes at specific time
slots in order to simplify teaching resource assign-
ment. Enforcing all of these preferences typically lead
to an overconstrained problem. It was clear that the
system should allow users to play with enabling/dis-
abling of complete classes of constraints and/or indi-
vidual constraints, in order to find a good compro-
mise satisfying the different stakeholders in the
process. In order to allow this experimentation, a
web-based user interface for the system was devel-
oped. It allowed different persons to evaluate timeta-
bles and to play with specific constraints. The user
interface model was spreadsheet-like, implemented
in Javascript, while calling back-end solvers written
in Java.

Rewrite as an Application
For the timetable of 2011, we decided to rewrite the
system as a dedicated Java application, with a com-
plete graphical user interface. As new constraints
were added, it became increasingly difficult to inte-
grate those changes in the ad hoc JavaScript solution.
A more flexible solution was required. For this we
used an application framework under development
in our center, which supports the creation of a com-
plete application from a basic data model and a user

interface definition. This drastically reduced the
implementation effort for this specific application, as
most components were already provided by the
framework. Instead of adapting the existing solver
code, we reimplemented the solver using the new
data model. Only the MIP-based model was main-
tained, as it was able to determine infeasibility of
problems much more quickly than the Choco mod-
el.

We packaged the resulting application for the den-
tal school as a stand-alone Java program running on
a laptop. In the dental school an intern from the
Computer Science Department was responsible for
creating and modifying potential timetables, getting
feedback from the different stakeholders in the fac-
ulty. This process took several iterations, finally cre-
ating the timetable implemented for 2011.

Dealing with Undercapacity
Figure 5 shows a screen shot of the application, dis-
playing the solution for year 2012. The application
contains views for all of the data concepts, like
groups, subjects, and curriculum, and for all user-
specified constraints, so that any problem instance
can be entered and modified easily inside the system.
The application also contains multiple views of the
output to allow analysis and discussion of the results

Articles

SPRING 2014 59

Figure 5. An Overview of the 2012 Timetable in the Deployed System.

for different stakeholders. In addition, the results are
also produced as an HTML report, which can then be
used in the administrative workflow of the dental
school.

In 2012, we changed the process again. As both the
original project sponsor and also the intern using the
system for the timetable of 2011 were no longer at
the school, we faced the task of either training yet
another person in the use of the system or providing
the timetabling as a service. As initial discussions
showed that the constraint model needed significant
changes to deal with the increased resource require-
ments, we found it easier to make these changes in
the system, while at the same time providing inter-
mediate solutions for the dental school as text docu-
ments, generated by our application framework.

The main change required was dealing with sys-
tematically overconstrained problems. The total
demand for the restorative clinic exceeded the avail-

able capacity, even with the increase of capacity from
34 to 36 chairs. We either had to use doubling up as
a solution to reduce demand or to use extra chairs to
increase capacity. It was not clear which of those
approaches would be more readily accepted by the
faculty; we therefore provided solution examples for
both methods.

Figure 6 shows the bin-packing solution for the
restorative clinic when using “doubling up” as the
relaxation of the otherwise infeasible capacity con-
straint. Items are colored by size, the label X.Y
denotes group y of year X.

Once it was clear that solutions for the overall
problem could be created with these extensions, sev-
eral additional changes of the timetable were request-
ed by different stakeholders. For example, the solu-
tion should have Year 5 students in the dental surgery
lab in the morning, and Year 4 students in the after-
noon, as this simplified the assignment of teaching

Articles

60 AI MAGAZINE

Figure 6. Restorative Clinic Bin-Packing Solution.

4.4

5.1

5.4

5.5

3.4

4.2

4.3

4.5

3.1

4.1

5.2

5.5

3.2

3.3

5.1

5.3

3.5

4.1

4.2

5.3

4.4

5.2

5.4

5.5

4.3

4.5

5.1

5.3

4.1

4.2

5.2

5.4

4.3

4.4

5.1

5.2

4.5

5.3

5.4

5.5

Room Capacity =36

Extra Capacity = 40

AM PM AM PM AM PM AM PM AM PM

MON TUE WED THU FRI

assistants, while for the ortho clinic the assignment
should be reversed. This could easily be handled by
adding some new rules for the allocation constraints.

Dealing directly with the manager of the timetable
in the dental school reduced the number of interac-
tions with different groups of stakeholders while
maintaining the existing process in the dental
school. Overall, the time needed to build the final
timetable was minimized, while involving our group
as a partner, and improving the tool through the
interaction and the new constraints required.

Current Constraint-
Based Model

We describe the current constraint-based model for
the dental school timetabling problem, describing
the variables, the objective function, and the con-
straints used. All necessary notation was introduced
earlier.

Variables
We describe the model used for year 2012. The key
decision variables are binary, 0/1 integer variables
xgstu, which indicate whether group g is assigned to
subject s in time slot t, either doubled up (u = 1) or
not (u = 0). We require 16 * 9 * 15 * 2 = 4320 of these
variables for our problem, a medium-sized problem,
so that using a four-dimensional array does not pose
a problem.

Next, we introduce binary variables yt, which indi-
cate whether any course is taught in time period t.
These contribute to the cost function.

We also use binary variables zdg to state whether
group g will require instrument cleaning during day
d. These variables also contribute to the cost func-
tion.

Finally, we use a set of integer variables vst, which
state if in time period t we use some extra capacity
for subject s. The upper bound of the domain is giv-
en by the function extras, which will be zero for most
subjects, but currently has value four for the restora-
tive clinic.

Objective Function
The objective function minimizes four elements: the
total cleaning effort during the day in (1), the num-
ber of doubled up sessions in (2), the use of nonpre-
ferred time periods in (3), and the use of extra capac-
ity (4). Note that we could easily introduce
personalized costs for groups or subjects, if for exam-
ple the loss of teaching time due to cleaning is more
acceptable for Year 4 than Year 5 students. However,
this would require more input data from the user, a
change that should not be undertaken lightly.

Constraints
We now list the different constraints that are needed
to express the requirements expressed in the infor-
mal problem description. The first set of constraints
links the x and the y variables: as soon as one of the
x variables for a time slot t is one, the corresponding
y must also be one.

Curriculum Demand
The next constraint states that the total number of
courses in a subject allocated to a group must be
equal to the demand for that group.

Each group can only be assigned to one course in
any given time period, that is, the sum of all x vari-
ables for a group at each time period must be less
than or equal to one.

Capacity Constraints
The important capacity constraint states that for
every subject and every time slot, the total number of
allocated students, the sum of the group sizes, must
be less than or equal to the room capacity plus any
extra capacity used. Note that the size of a group dif-
fers if it is doubled up.

Groups that cannot be doubled up cannot use the
xgst1 variables: they must all be zero. As typically only
few courses can be doubled up, this dramatically
reduces the number of decision variables.

Instrument Cleaning
If on some day d, a group g is assigned to multiple
courses that require cleaning, then the zdg variable
must be equal to one, incurring the cost for the clean-
ing in the objective function (1).

Allocation Constraints
The following case analysis deals with the allocation
constraints. If we forbid some time slots for a set of
groups on a set of subjects, then we force the corre-
sponding x variables for each member of the sets to
zero.

If we force the assignment, we cannot directly set
some variable to one, as we do not know if we may
want to double up for that group. We have to set the
sum of two variables to be equal to one, instead. And
finally, if we want to restrict the assignment to a sub-
set of the possible time slots, we can simply force that
for any period not in the set, the x variable is set to
zero. If the constraint type is set to DONTCARE, then
no constraint is issued.

Incompatibility Subject
For these incompatibility constraints, we state that
for any of the subjects s in set S, either g1 or g2 can be
assigned in time period t, but not both.

min zdg
g!G
!

d!D
! ccost

+ xgst1
t!T
!

s!S
!

g!G
! dcost

+ yt
t!T
! pcost

t

+ vst
t!T
!

s!S
! ecost

Articles

SPRING 2014 61

Conclusions
We presented a novel constraint-based timetabling
system for dental training schools. The system was
developed in collaboration with the dental school at
Cork University Hospital and has been in use since
2010. It has enabled the dental school to meet with
a challenging set of demands in terms of student
numbers that, without an automated timetabling
system, would not have been possible for them to
achieve.

In addition to being a novel deployed application,
the system is new from a scientific perspective since
dental school–like timetabling problems have not
been previously studied and reported in the litera-
ture. Unlike most education-related timetabling
problems, which have graph coloring as a challeng-
ing core problem, dental school timetabling prob-
lems are characterized by challenging bin-packing
problems.

Acknowledgements
This research was supported by Science Foundation
Ireland under Grant Number SFI/05/IN.1/I886s2. The
authors would like to thank Professor Robert
McConnell and Dr. Francis Burke of the Cork Uni-
versity Hospital and Dental School for the help and
support given during the execution of this project.
The INSIGHT Centre for Data Analytics is supported
by Science Foundation Ireland under Grant Number
SFI/12/RC/2289.

Notes
1. See www.emn.fr/z-info/choco-solver.

2. See www-01.ibm.com/software/integration/optimiza-
tion/cplex-optimizer.

References
Bonutti, A.; Cesco, F. D.; Gaspero, L. D.; and Schaerf, A.
2012. Benchmarking Curriculum-Based Course
Timetabling: Formulations, Data Formats, Instances, Vali-
dation, Visualization, and Results. Annals of Operations
Research 194(1): 59–70. dx.doi.org/10.1007/s10479-010-
0707-0

Burke, E. K.; Pham, N.; Qu, R.; and Yellen, J. 2012. Linear
Combinations of Heuristics for Examination Timetabling.
Annals of Operations Research 194(1): 89–109.
dx.doi.org/10.1007/s10479-011-0854-y

Cambazard, H., and O’Sullivan, B. 2010. Propagating the
Bin Packing Constraint Using Linear Programming. In Prin-
ciples and Practice of Constraint Programming (CP 2010), vol-
ume 6308, Lecture Notes in Computer Science, ed. D.
Cohen, 129–136. Berlin: Springer. dx.doi.org/10.1007/978-
3-642-15396-9_13

Cambazard, H.; Demazeau, F.; Jussien, N.; and David, P.
2004. Interactively Solving School Timetabling Problems
Using Extensions of Constraint Programming. In Practice
and Theory of Automated Timetabling V, Lecture Notes in Com-
puter Science, volume 3616, ed. E. K. Burke and M. A. Trick,
M. A., 190–207. Berlin: Springer.

Cambazard, H.; Hebrard, E.; O’Sullivan, B.; and Papadopou-

Incompatibility Time Slot
For the more generic time slot incompatibilities, we
enforce that for any groups g1 and g2, only one of
them can be assigned to any subject d at time t.

Occurrence Constraints
Finally, the occurrence constraints limit the number
of courses assigned to a group on a given day to be
less than or equal to the limit.

Performance
The MIP model is small enough so that optimal solu-
tions can be found, or the system is able to determine
that there is no solution, in a few seconds on a lap-
top computer. This allows the user to evaluate differ-
ent scenarios interactively, enabling or disabling
(groups of) constraints to see their effect on the over-
all solution.

System Evolution and Maintenance
The constraint model underwent significant changes
over the three years of operation. The most obvious
change was the introduction of the fourth index u
for the xgstu decision variables to indicate whether a
group is doubled up or not. This facilitated the auto-
mated choice of using doubling when required.
Before, this constraint could be handled by creating
new groups for the doubled-up case, with a manual
choice of which group should be used in which sce-
nario. The new model is more flexible, but the
change affected nearly every constraint in the sys-
tem. The cleaning constraints and the corresponding
introduction of the zdg variables were only added in
2012, when this requirement was first expressed by
a stakeholder at the dental school.

Also, a number of constraints used in the early
model are no longer used. In 2010 a significant num-
ber of allocation constraints were specified to FORCE or
PRECLUDE the assignment of some courses for specific
time periods. Many of these constraints are no longer
present, as the more constrained problem now no
longer allows these extra preferences. Overlapping
groups were used to model the doubling-up scenario;
this in turn required the incompatibility time slot
constraints to avoid overbooking.

Perhaps the most significant change is not in the
form of the constraints, but in the tightness of the
resource limit. In 2010, there was a demand for 53 +
3 * 36 + 4 * 39 = 307 student sessions for the restora-
tive clinic, while 10 * 34 = 340 sessions were available
in AM and PM time slots. In 2012, 49 + 3 * 49 + 4 * 42
= 364 sessions were needed, but capacity was limited
to 36 * 10 = 360 slots. This overconstrained problem
could only be solved by either doubling up some
courses or adding more seats in the clinic. Either
relaxation will only be used when absolutely neces-
sary, so that the restorative clinic became a tight
resource constraint.

Articles

62 AI MAGAZINE

los, A. 2012. Local Search and Constraint Programming for
the Post Enrolment-Based Course Timetabling Problem.
Annals of Operations Research 194(1): 111–135.
dx.doi.org/10.1007/s10479-010-0737-7

Kingston, J. H. 2012. Resource Assignment in High School
Timetabling. Annals of Operations Research 194(1): 241–254.
dx.doi.org/10.1007/s10479-010-0695-0

McCollum, B.; Schaerf, A.; Paechter, B.; McMullan, P.; Lewis,
R.; Parkes, A. J.; Gaspero, L. D.; Qu, R.; and Burke, E. K. 2010.
Setting the Research Agenda in Automated Timetabling:
The Second International Timetabling Competition.
INFORMS Journal on Computing 22(1): 120–130.
dx.doi.org/10.1287/ijoc.1090.0320

Regin, J.-C. 1994. A Filtering Algorithm for Constraints of
Difference in CSPs. In Proceedings of the Twelfth National Con-
ference on Artificial Intelligence, (AAI-94), 362–367. Menlo
Park, CA: AAAI Press / The MIT Press.

Hadrien Cambazard studied at the Ecole des Mines de
Nantes in France and his Ph.D. focused on intelligent back-
tracking techniques in constraint programming. He then
moved to the Cork Constraint Computation Centre in Ire-
land where he tackled optimization problems in various

areas (radiotherapy, timetabling). He is now an assistant
professor in G-SCOP (Grenoble-INP, Université de Greno-
ble). He has been working recently on the design of con-
straint-programming approaches for solving routing and
packing problems.

Barry O’Sullivan serves as both the head of the Department
of Computer Science and the director of the INSIGHT Centre
for Data Analytics and the Cork Constraint Computation
Centre at University College Cork, where he holds the Chair
of Constraint Programming. He is a Fellow of the European
Coordinating Committee for Artificial Intelligence and a Sen-
ior Member of AAAI. His research focuses on artificial intelli-
gence, constraint programming, and optimization, and the
applications of these areas.

Helmut Simonis studied mathematics at the Technical
University of Darmstadt, Germany. He currently works as a
senior research fellow at the Cork Constraint Computation
Centre of University College Cork in Ireland. His main area
of interest is the application of constraint programming to
various domains; more recently he has been working on
automatically generating models of combinatorial prob-
lems from example solutions. He is the president of the
Association for Constraint Programming (2013–2014) .

Articles

SPRING 2014 63

PROCEEDINGS OF THE FIRST AAAI
CONFERENCE ON HUMAN COMPUTATION
AND CROWDSOURCING (HCOMP 2013)

Edited by Björn Hartmann, and Eric Horvitz,
235 pp., references, index, illus., $35.00, ISBN
978-1-57735-607-3

The HCOMP conference was created as a ven-
ue for exchanging ideas and developments on
principles, experiments, and implementations
of systems that rely on programmatic access to
human intellect to perform some aspect of
computation, or where human perception,
knowledge, reasoning, or coordinated physical
activities contributes to the operation of larger
systems and applications.

The links to AI are as strong as those to HCI,
CSCW, and economics; human computation
promises to play an important role in research
on principles of artificial intelligence as well as
in the engineering of systems that can take
advantage of the (changing) complementarities
of human and machine intellect.

www.aaai.org/Press/Proceedings/hcomp13.php

