
Requirements engineering is the practice of eliciting, ana-
lyzing, prioritizing, negotiating, and specifying the
requirements for a software-intensive system (Robertson

and Robertson 1999). These activities engage various stakehold-
ers in the task of identifying and producing an agreed-upon set
of requirements that clearly specify the functionality, behavior,
and constraints of the proposed system. The importance of the
requirements engineering task is illustrated by several studies,
which have shown that requirements-related issues, such as
poorly specified requirements (Leffingwell 1997) and incom-
plete and changing requirements and specifications, are the root
cause of many failed projects. To address these problems,
researchers and practitioners have developed processes for iden-
tifying relevant stakeholders; discovering their needs, wants,
and desires for the system; prioritizing and negotiating require-
ments; and specifying them in understandable, measurable, and
testable ways (Robertson and Robertson 1999). In this article we
focus particularly on recent efforts to use machine learning and
recommender systems technologies for automating require-
ments engineering processes and enabling stakeholder and
designer decision support.

In general, the task of a recommender system in any domain
is to identify items of interest to a given user of which that user
may otherwise be unaware. The recommendation problem is

Articles

FALL 2011 81Copyright © 2011, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Recommender Systems in
Requirements Engineering

Bamshad Mobasher and Jane Cleland-Huang

n Requirements engineering in large-scale
industrial, government, and international proj-
ects can be a highly complex process involving
thousands or even hundreds of thousands of
potentially distributed stakeholders. The
process can result in massive amounts of noisy
and semistructured data that must be analyzed
and distilled in order to extract useful require-
ments. As a result, many human-intensive
tasks in requirements elicitation, analysis, and
management processes can be augmented and
supported through the use of recommender sys-
tem and machine-learning techniques. In this
article we describe several areas in which rec-
ommendation technologies have been applied to
the requirements engineering domain, namely
stakeholder identification, domain analysis,
requirements elicitation, and decision support
across several requirements analysis and prior-
itization tasks. We also highlight ongoing chal-
lenges and opportunities for applying recom-
mender systems in the requirements engineering
domain.

typically formulated as a prediction task in which
a predictive model is built according to prior obser-
vations and then used in conjunction with the
dynamic profile of a new user to predict the level
of interest by that user on a target item. Recom-
mender systems generally fall into the three broad
categories of content-based systems, which make
recommendations based on content similarity
between user profiles and the semantic descrip-
tions of items (Pazzani and Billsus 2007); collabo-
rative-filtering systems, which make recommenda-
tions by examining implicitly or explicitly derived
preferences of a user on items and identifying oth-
er users with similar interests (Schafer et al. 2007);
and knowledge-based systems, which make rec-
ommendations based on heuristic rules that
depend on prior knowledge of the users or the
domain (Felfernig et al. 2006). The output of a rec-
ommender system is usually a set of items that
were previously unknown to the user and that
scored the highest predicted interest values.

Maalej and Thurimella (2009) outlined a pre-
liminary research agenda for recommender sys-
tems within the requirements engineering
domain. They proposed several ways in which rec-
ommender technologies could help stakeholders
create, analyze, specify, and manage requirements.
These included using a recommender system to
identify relevant background information for a
given requirement, to recommend suitable tem-
plates for a given task, to suggest opportunities for
saving time and effort by reusing requirements, for
identifying pertinent design rationales related to
specific types of requirements, and for proposing
traceability relationships between various require-
ments and design elements. Although many of
these proposed methods are based on heuristic
approaches, more recent work in the area has
focused on recommender systems that go beyond
heuristic rules or search mechanisms and focus on
more traditional machine-learning techniques.

Recommender systems have been used in the
requirements engineering domain to address three
specific kinds of problems. The first is to identify
potential stakeholders for a given project. The sec-
ond is to discover user requirements or features for
a system, and the third is to provide support for
requirements-related decision making such as
requirements prioritization. Although current
work is still in the early experimental stage, vari-
ous approaches have already been evaluated on
large-scale simulations using data from open-
source forums, reenactments of large-scale projects
with thousands of stakeholders, and small-scale
proof-of-concept software development projects.
Results from these studies show significant prom-
ise for transference to real industrial projects in the
future.

Stakeholder
Identification and Analysis

Stakeholder analysis is a critical component of
every requirements engineering process. It
involves identifying a set of stakeholders capable
of providing a relatively complete and accurate
description of the product under development.
Although it is fairly straightforward to identify an
initial group of stakeholders, it is far more difficult
to make sure that all important stakeholder groups
are represented by collaborative, responsible,
authorized, committed, and knowledgeable stake-
holders (Boehm and Turner 2004). There are two
primary recommendation techniques that have
been used effectively in this area. The first utilizes
social networking and crowd sourcing to identify
and recommend stakeholders for a project. The
second is a hybrid recommender system that rec-
ommends stakeholders for particular discussion
threads in online forums and that recommends
discussion threads to individual stakeholders.

Discovering Project Stakeholders
Lim and others developed a recommender tool
named Stakesource, which harnesses the power of
crowd sourcing to discover project stakeholders
(Lim, Quercia, and Finkelstein 2010a and 2010b).
First an initial set of stakeholders is identified and
asked to refer other stakeholders whom they con-
sider important for the project. These stakeholders
in turn are asked to refer additional people. The
process continues until few additional stakehold-
ers are discovered. At that time, a social network
graph is constructed in which nodes represent can-
didate stakeholders and arcs represent referrals.
Social network analysis techniques are then used
to compute salience measures and to rank stake-
holders according to their potential importance to
the project.

Lim, Quercia, and Finkelstein also evaluated sev-
eral different salience metrics; however, four of
them stand out as most useful for ranking the
potential importance of stakeholders. Betweenness
centrality measures a stakeholder S’s ability to serve
as a broker between other groups of stakeholders
by summing the shortest paths between pairs of
stakeholders that pass through S (Brandes 2001).
Load centrality measures the influence stakeholder
S has on the transfer of information between each
pair of stakeholders. It is computed by passing one
unit of information between each pair of stake-
holders along the shortest path. When n paths are
equal to the shortest length, the unit is divided by
n and passed equally along each of the paths. Load
centrality is then computed for each stakeholder S
by summing the units, or fractions of units, that
pass through it during stakeholder communica-
tion. These two metrics are used to identify core

Articles

82 AI MAGAZINE

project stakeholders. Two other metrics are used to
identify and recommend stakeholders who are sig-
nificantly influenced by a project. These are PageR-
ank and in-degree metrics, both of which measure
the degree to which a stakeholder is authoritative
(locally in the case of in-degree and globally in the
case of PageRank). Salience measures are comput-
ed for each stakeholder, and recommendations are
made for any stakeholders scoring above a certain
salience threshold.

Recommending Stakeholders in Forums
In distributed projects, it is often infeasible to bring
stakeholders together on a regular basis, and as a
result, numerous organizations are adopting the
practice of using wikis and forums to gather an ini-
tial set of feature requests and then to extract a
more formal set of requirements from those
requests (Cleland-Huang et al. 2009). Although
such tools allow more stakeholders to engage in
the requirements elicitation process, they also
introduce challenges related to information over-
load, noisy and redundant data, incomplete dis-
cussions, dissenting opinions, and frustrated stake-
holders who often receive no feedback for their
contributions. Fortunately, many of these prob-
lems can be addressed through using data-mining
techniques to keep feature requests organized in
cohesive and nonredundant threads (Cleland-
Huang et al. 2009) and also through using recom-
mender systems to keep stakeholders informed of
interesting topics and to help project managers

find appropriate stakeholders to engage in open
discussions.

The organizer and promoter of collaborative
ideas (OPCI) approach, developed by Castro-Her-
rera, Cleland-Huang, and Mobasher (2009) and
Castro-Herrera, Duan, Cleland-Huang, and
Mobasher (2009) is depicted in figure 1. While
OPCI can be used to support any online forum, it
was originally designed to support the require-
ments engineering process (Castro-Herrera et al.
2009). OPCI’s recommender system serves two
purposes: (1) recommending specific topics to indi-
vidual stakeholders in order fully to engage each
stakeholder in the requirements elicitation
process, and (2) recommending stakeholders for
specific topics in order to ensure that each topic
has sufficient coverage.

In OPCI, the initial feature requests are repre-
sented as weighted term vectors. Specifically, each
feature request, x, is represented as a vector of
terms (x1,

… , xW) where xi is the normalized weight
associated with term ti in x, and W represents the
total number of unique terms in the entire set of
feature requests. This normalized weight is calcu-
lated using a standard information-retrieval tech-
nique known as tf-idf, where tf represents the fre-
quency of term t in the feature request and idf
represents the inverse document frequency. The
Cosine similarity between two feature request vec-
tors a = (ai,

… , aW) and b = (bi,
… , bW) is then com-

puted as:

Articles

FALL 2011 83

Stakeholders
enter Needs

Needs get clustered and
Forums get created

Stakeholders get
placed into Forums

?
Recommendations are made
to Stakeholders to join Forums
that might interest them

Stakeholders collaborate to
re�ne and prioritize the Needs
to create the Requirements

Enter Cluster

Forum 1 Forum 2

Forum 2
Placement

Forum 1

Forum 2
Recommendations

Recommendation:
Based on other people
like you, you might also
be interested in joining
Forum 2

Collaborate Requirements

Pr
oc

es
s

A
rc

hi
te

ct
ur

e Web Tool

• Collecting needs
• Presenting needs

and forums

Pre-Processor

• Stemming
• Removing stop words
• Indexing raw text

Clusterer

• Determining number
of clusters

• Consensus clustering
• Stable clustering
• Classi�er

Recommender

• Model preferences
• Similarity and

Neighborhood
calculation

• Prediction and
Recommendation

Collaborative
Environment

• Collaborative
writing

• Prioritizing and
voting mechanisms

Figure 1. Forum Recommendation Process (Castro-Herrera et al. 2009).

Intuitively this formula returns high similarity
scores between two feature requests that share a
significant number of relatively rare terms.

OPCI uses a consensus-based clustering
approach to merge similar discussion threads and
to extract topics that are dispersed across multiple
threads into new discussion themes (Castro-Her-
rera et al. 2009; Duan, Cleland-Huang, and
Mobasher 2008). Stakeholders who have con-
tributed ideas to the initial threads or the recon-
structed threads are assumed to be interested in the
topics of those threads.

An initial stakeholder profile is created for each
stakeholder according to the discussion threads
that the stakeholder participates in, and also
according to known information such as the role
of the stakeholder in the project or the stakehold-
er’s subject matter expertise. These profiles form a
profiles matrix M := (mi,j)UxT, where U is the num-
ber of stakeholders, T is the number of discussion
threads, and M[i, j] is the weight representing the
stakeholder’s interest in the discussion thread
(derived as part of the clustering process that gen-
erates the initial discussion forums). The profiles
are used to feed a collaborative recommender sys-
tem (Schafer et al. 2007) based on the standard k-
nearest-neighbor (kNN) strategy (Castro-Herrera et
al. 2009). It computes similarities among stake-
holder profiles in order to create a ‘‘neighborhood’’
for a targeted stakeholder. The resulting neighbor-
hood is then used to predict the interest that the
targeted stakeholder will have in any particular
topic. These recommendations serve to foster the
cross-pollination of ideas, prevent the problem of
missed or stagnant discussions, and promote top-
ics that address key areas of the system that have so
far not been explored.

Two variations of the standard kNN algorithm
were explored (Castro-Herrera, Cleland-Huang,

∑
∑ ∑

()=
⋅

⋅
=

= =

sim a b
a b

a b
i
W

i i

i
W

i i
W

i

, .1

1
2

1
2

and Mobasher 2009). In the first variation, user
profiles were modeled using a binary matrix in
which a 1 represented membership in a thread,
and a 0 represented nonmembership. This repre-
sentation was shown experimentally to be a good
fit for the forum environment since users do not
normally specify degrees of interest in forums or
posts. The second variation involved extending
the profiles with features corresponding to seman-
tic knowledge about the domain or prior knowl-
edge about the users. Examples of additional
known data available for the requirements elicita-
tion domain include: roles that the stakeholders
play in the project, interests in key features of the
system, and interests in cross-cutting concerns
such as security or usability. Formally, the profiles
matrix M := (mi,j)Ux(K+T) now includes K columns
that capture a user’s interest in a known metadata
element. Table 1 shows a schematic example of the
enhanced matrix.

The binary recommender was shown to perform
relatively well, and in all four of the datasets
demonstrated the ability to recommend back
approximately 25 percent to 50 percent of the
known interests in the top 10 recommendations
(Castro-Herrera, Cleland-Huang, and Mobasher
2009). The experiments also clearly demonstrated
the usefulness of incorporating prior knowledge
into the users’ profiles in order to enrich knowl-
edge of the users’ interests in early stages of the
forum. Recommendations that incorporated
known data were able to recommend back approx-
imately 70 percent to 90 percent of known inter-
ests in the top 10 recommendations.

Figure 2 shows hit ratio values for four different
approaches including standard kNN, binary repre-
sentation, binary with known data, and the base-
line case in which items are recommended in ran-
dom order. Hit ratio represents the probability that
a recommended item among the top n items is
selected by the user. The railway data set represents
more than 1600 feature requests created by extract-
ing requirements from the public specifications of
two large-scale railway systems, the Canadian Rail
Operating Rules and the Standard Code of Operat-
ing rules published by the Association of American
Railroads. In this data set, known data was derived
from the users’ individual roles in the project.

Recommender Systems in
Requirements Elicitation

Recommender systems have also been used to rec-
ommend new ideas, features, and requirements
during the initial domain analysis and elicitation
process. Most projects include both a domain
analysis phase, in which project stakeholders ana-
lyze related software systems to identify, organize,
and represent features common to systems within

Articles

84 AI MAGAZINE

Users Known Data Threads

K1 K2 ... Ki T1 T2 ... Tj

U1 1 1 1

U2 1 1

U3 1 1 1 1

...

Uk 1 1 1 1

Table 1. Users’ Profiles with Additional Known Data.

a domain (Arango and Prieto-Diaz 1989), and a
focused requirements elicitation phase, in which
the actual project requirements are elicited. Rec-
ommender systems have been used to support
each of these individual tasks.

Recommending Requirements
Kumar, Ajmeri, and Ghaisas (2010), proposed a
conversation-style recommender for use in agile
development in which the system recommends a
set of basic user stories (that is, brief descriptions of
functionality) and tasks in response to an initial
project description. The approach utilizes different
ontologies that represent the environmental con-
text, agile requirements, general requirements, and
the problem domain. The authors provide an ini-
tial validation of their approach for an agile proj-
ect and illustratively show that it generates useful
recommendations. In related work, Romero-Mari-
ona, Ziv, and Richardson (2008) developed an ad
hoc knowledge-based system that takes initial
goals of the system and recommends relevant
models and requirements in the form of misuse
cases and abuse scenarios, antimodels, and securi-
ty-related goal models.

Recommending Features
The identification and timely reuse of domain
assets in early stages of the requirements process
can potentially reduce development costs, shorten
time to market, improve quality of the delivered
system, and increase product competitiveness.
Existing domain analysis techniques primarily

focus on either manual or semiautomated analyses
of a small number of requirements specifications
or product brochures in order to identify and
extract reusable features. As a result, domain analy-
sis tends to be quite labor intensive, dependent
upon the expertise of available analysts or subject
matter experts, and constrained by the availability
of requirements specifications from previous relat-
ed projects.

Dumitru et al. (2011) developed a novel recom-
mender system that addresses these limitations by
mining raw feature descriptions from online proj-
ect repositories such as SoftPedia, clustering the
descriptions into features, generating a feature
model for a given product category, and then using
this feature model to recommend features and
combinations of features that might be relevant for
a new product under development. The approach
uses association rule mining (Agrawal, Imielinski,
and Swami 1993) to identify affinities among prod-
uct features and the kNN machine-learning strate-
gy to identify similar products and make predic-
tions about the existence of features not previously
identified (figure 3).

More formally, once feature descriptions have
been mined and clustered, a product-by-feature
matrix is generated, M := (mi,j)PxF, where P repre-
sents the number of products and F the number of
identified features. To generate a recommendation
for a new item, a new profile is created by parsing
an initial product description and then using
cosine similarity to match the terms in that
description with features in the matrix. In many

Articles

FALL 2011 85

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50 55

A
cc

um
ul

at
ed

 %
 R

et
rie

ve
d

Top N Recommendations

Hit Ratio — Railway Dataset

Standard
Binary
Inclusion of Known Data
Random

Figure 2. Hit Ratio Graph.

cases, the initial product profiles may be rather
sparse and unable to provide sufficient informa-
tion to generate high-quality recommendations
using more traditional techniques such as content-
based or collaborative filtering.

Given a set of product profiles P, a set of features
F = {F1, F2, ··· , Fk}, and a feature set fs � F, let Pfs �
P be the set of products that have all the features
in fs. The support of the feature set fs is defined as
� (fs) = |Pfs| / |P|. Feature sets that satisfy a prede-
fined support threshold are referred to as frequent
feature sets. An association rule r is expressed in the
form X fi Y(�r, �r), where X and Y are feature sets,
�r is the support of the feature set X � Y, and �r is
the confidence for the rule r given by � (X � Y) /
�(Y).

After generating the association rules, new fea-
tures can be recommended based on an initial
product profile by finding all the matching rules.
In order to reduce the search time, the frequent
feature sets are stored in a directed acyclic graph,

called a frequent itemset graph, or FIG (Mobasher
et al. 2001; Sandvig, Mobasher, and Burke 2007).
The graph is organized into levels from 0 to l,
where l is the maximum size among all discovered
frequent feature sets. Each node at depth d in the
graph corresponds to a feature set I of size d and is
linked to feature sets of size d + 1 that contain I at
the next level. Given a product profile with feature
set fs, a depth-first search is performed on the
graph to level |fs| in the graph. If a match is found,
then the children of the matching node are used to
generate candidate recommendations; and each
child of this node corresponds to a frequent item-
set fs � {r}. The feature r will be added to the rec-
ommendation list if the confidence of the rule
exceeds a prespecified minimum threshold. The
same procedure will be repeated for all the subsets
of the feature set f.

The association-based recommender tends to
generate a small, yet relatively accurate set of fea-
tures. These recommended features are automati-

Articles

86 AI MAGAZINE

Product
descriptions

Feature
descriptions

Association
rules

Denser pro�les

Accepted
recommendations

Products

NamesFeatures

FeaturesCluster
descriptions into

features

Features per Product Pro!le

Frequent
Item Set
Graph
(FIG)

Sparse pro!les
augmented

using association
rule mining

Screen
scraper Name

features

Recommendations
generated using

kNN content based
Recommender.

Feature mining and
modeling phase
Recommendation phase

Domain
analyst

Feature
recommendations

New product
description

Idea for
new

product

Figure 3. Feature Extraction and Recommendations.

cally added to the initial product profile. Then a
standard kNN learning strategy is used to compute
a feature-based similarity measure between the
new product and each existing product. The top k
most similar products are considered neighbors of
the new product, and this information is used to
recommend features that might be relevant to the
current analysis. In general, prediction scores will
be computed for each candidate feature, and the
features with highest predictions will be recom-
mended.

Figure 4 illustrates a feature recommendation
scenario for an antivirus product. An initial product
description is mapped to four features in the rec-
ommender’s knowledge base related to spam detec-
tion, disk scans, virus definitions, and virus databases,
which serve as seeds for generating feature recom-
mendations. User feedback is fed back into the sys-
tem and used to drive future recommendations.

Decision Support
The final emerging area of recommender systems
provides support for decision making in the
requirements engineering process. More specifical-
ly, it is designed to address the four areas of deci-
sion making identified by Regnel et al. (2001),
namely evaluating the quality of requirements,
selecting requirements for the next release, classi-
fying requirements by type, and making estima-
tion decisions. Felfernig et al. (2010) have devel-
oped a recommender system named IntelliReq,
which provides support for individual and group
decisions. IntelliReq is designed to capture indi-
vidual opinions related to requirements qualities,
estimations, and priorities and then to use utility
functions and a recommender system to help
resolve conflicts, recommend requirements rele-
vant to the current task, highlight possible require-
ment dependencies, and finally to recommend
ways in which to maximize agreement between
stakeholders. Parts of these scenarios have already
been integrated in the IntelliReq decision support
environment utilizing collaborative filtering, con-
tent-based filtering, knowledge-based recommen-
dation, and group-based recommendation algo-
rithms. In its current form IntelliReq utilizes group
recommendation algorithms to support require-
ments negotiation.

Conclusions
The ongoing shift in the requirements engineering
domain toward large-scale, distributed, collabora-
tive, and tool-supported environments offers
numerous opportunities for supporting human-
intensive tasks through the use of recommenda-
tion technologies. In this article we have described
three active areas of recommender system research

related to identifying stakeholders, generating
requirements and features, and providing support
for several decision-making tasks. The work report-
ed in these areas shows significant promise for the
effective use of recommender systems in the
requirements engineering domain.

However, making recommendations as a natural
part of a complex requirements engineering task is
nontrivial and introduces numerous human-com-
puter interaction factors that need to be taken into
consideration. For example, we need to ensure that
recommendations are timely and contextualized
and, furthermore, that they actually help the
requirements engineer perform the task more
effectively.

In many respects it is harder to build a success-
ful recommender system in the requirements engi-
neering domain than it is in a more traditional e-
commerce context. Whereas a user purchasing
books online may be pleased with a recommenda-
tion for a single interesting book, a domain analyst

Articles

FALL 2011 87

Step # 1: Enter Initial Product Description
The product will protect the computer from viruses and email spam. It will
maintain a database of known viruses and will retrieve updated descriptions
from a server. It will scan the computer on demand for viruses.

Step # 2: Con!rm Features
We have identi!ed the following features from your initial product
description. Please con!rm:

Email spam detection

Virus de!nition update and automatic update supported

Disk scan for !nding malware

Internal database to detect known viruses

We notice that you appear to be developing an antivirus software system.
Would you like to browse the feature model?

Step # 3: Recommend Features
Based on the features you have already selected we recommend the
following three features. Please con!rm:

Network intrusion detection Why?

Real time !le monitoring Why?

Web history and cookies management Why?

Click here for more recommendations View Feature Model

Figure 4. Example of Feature Recommendations.

may not find a recommender system useful or
trustworthy unless the system can successfully rec-
ommend all the basic and commonly occurring
features in a targeted product. In certain cases, the
role of the recommender system therefore transi-
tions from the goal of generating serendipitous
ideas and suggestions of potentially interesting
items to the goal of making the complete and accu-
rate set of recommendations needed to support a
complex requirements engineering task.

Despite these difficulties, the various applica-
tions of recommender systems described in this
article have highlighted the potential usefulness in
the requirements engineering domain. Future
work is expected to develop advanced techniques,
algorithms, and processes for utilizing recom-
mender systems in the requirements engineering
domain and to explore the usefulness of the vari-
ous approaches within the context of real software
projects.

Acknowledgments
The work described in this article was partially
funded by grant III:0916852 from the National Sci-
ence Foundation.

References
Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining
Association Rules Between Sets of Items in Large Data-
bases. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, 207–216. New
York: Association for Computing Machinery.

Arango, G., and Prieto-Diaz, R. 1989. Domain Analysis:
Acquisition of Reusable Information for Software Construc-
tion. Los Alamitos, CA: IEEE Computer Society.

Boehm, B. W., and Turner, R. 2004. Balancing Agility and
Discipline: Evaluating and Integrating Agile and Plan-
Driven Methods. In Proceedings of the 26th International
Conference on Software Engineering, 718–719. New York:
Association for Computing Machinery.

Brandes, U. 2001. A Faster Algorithm for Betweenness Cen-
trality. Journal of Mathematical Sociology 25(2): 163–177.

Castro-Herrera, C.; Cleland-Huang, J.; and Mobasher, B.
2009. Enhancing Stakeholder Profiles to Improve Rec-
ommendations in Online Requirements Elicitation. In
Proceedings of the 17th IEEE International Requirements Engi-
neering Conference, 37–46. Los Alamitos, CA: IEEE Com-
puter Society.

Castro-Herrera, C.; Duan, C.; Cleland-Huang, J.; and
Mobasher, B. 2009. A Recommender System for Require-
ments Elicitation in Large-Scale Software Projects. In Pro-
ceedings of the 2009 ACM Symposium on Applied Comput-
ing, 1419–1426. New York: Association for Computing
Machinery.

Cleland-Huang, J.; Dumitru, H.; Duan, C.; and Castro-
Herrera, C. 2009. Automated Support for Managing Fea-
ture Requests in Open Forums. Communications of the
ACM 52(10): 68–74.

Duan, C.; Cleland-Huang, J.; and Mobasher, B. 2008. A
Consensus Based Approach to Constrained Clustering of
Software Requirements. In Proceedings of the 17th ACM

Conference on Information and Knowledge Management,
1073–1082. New York: Association for Computing
Machinery.

Dumitru, H.; Gibiec, M.; Hariri, N.; Cleland-Huang, J.;
Mobasher, B.; Castro-Herrera, C.; and Mirakhorli, M.
2011. On-Demand Feature Recommendations Derived
from Mining Public Product Descriptions. In Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering (1). New York: Association for Computing
Machinery.

Felfernig, A.; Friedrich, G.; Jannach, D.; and Zanker, M.
2006. An Integrated Environment for the Development
of Knowledge-Based Recommender Applications. Interna-
tional Journal of Electronic Commerce 11(2): 11–34.

Felfernig, A.; Schubert, M.; Mandl, M.; Ricci, F.; and
Maalej, W. 2010. Recommendation and Decision Tech-
nologies for Requirements Engineering. In Proceedings of
the 2nd International Workshop on Recommendation Systems
for Software Engineering, 11–15. New York: Association for
Computing Machinery.

Kumar, M.; Ajmeri, N.; and Ghaisas, S. 2010. Towards
Knowledge Assisted Agile Requirements Evolution. In
Proceedings of the 2nd International Workshop on Recom-
mendation Systems for Software Engineering, 16–20. New
York: Association for Computing Machinery.

Leffingwell, D. 1997. Calculating the Return on Invest-
ment from More Effective Requirements Management.
American Programmer 10(4): 13–16.

Lim, S. L.; Quercia, D.; and Finkelstein, A. 2010a. Stak-
enet: Using Social Networks to Analyse the Stakeholders
of Large-Scale Software Projects. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering
(1), 295–304. New York: Association for Computing
Machinery.

Lim, S. L.; Quercia, D.; and Finkelstein, A. 2010b. Stake-
source: Harnessing the Power of Crowdsourcing and
Social Networks in Stakeholder Analysis. In Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering (2), 239–242. New York: Association for Com-
puting Machinery.

Maalej, W., and Thurimella, A. K. 2009. Towards a
Research Agenda for Recommendation Systems in
Requirements Engineering. In Proceedings of the Second
International Workshop on Managing Requirements Knowl-
edge, 32–39. Los Alamitos, CA: IEEE Computer Society.

Mobasher, B.; Dai, H.; Luo, T.; and Nakagawa, M. 2001.
Effective Personalization Based on Association Rule Dis-
covery from Web Usage Data. In Proceedings of the Third
ACM Workshop on Web Information and Data Management.
New York: Association for Computing Machinery.

Pazzani, M. J., and Billsus, D. 2007. Content-Based Rec-
ommendation Systems. In The Adaptive Web: Methods and
Strategies of Web Personalization, Lecture Notes in Com-
puter Science 4321. Berlin: Springer-Verlag.

Regnell, B.; Paech, B.; Aurum, A.; Wohlin, C.; Dutoit, A.;
and Dag, J. N. O. 2001. Requirements Mean Decisions!
Research Issues for Understanding and Supporting Deci-
sion-Making in Requirements Engineering. Paper pre-
sented at the 1st Swedish Conference on Software Engi-
neering Research and Practice, Ronneby, Sweden, 25–26
October.

Robertson, S., and Robertson, J. 1999. Mastering the
Requirements Process. Boston, MA.: Addison-Wesley.

Articles

88 AI MAGAZINE

Romero-Mariona, J.; Ziv, H.; and Richardson, D. J. 2008.
SRRS: A Recommendation System for Security Require-
ments. Paper presented at the International Workshop on
Recommendation Systems for Software Engineering,
Atlanta, GA, 10 November.

Sandvig, J.; Mobasher, B.; and Burke, R. 2007. Robustness
of Collaborative Recommendation Based on Association
Rule Mining. In Proceedings of the 2007 ACM Conference
on Recommender Systems. New York: Association for Com-
puting Machinery.

Schafer, J. B.; Frankowski, D.; Herlocker, J. L.; and Sen, S.
2007. Collaborative Filtering Recommender Systems. In
The Adaptive Web: Methods and Strategies of Web Personal-
ization, Lecture Notes in Computer Science 4321. Berlin:
Springer-Verlag.

Bamshad Mobasher is a professor of computer science
and the director of the Center for Web Intelligence at the
School of Computing of DePaul University in Chicago.
He has published extensively in the areas of web data
mining, web personalization, recommender systems, and
predictive user modeling. He has also served in leadership

positions for numerous related conferences and work-
shops, including as general chair, program chair and
steering committee member of the ACM International
Conference on Recommender Systems. Mobasher has
served as an associate editor for ACM Transactions on the
Web and on the editorial boards of several other promi-
nent computing journals, including User Modeling and
User-Adapted Interaction and the Journal of Web Semantics.

Jane Cleland-Huang is an associate professor of software
engineering and director of the Systems and Require-
ments Engineering Center at the School of Computing of
DePaul University in Chicago. She also currently serves as
North American director of the Center of Excellence for
Software Traceability (coest.org). She publishes exten-
sively in the areas of requirements engineering and soft-
ware traceability. She is currently associate editor for IEEE
Transactions on Software Engineering, IEEE Software maga-
zine, and the Requirements Engineering Journal, and has
also served in various organizational and program com-
mittee roles for conferences such as the International
Conference on Software Engineering (ICSE) and the
International Requirements Engineering Conference
(RE).

Articles

FALL 2011 89

General Chair
H. Chad Lane

lane@ict.usc.edu
USC Institute for Creative Technologies

Program Chairs
G. Michael Youngblood

youngbld@uncc.edu
University of North Carolina at Charlotte

Philip M. McCarthy
philmccarthy1@gmail.com

University of Memphis

Special Tracks Coordinator
Chutima Boonthum-Denecke

chutima.boonthum@gmail.com
Hampton University

Important Dates
Paper Submission: Nov. 21, 2011
Author Notification: Jan. 20, 2012
Camera-Ready Copy: Feb. 20, 2012

The 25th International FLAIRS Conference
Marco Island Hilton Beach Resort and Spa

Marco Island, Florida
May 23-25, 2012

The 25th Florida Artificial Intelligence Research Society Conference (FLAIRS-25) will be held May
23-25, 2012 at The Marco Island Hilton. In this silver anniversary for FLAIRS, we will proudly
continue our tradition of presenting and discussing artificial intelligence research in a friendly
atmosphere within a beautiful setting. Events will include invited speakers, special tracks,
discussion panels, presentations of papers and posters, and will introduce a brand new session for
impromptu presentations (stay tuned for that). As always, there will be a Best Paper award and a
Best Poster award. In addition, because FLAIRS has a rich tradition of encouraging student
authors, there will be a Best Student Paper award for the best paper written primarily by a student.
Submissions are now invited for full papers (6 pages), short papers to be presented as a poster
(4 pages), and poster abstracts (250 words). The proceedings will be published by the AAAI. The
conference is hosted by the Florida Artificial Intelligence Research Society in cooperation with AAAI.

Topics of interest are in all areas of AI, including but not limited to
• Foundations: Knowledge Representation, Cognitive Modeling, Perception, Reasoning &

Programming, Search, Learning
• Architectures: Agents and Distributed AI, Intelligent User Interfaces, Natural Language

Systems, Information Retrieval, Robotics
• Applications: Aviation and Aerospace, Education, Entertainment, Medicine, Management and

Manufacturing, World Wide Web
• Implications: Philosophical Foundations, Social Impact and Ethics, Evaluation of AI Systems,

Teaching AI
• Special Tracks: Numerous special tracks offer opportunities for focused interaction. All special

track papers are published in the proceedings.

http://www.flairs-25.info/
In cooperation with the Association for the Advancement of Artificial Intelligence

