
Agents, physical and virtual entities that interact with their
environment, are becoming increasingly prevalent. How-
ever, if agents are to behave intelligently in complex,

dynamic, and noisy environments, we believe that they must
be able to learn and adapt. The reinforcement learning (RL) par-
adigm is a popular way for such agents to learn from experience
with minimal feedback. One of the central questions in RL is
how best to generalize knowledge to successfully learn and
adapt. 

In reinforcement learning problems, agents sequentially
observe their state and execute actions. The goal is to maximize
a real-valued reward signal, which may be time delayed. For
example, an agent could learn to play a game by being told what
the state of the board is, what the legal actions are, and then
whether it wins or loses at the end of the game. However, unlike
in supervised learning scenarios, the agent is never provided the
“correct” action. Instead, the agent can only gather data by
interacting with an environment, receiving information about
the results, its actions, and the reward signal. RL is often used
because of the framework’s flexibility and due to the develop-
ment of increasingly data-efficient algorithms. 

RL agents learn by interacting with the environment, gather-
ing data. If the agent is virtual and acts in a simulated environ-
ment, training data can be collected at the expense of comput-
er time. However, if the agent is physical, or the agent must act
on a “real-world” problem where the online reward is critical,
such data can be expensive. For instance, a physical robot will
degrade over time and must be replaced, and an agent learning
to automate a company’s operations may lose money while
training. When RL agents begin learning tabula rasa, mastering
difficult tasks may be infeasible, as they require significant
amounts of data even when using state-of-the-art RL approach-
es. There are many contemporary approaches to speed up
“vanilla” RL methods. Transfer learning (TL) is one such tech-
nique. 

Transfer learning is an umbrella term used when knowledge is
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n Transfer learning has recently gained popu-
larity due to the development of algorithms that
can successfully generalize information across
multiple tasks. This article focuses on transfer
in the context of reinforcement learning
domains, a general learning framework where
an agent acts in an environment to maximize a
reward signal. The goals of this article are to (1)
familiarize readers with the transfer learning
problem in reinforcement learning domains, (2)
explain why the problem is both interesting and
difficult, (3) present a selection of existing tech-
niques that demonstrate different solutions,
and (4) provide representative open problems in
the hope of encouraging additional research in
this exciting area. 



generalized not just across a single distribution of
input data but when knowledge can be generalized
across data drawn from multiple distributions or
even different domains, potentially reducing the
amount of data required to learn a new task. For
instance, one may train a classifier on one set of
newsgroup articles (for example, rec.*) and then
want the classifier to generalize to newsgroups
with different subject material (for example, trans-
fer to sci.*) (Dai et al. 2007). An example of
human-level transfer was discussed in a recent
issue of AI Magazine (Bushinsky 2009): 

World [chess] champion [Mikhail] Tal once told
how his chess game was inspired from watching ice
hockey! He noticed that many of the hockey play-
ers had the habit of hanging around the goal even
when the puck was far away from it … He decided
to try transferring the idea to his chess game by
positioning his pieces around the enemy king, still
posing no concrete threats. 

The insight that knowledge may be generalized
across different tasks has been studied for years in
humans (see Skinner [1953]) and in classification
settings (see Thrun [1996]) but has only recently
gained popularity in the context of reinforcement
learning. 

As discussed later in this article, there are many
possible goals for transfer learning. In the most
common scenario, an agent learns in a source task,
and then this knowledge is used to bias learning in
a different target task. The agent may have differ-
ent knowledge representations and learning algo-
rithms in the two tasks, and transfer acts as a con-
duit for transforming source-task knowledge so
that it is useful in the target task. It is also reason-
able to frame TL as one agent learning in a source
task and a different agent learning in the target
task, where transfer is used to share knowledge
between the two agents. In most cases the two are
algorithmically equivalent, as we assume we are
able to directly access the source-task agent’s
knowledge so that direct copying into a “new”
agent is equivalent to having the “old” agent
switch tasks. 

This article provides an introduction to the
problem of reusing agents’ knowledge so that it
can be used to solve a different task or (equiva-
lently) to transfer knowledge between agents solv-
ing different tasks. This article aims to (1) intro-
duce the transfer problem in RL domains, (2)
provide a sense of what makes the problem
difficult, (3) present a sample of existing transfer
techniques, and (4) discuss some of the shortcom-
ings in current work to help encourage additional
research in this exciting area. Readers interested in
a significantly more detailed treatment of existing
works are directed to our survey article (Taylor and
Stone 2009). 

In the following section we provide background
on the reinforcement learning problem that

should be sufficient to understand the remainder
of the article. Readers interested in a more in-depth
treatment of RL are referred elsewhere (Kaelbling,
Littman, and Moore 1996; Sutton and Barto 1998;
Szepesvári 2009). The next section introduces a
pair of motivating domains to be used throughout
the article. Following that, the Dimensions of
Transfer section discusses the many ways in which
transfer algorithms can differ in terms of their
goals and abilities. A Selection of Transfer Learning
Algorithms presents a selection of transfer algo-
rithms in the context of the example domains,
providing the reader with a brief introduction to
existing solution techniques. Finally, we conclude
with a discussion of open questions. 

Reinforcement Learning 
Background and Notation 

Reinforcement learning problems are typically
framed as Markov decision processes (MDPs)
defined by the 4-tuple {S, A, T, R}, where the goal of
the agent is to maximize a single real-valued
reward signal. In this article, we define a domain to
be a setting for multiple related tasks, where MDP
and task are used interchangeably. An agent per-
ceives the current state of the world s  S (possibly
with noise). The agent begins in a start state
(drawn from a subset of states, S0). If the task is
episodic, the agent executes actions in the envi-
ronment until it reaches a terminal state (a state in
the set Sfinal, which may be referred to as a goal
state if the reward there is relatively high), at
which point the agent is returned to a start state. 

The set A describes the actions available to the
agent, although not every action may be possible
in every state. The transition function, T : S  A 

S, takes a state and an action and returns the state
of the environment after the action is performed.
Transitions may be nondeterministic, making the
transition function a probability distribution func-
tion. The reward function, R : S  �, maps every
state to a real-valued number, representing the
reward achieved for reaching the state. An agent
senses the current state, s, and typically knows A
and what state variables compose S; however, it is
generally not given R or T. 

A policy,  : S  A, fully defines how an agent
interacts with the environment by mapping per-
ceived environmental states to actions. The success
of an agent is determined by how well it maxi-
mizes the total reward it receives in the long run
while acting under some policy . There are many
possible approaches to learning such a policy, but
this article will focus on temporal difference (TD)
methods, such as Q-learning (Sutton 1988;
Watkins 1989) and Sarsa (Rummery and Niranjan
1994; Singh and Sutton 1996), which learn to
approximate Q : S  A  �. At any time during
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learning, an agent can choose to exploit, by select-
ing the action that maximizes Q(s, a) for the cur-
rent state, or to explore, by taking a random
action. TD methods for RL are among the most
simple and well understood, causing them to be
used in many different transfer learning works;
some transfer learning methods can be explained
using TD algorithms but then be combined with
more complex RL algorithms in practice.

In tasks with small, discrete state spaces, Q and
 can be fully represented in a table. As the state
space grows, using a table becomes impractical, or
impossible if the state space is continuous. TL
methods are particularly relevant in such large
MDPs, as these are precisely the problems that
require generalization across states and may be par-
ticularly slow to learn. Agents in such tasks typi-
cally factor the state using state variables (or fea-
tures), so that s = (x1, x2, …, xn). In such cases, RL
methods use function approximators, such as
artificial neural networks and tile coding, which
rely on concise, parameterized functions and use
supervised learning methods to set these parame-
ters. Parameters and biases in the approximator
define the state-space abstraction, allowing
observed data to influence a region of state-action
values, rather than just a single state-action pair,
and can thus substantially increase the speed of
learning. 

Two additional concepts used to improve the
performance of RL algorithms will be referenced
later in this article. The first, options (Sutton, Pre-
cup, and Singh 1999), are a type of temporal
abstraction. Such macroactions group a series of
actions together and may be hand-specified or
learned, allowing the agent to select actions that
execute for multiple time steps. The second,
reward shaping (Mataric 1994), allows agents to
use an artificial reward signal (R) rather than the
MDP’s true reward (R). For instance, a human
could modify the reward of an agent in a maze so
that it received additional reward as it approached
the goal state, potentially allowing the agent to
learn faster. 

Motivating Domains 
This section provides two example RL domains in
which transfer has been successful and that will be
used to discuss particular transfer methods later in
this article. The first, maze navigation, contains
many possible tasks, such as having different wall
locations or goal states. In the second, robot soccer
Keepaway, tasks typically differ in the number of
players on each team, which results in different
state representations and actions. 

These two domains are selected because they
have been used in multiple works on TL and
because their properties compliment each other.

Maze navigation tasks are typically single-agent
tasks situated in a fully observable, discrete state
space. These relatively simple tasks allow for easy
analysis of TL methods and represent a simplifica-
tion of a number of different types of agent-navi-
gation tasks. Keepaway, in contrast, is a multiagent
task that models realistic noise in sensors and actu-
ators, requiring significantly more data (that is,
time) to learn successful policies. Additionally, the
number of state variables and number of actions
change between tasks (as described below), intro-
ducing a significant challenge not necessarily seen
in mazelike domains. 

Maze Navigation 
Learning to navigate areas or mazes is a popular
class of RL problems, in part because learned poli-
cies are easy to visualize and to understand.
Although the formulation differs from paper to
paper, in general the agent operates in a discrete
state space and can select from four movement
actions {MoveNorth, MoveSouth, MoveEast, Move
West}. The agent begins in a start state, or set of
start states, and receives a positive reward upon
reaching a goal state based on how many actions it
has executed. The transition function is initially
unknown and is determined by the location of the
maze’s walls. 

As discussed later, multiple researchers have
experimented with speeding up learning with TL
by focusing on the structure of navigation tasks.
For instance, a policy learned on a source-task
maze could be useful when learning a target-task
maze with slightly different walls (for example,
transfer from figure 1a to figure 1b). Alternatively,
it is often the case that navigating within rooms is
similar, in that the goal is to traverse a relatively
empty area efficiently in order to reach a doorway
or corridor (for example, transfer from figure 1b to
figure 1c). 

There are many ways in which source and target
tasks can differ, which dictate what abilities a
transfer algorithm would need in order to be appli-
cable. In the maze domain, for instance, differ-
ences could include the following:

T: wall placement could change or the actions could
be made stochastic;
S: the size of the maze could change; 
S0: the agent could start in different locations; 
Sfinal: the goal state could move; 
State variables: the agent’s state could be an index
into a discrete state space or could be composed of
x, y coordinates; 
R: the agent could receive a reward of –1 on every
step or the reward could be a function of the dis-
tance from the goal state; 
A: additional actions, such as higher-level macro
actions could be enabled or disabled. 
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Keepaway 
The game of Keepaway is a subproblem in the
RoboCup Soccer Server (Noda et al. 1998). A team
of independently controlled keepers attempt to
maintain possession of a ball in a square area while
a team of takers try to gain possession of the ball or
kick it out of bounds. The keeper with the ball
chooses between macro actions, which depend on
the number of keepers. The keepers receive a
reward of +1 for every time step that the ball
remains in play. The episode finishes when a taker
gains control of the ball or the ball is kicked out of
bounds. In the standard version of Keepaway,
keepers attempt to learn to possess the ball as long
as possible, increasing the average episode length,
while the takers follow a fixed policy. 

In 3 versus 2 Keepaway (see figure 2), there are
three keepers and two takers. Rather than learning
to execute low-level actuator movements, the
keepers instead select from three hand-designed
macro actions: {Hold, Pass1, Pass2}, corresponding
to “maintain possession,” “pass to closest team-
mate,” and “pass to second closest teammate.”
Keepers that do not possess the ball follow a hand-
coded policy that attempts to capture an open ball
or moves to get open for a pass. Learning which of
the three actions to select on a given time step is
challenging because the actions are stochastic, the
observations of the agents’ state are noisy, and the
13-dimensional state (described in table 1) is con-
tinuous (necessitating function approximation).
This task has been used by multiple researchers, in
part due to freely available players and benchmark
performances distributed by the University of
Texas at Austin (Stone et al. 2006).1

If more players are added to the task, Keepaway
becomes harder for the keepers because the field
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Figure 1. Three Example Mazes to Motivate Transfer Learning.

a b c

Figure 2. The Distances and Angles Used to Construct the 
13 State Variables Used in 3 versus 2 Keepaway. 

Relevant objects are the five players, ordered by distance from the ball, and
the center of the field. 
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becomes more crowded. As more takers are added,
there are more opponents to block passing lanes
and chase down errant passes. As more keepers are
added, the keeper with the ball has more passing
options, but the average pass distance is shorter.
This reduced distance forces more passes and often
leads to more missed passes because of the noisy
actuators and sensors. Additionally, because each
keeper learns independently and can only select
actions when it controls the ball, adding more
keepers to the task means that keepers receive less
experience per time step. For these reasons, keepers
in 4 versus 3 Keepaway (that is, 4 keepers versus 3
takers) require more simulator time to learn a good
control policy, compared to 3 versus 2 Keepaway. 

In 4 versus 3 Keepaway (see figure 3), the reward
function is very similar: there is a + 1 to the keep-
ers on every time step the ball remains in play.
Likewise, the transition function is similar because
the simulator is unchanged. Now A = {Hold, Pass1,
Pass2, Pass3}, and each state is composed of 19
state variables due to the added players. It is also
important to point out that the addition of an
extra taker and keeper in 4 versus 3 results in a
qualitative change to the keepers’ task. In 3 versus
2, both takers must go toward the ball because two
takers are needed to capture the ball from the keep-
er. In 4 versus 3, the third taker is now free to roam
the field and attempt to intercept passes. This
changes the optimal keeper behavior, as one team-
mate is often blocked from receiving a pass by a
taker. 

TL results in the Keepaway domain often focus

on transferring between different instances of the
simulated robot soccer domain with different
numbers of players. Many authors have studied
transfer in this domain because (1) it was one of
the first RL domains to show successful transfer
learning results, (2) learning is nontrivial, allowing
transfer to significantly improve learning speeds,
and (3) different Keepaway tasks have well-defined
differences in terms of both state variables and
action sets. When transferring from 3 versus 2 to 4
versus 3, there are a number of salient changes that
any TL algorithm must account for, such as state
variables (the agent’s state variables must change to
account for the new players); A (there are addi-
tional actions when the number of possible pass
receivers increases); and S0 (adding agents to the
field causes them to start in different positions on
the field). 

Dimensions of Transfer 
We now turn our attention to ways in which trans-
fer learning methods can differ, providing exam-
ples in the maze and Keepaway domains. The fol-
lowing sections will enumerate and discuss the
different dimensions, both providing an overview
of what is possible with transfer in RL and describ-
ing how TL algorithms may differ. First, there are a
number of different possible goals for transfer in
RL domains. Second, the similarity of source and
target tasks plays an important role in determining
what capabilities a TL algorithm must have in
order to be applied effectively (that is, how the
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Table 1. All State Variables Used for Representing the State of 3 Versus 2 Keepaway.

C is the center of the field, dist(X, Y) is the distance between X and Y, and ang(X, Y, Z) is the angle formed by X, Y , Z where X is the vertex.
The state is egocentric for the keeper with the ball and rotationally invariant. 

State Variable Description 
dist(K1, C) Distance from keeper with ball to center of !eld 

dist(K1, K2) 
dist(K1, K3) 

Distance from keeper with ball to closest teammate 
Distance from keeper with ball to second closest teammate 

dist(K1, T1) 
dist(K1, T2) 

Distance from keeper with ball to closest taker  
Distance from keeper with ball to second closest taker 

dist(K2, C) 
dist(K3, C) 

Distance from second closest teammate to center of !eld 
Distance from closest teammate to center of !eld  

dist(T1, C)  
dist(T2, C) 

Distance from closest taker to center of !eld 
Distance from second closest taker to center of !eld 

Min(dist(K2, T1), dist(K2, T2) 
Min(dist(K3, T1), dist(K3, T2) 

Distance from nearest teammate to its nearest taker 
Distance from second nearest teammate to its nearest taker 

Min(ang(K2, K1, T1), ang(K2, K1, T2) 
Min(ang(K3, K1, T1), ang(K3, K1, T2) 

Angle of passing lane from keeper with ball to closest teammate 
Angle of passing lane from keeper with ball to second closest teammate 



source task is mapped to the target task in figure
4a). Third, transfer methods can differ in terms of
what RL methods they are compatible with (that
is, how the source task and target-task agents learn
their policies). Fourth, different TL methods trans-
fer different types of knowledge (that is, what is
transferred between the source-task and target-task
agents). 

Possible Transfer Goals 
Current transfer learning research in RL does not
have a standard set of evaluation metrics, in part
because there are many possible options. For
instance, it is not always clear how to treat learn-
ing in the source task: whether to charge it to the
TL algorithm or to consider it a “sunk cost.” One
possible goal of transfer is to reduce the overall
time required to learn a complex task. In this sce-
nario, a total time scenario, which explicitly
includes the time needed to learn the source task,
would be most appropriate. Another reasonable
goal of transfer is to effectively reuse past knowl-
edge in a novel task. In such a target-task time sce-

nario, it is reasonable to account only for the time
used to learn the target task. The majority of cur-
rent research focuses on the second scenario,
ignoring time spent learning source tasks by
assuming that the source tasks have already been
learned — the existing knowledge can either be
used to learn a new task or simply ignored. 

The degree of similarity between the source task
and the target task will have markedly different
effects on TL metrics, depending on whether the
total time scenario or target-task time scenario
applies. For instance, suppose that the source task
and target task were identical (thus technically not
an instance of TL). In the target-task time scenario,
learning the source task well would earn the sys-
tem high marks. However, in the total time sce-
nario, there would be little performance change
from learning on a single task. On the other hand,
if the source and target task were unrelated, trans-
fer would likely provide little benefit, or possibly
even hurt the learner (that is, cause negative trans-
fer, as discussed later as a current open question). 

Many metrics to measure the benefits of transfer
in the target task are possible, such as those shown
in figure 4b (replicated from our past transfer learn-
ing work [Taylor and Stone 2007a]). The jump start
is the difference in initial performance of an agent
using transfer relative to learning without transfer.
The asymptotic performance (that is, the agent’s final
learned performance) may be changed through
transfer. The total reward accumulated by an agent
(that is, the area under the learning curve) may dif-
fer if it uses transfer, compared to learning without
transfer. The transfer ratio is defined as the total
reward accumulated by the transfer learner divid-
ed by the total reward accumulated by the non-
transfer learner. The time to threshold measures the
learning time (or samples) needed by the agent to
achieve a prespecified performance level. 

Transfer may be considered a success if metric 1
is greater than zero, metrics 2–3 are increased with
transfer, metric 4 is greater than one, or if metric 5
is reduced through transfer. While these metrics
are domain independent, none are useful to direct-
ly evaluate the relative performance of transfer
learning algorithms unless the tasks, learning
methods, and representations are constant (for
example, it is generally not useful to directly com-
pare the jump start of two different transfer learn-
ing algorithms if the algorithms were tested on dif-
ferent pairs of source and target tasks). 

Improvement due to transfer from 3 versus 2
Keepaway into 4 versus 3 Keepaway could be meas-
ured, for example, by (1) improving the average
episode time in 4 versus 3 at the very beginning of
learning in the target task, (2) learning to maintain
possession of the ball for longer episodes in 4 ver-
sus 3, (3) increasing the area under the 4 versus 3
Keepaway learning curve when measuring the
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Figure 3. 4 Versus 3 Keepaway 

4 Versus 3 Keepaway has seven players in total and the keepers’ state is com-
posed of 19 state variables, analogous to 3 versus 2 Keepaway. 



average episode versus the simulator learning time,
(4) increasing that same area under a 4 versus 3
Keepaway learning curve relative to learning with-
out transfer, and (5) reducing the time required by
keepers to learn to reach an average episode length
of 21.0 simulator seconds in 4 versus 3 Keepaway. 

Tasks Similarity 
One way to categorize transfer methods is to con-

sider how the source task and target tasks are relat-
ed. For instance, are the two tasks similar enough
for the learned source-task knowledge to be direct-
ly used in the target task, or must the source-task
knowledge be modified before being used in the
target task? Possible variants along this dimension
are as follows. 

Knowledge is “copied” from a source-task agent
directly into a target-task agent. Such methods are
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In general, transfer in RL can be described as transferring information between a source-task agent to a target-task agent (top)
Many different metrics to evaluate TL algorithms are possible. This graph (bottom) shows benefits to the jump start, the
asymptotic performance, the total reward (the area under a learning curve), the reward area ratio (the ratio of the area under
the transfer to the area under the nontransfer learning curve), and the time to threshold. 



typically simple, but require the source and target
tasks to be very similar. Example: a policy learned
in a source maze is used directly in a target-task
maze. 

Knowledge from a source-task agent is modified
before being used by a target-task agent. This mod-
ification leverages a hand-coded or learned rela-
tionship between the source and target task. Such
methods enable the source and target tasks to dif-
fer significantly but require knowledge about how
the two tasks are similar. Example: a Q-value func-
tion is learned in 3 versus 2 Keepaway, transformed
to account for novel state variables and actions,
and then used to initialize keepers in 4 versus 3. 

The TL method learns how a pair of tasks are
similar and then uses this similarity to modify
source-task agent knowledge for use by the target-
task agent. Such methods are much more flexible
but may be impractical in the general case. Exam-
ple: rather than using human knowledge, an algo-
rithm discovers how state variables and actions are
similar in 3 versus 2 and 4 versus 3 Keepaway, and
then transfers a state-action value function
between the two tasks. 

Relatedness of Agents 
TL algorithms are often designed to be able to
accommodate specific types of differences between
the source-task agents and target-task agents, pro-
viding another dimension along which to classify
TL algorithms. Do agents in the two tasks need to
use the same learning method, the same class of
learning methods, or the same knowledge repre-
sentation? For example, a particular transfer algo-
rithm may require one of the following relation-
ships between source and target agents. Although
each of the following four options has been
explored in the literature, the first is the most com-
mon. 

In option one, the source and target agents must
use the same learning method. For example, keep-
ers in 3 versus 2 use Sarsa with tile coding and
keepers in 4 versus 3 use Sarsa with tile coding. 

In option two, the source and target agents may
use different learning methods, but they must be
similar. Example: keepers in 3 versus 2 use Sarsa
with tile coding and keepers in 4 versus 3 use Q()
with tile coding. (Both Sarsa and Q-learning are
temporal difference methods.) 

In option three, the source and target agents
must use a similar learning method, and the repre-
sentation can change. Example: an agent learns to
navigate a source-task maze using Sarsa with a Q-
table (that is, no function approximation) and
then an agent learns to navigate a target-task maze
using Q() with tile coding. 

In option four, the source and target agents may
use different learning methods and representa-
tions; for example, keepers in 3 versus 2 use Sarsa

with tile coding and keepers in 4 versus 3 use direct
policy search with a neural network. As with task
similarity, TL methods that are more flexible are
often more complex and require more data to be
effective. 

What Can Be Transferred 
Lastly, TL methods can be classified by the type of
knowledge transferred and its specificity. Low-lev-
el knowledge, such as (s, a, r, s) instances, an
action-value function (Q), a policy (), and a full
model of the source task may all be transferred
between tasks. Higher-level knowledge, such as
partial policies (for example, options) and shaping
rewards (where a modified reward signal helps
guide the agent), may not be directly used by the
algorithm to fully define an initial policy in a tar-
get task, but such information may help guide the
agent during learning. 

All of these types of knowledge have been suc-
cessfully transferred in maze domains and Keep-
away domains. The benefits and trade-offs of these
different types of knowledge have not yet been
examined, but we anticipate that different transfer
situations will favor different types of transfer
information. 

A Selection of Transfer 
Learning Algorithms 

One good way to gain a sense of the state of the art
is through examples of past successful results. This
section provides a selection of such methods based
on our two example domains. First, we investigate
methods that act in maze or navigation domains.
Second, we discuss methods that transfer between
simulated robot soccer games. Third, we highlight
two methods to learn relationships between tasks. 

Table 2 gives a summary of how the transfer
methods discussed in our two example domains
differ. The first three methods copy knowledge
directly between tasks without any modification.
The second set of papers modify knowledge gained
in a source task before using it in a target task. The
third set learn how two tasks are related so that
they may modify source-task knowledge for use in
a target task. 

Salient differences between source and target
tasks include having different start states, goal
states, problem spaces (described in the text),
actions, reward functions, or state representations.
When learning how tasks are similar, methods may
rely on a qualitative description of the transition
function, state variable groupings (groups), or
experience gathered in the target task (exp), all of
which are explained later in the text. Policies,
reward functions, options, Q-value functions,
rules, and (s, a, r, s) instances may be transferred
between the source task and target task. The met-
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rics used are the total reward (tr), jump start (j),
asymptotic performance (ap), and time to thresh-
old (tt). All papers measure target-task learning
time (that is, do not count time spent learning in
the source task), and those marked with a † also
measure the total learning time. 

Maze Navigation 
To begin our discussion of current transfer learn-
ing methods, we examine a set of algorithms that
tackle transfer in navigation tasks, for example, by
transferring a policy between tasks (see figure 5).
Both transfer methods discussed in this section
assume that agents in the source and target task
use the same TD learning algorithm and function
approximators, and they only consider the target-
task time scenario. 

Probabilistic Policy Reuse. Probabilistic policy
reuse (Fernández and Veloso 2006) considers maze
tasks in which only the goal state differs. In this
work, the method allows a single goal state to dif-
fer between the tasks but requires that S, A, and T
remain constant. Action selection is performed by
the -reuse exploration strategy. When the agent is
placed in a novel task, on every time step, it can
choose to exploit a learned source-task policy, ran-
domly explore, or exploit the current learned pol-
icy for the target task. By setting these exploration
parameters, and then decaying them over time, the
agent balances exploiting past knowledge, improv-
ing upon the current task’s policy by measuring its
efficacy in the current task, or exploring in the
hope of finding new actions that will further
improve the current task’s policy, eventually con-
verging to a near-optimal policy. Results show that

using the -reuse exploration to transfer from a
single source task performs favorably to learning
without transfer, although performance may be
decreased when the source task and target task
have goal states in very different locations. Per-
formance is measured by the total reward accumu-
lated in a target task. 

In addition to transfer from a single source task,
Fernández and Veloso’s PRQ-Learning method is
one of the few that can transfer from multiple
source tasks (Fernández and Veloso 2006). PRQ-
Learning extends -reuse exploration so that more
than one past policy can be exploited. As past poli-
cies are exploited, their usefulness in the current
task is estimated, and over time a softmax selection
strategy (Sutton and Barto 1998) makes the most
useful past policies most likely to be used. Finally,
the policy library through policy reuse algorithm
allows learned policies to be selectively added to a
policy library. Once a task is learned, the new pol-
icy can be added to the library if it is dissimilar
from all policies existing in the library, according
to a parameterized similarity metric. This metric
can be tuned to change the number of policies
admitted to the library. Increasing the number of
policies in the library increases the chance that a
past policy can assist learning a new task, at the
expense of increased policy evaluation costs in
PRQ-Learning. This approach is similar in spirit to
that of case-based reasoning, where the similarity
or reuse function is defined by the parameterized
similarity metric. In later work Fernández, García,
and Veloso (2010) extend the method so that it can
be used in Keepaway as well. 
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Table 2. A High-Level Overview of TL Algorithms. 

Abbreviations are explained in the text. 

Paper Task Differences Transferred Knowledge Knowledge to Learn Mapping Metrics Used 

Knowledge Copied: Maze Navigation Tasks 

Fernandez and Veloso 2006 start and goal states  N/A tr 

Konidaris and Barto 2006 problem-space R N/A j, tr 

Knowledge Modi!ed: Simulated Robot Soccer 

Taylor, Stone, and Liu 2007 A, s-vars Q N/A tt† 

Torrey et al. 2006 A, R, s-vars rules j, tr 

Torrey et al. 2006 A, R, s-vars options j, tr 

Taylor and Stone 2007a A, R, s-vars rules N/A j, tr, tt† 

Learning Transfer Mappings 

Liu and Stone 2006 A, s-vars N/A T (qualitative) N/A 

Soni and Singh 2006 A, s-vars options groups, exp ap, j, tr 

Taylor, Jong, and Stone 2008 A, s-vars instances exp ap, tr 

N/A

N/A



Agent and Problem Space. Rather than transfer
policies from one task to another, Konidaris and
Barto (2006) instead transfer a learned shaping
function. A shaping function provides higher-lev-
el knowledge, such as “get rewarded for moving
toward a particular beacon,” which may transfer
well when the source task and target task are so dis-
similar that direct policy transfer would not be use-
ful. In order to learn the shaping reward in the
source task, the standard problem is separated into
agent-space and problem-space representations.
The agent space is determined by the agent’s capa-
bilities, which remain fixed (for example, physical
sensors and actuators), and the space may be non-
Markovian.2 For instance, the agent may have a
sensor that is always able to determine the direc-
tion of a beacon, and this sensor may be used in
any task the agent faces. The problem space, on the
other hand, may change between source and target
problems and is assumed to be Markovian. The
shaping reward is learned in agent space, since this
will be unchanged in the target task. 

For this method to work, we acknowledge that
the transfer must be between reward-linked tasks,
where “the reward function in each environment
consistently allocates rewards to the same types of
interactions across environments.” For instance,
an agent may learn to approach a beacon in the
source task and transfer this knowledge as a shap-
ing reward, but if the target rewards the agent for
moving away from a beacon, the transferred

knowledge will be useless or possibly even harm-
ful. Determining whether or not a sequence of
tasks meet this criterion is currently unaddressed,
but it may be quite difficult in practice. This prob-
lem of determining when transfer will and will not
be effective is currently one of the more pressing
open problems, which may not have a simple solu-
tion. 

In our opinion, the idea of agent and problem
spaces should be further explored as they will like-
ly yield additional benefits. For instance, discover-
ing when tasks are “reward-linked” so that transfer
will work well would make the methods more
broadly applicable. Particularly in the case of phys-
ical agents, it is intuitive that agent sensors and
actuators will be static, allowing information to be
easily reused. Task-specific items, such as features
and actions, may change, but should be faster to
learn if the agent has already learned something
about its unchanging agent space. 

Keepaway 
In this section we discuss a selection of methods
that have been designed to transfer knowledge
between Keepaway tasks. As discussed earlier, this
can be a particularly difficult challenge, as the state
variables and actions differ between different ver-
sions of Keepaway. All methods in this section
require that the target task is learned with a TD
learner. 

We will first introduce intertask mappings, a
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Figure 5. Many Methods Directly Use a Learned Source-Task Policy to Initialize an 
Agent’s Policy in the Target Task, or to Bias Learning in the Target Task.



construct to enable transfer between agents that
act in MDPs with different state variables and
actions. We then discuss a handful of methods that
use intertask mappings to transfer in the simulat-
ed robot soccer domain. 

Intertask Mapping. To enable TL methods to
transfer between tasks that do have such differ-
ences, the agent must know how the tasks are relat-
ed. This section provides a brief overview of inter-
task mappings (Taylor, Stone, and Liu 2007), one
formulation of task mappings. Such mappings can
be used by all methods discussed in this section
and can be thought of as similar to how case-based
reasoning decides to reuse past information. 

To transfer effectively, when an agent is present-
ed with a target task that has a set of actions, A, it
must know how those actions are related to the
action set in the source task, A. (For the sake of
exposition we focus on actions, but an analogous
argument holds for state variables.) If the TL
method knows that the two action sets are identi-
cal, no action mapping is necessary. However, if
this is not the case, the agent needs to be told, or
learn, how the two tasks are related. One solution
is to define an action mapping, A, such that
actions in the two tasks are mapped so that their
effects are “similar,” where similarity is loosely
defined so that it depends on how the action
affects the agent’s state and what reward is
received.3 Figure 6 depicts an action mapping as
well as a state-variable mapping (X) between two
tasks. A second option is to define a partial map-
ping (Taylor, Whiteson, and Stone 2007), such that
any novel actions or novel state variables in the
target task are not mapped to anything in the
source task (and are thus ignored). Because inter-
task mappings are not functions, they are typical-
ly assumed to be easily invertible (that is, mapping
source-task actions into target-task actions, rather
than target-task actions to source-task actions). 

For a given pair of tasks, there could be many
ways to formulate intertask mappings. Much of the
current TL work assumes that a human has pro-
vided a (correct) mapping to the learner. In the
Keepaway domain, we are able to construct inter-
task mappings between states and actions in the
two tasks based on our domain knowledge. The
choice for the mappings is supported by empirical
evidence showing that using these mappings does
allow us to construct transfer functions that suc-
cessfully reduce training time. 
We define A, the intertask action mapping for the

two tasks, by identifying actions that have similar
effects on the world state in both tasks (see table 3).
For the 4 versus 3 and 3 versus 2 Keepaway tasks,
the action “Hold ball” is equivalent because this
action has a similar effect on the world in both
tasks. Likewise, the first two pass actions are anal-
ogous in both tasks. We map the novel target
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a1
a2

am

a1
a2
a3
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x1
x2
x3

xk
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x2

xj

...

χX

χA

Figure 6. A and X Are Independent Mappings that 
Describe Similarities between Two MDPs.

These mappings describe how actions in the target task are similar to actions
in the source task and how state variables in the target task are similar to state
variables in the source task, respectively. 

Table 3. A: 4 Versus 3 Keepaway to 3 Versus 2 Keepaway.

This table describes the (full) action mapping from 4 versus 3 to 3 versus 2. 

4 Versus 3 Action 3 Versus 2 Action 

Hold Ball Hold Ball 

Pass1 Pass1 

Pass2 Pass2 

Pass3 Pass2 



action “Pass to third closest keeper” to “Pass to sec-
ond closest keeper” in the source task. To define a
partial action mapping between 4 versus 3 and 3
versus 2, the “Pass to third closest keeper” 4 versus
3 action would be ignored, as there is no direct cor-
respondence in 3 versus 2. The state variable map-
ping for 4 versus 3 to 3 versus 2 can likewise be
defined (Taylor, Stone, and Liu 2007). 

Value Function Transfer. Value function transfer
(Taylor, Stone, and Liu 2007) differs from the
methods previously discussed as it makes use of
intertask mappings, as well as transferring a differ-
ent type of knowledge. Rather than transferring a
policy or even a shaping reward, the authors
extract Q-values learned in the source task and
then use hand-coded intertask mappings to trans-
fer learned action-value functions from one Keep-
away task to another (see figure 7). It may seem
counterintuitive that low-level action-value func-

tion information is able to speed up learning across
different tasks — rather than using abstract
domain knowledge, this method transfers very
task-specific values. When this knowledge is used
to initialize the action-value functions in a differ-
ent Keepaway task, the agents receive a small jump
start, if any, because the Q-values are not “correct”
for the new task. However, as experiments show,
the transferred knowledge biases the learners so
that they are able to learn faster. 

Results from transfer from 3 versus 2 Keepaway
to 4 versus 3 Keepaway are shown in figure 8,
which compares learning without transfer to eight
different transfer learning scenarios. The x-axis
denotes the number of episodes spent training in
the 3 versus 2 task, and the y-axis records the total
simulator time needed to meet a specified per-
formance threshold in the 4 versus 3 task (an aver-
age of 11.5 seconds per episode). The bar on the far
left shows that the average time needed to achieve
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Figure 7. In Value Function Transfer, Learned Q-Values from the 
Source Task Are Transformed through Intertask Mappings.

These transformed Q-values are then used to initialize agents in the target task, biasing their learning with low-level knowl-
edge from the source task. 



the threshold performance using only target-task
learning is just over 30 simulator hours. On the far
right, agents train in the source task for 6000
episodes (taking just over 20 hours of simulator
training time), but then are able to train in the tar-
get task for just under 9 simulator hours, signifi-
cantly reducing the total time required to reach the
target-task threshold. In the Keepaway domain,
spending increased amounts of time in the 3 ver-
sus 2 source task generally decreases the amount of
time needed to train the 4 versus 3 target task. This
result shows that if one’s goal is to reduce target-
task training time, it can indeed make sense to use
past knowledge, even if from a task with different
state variables and actions. 

Finally, consider when keepers train for 250
episodes in 3 versus 2. In this scenario, the total
training time is reduced relative to no transfer. This
result shows that in some cases it may be beneficial
to train on a simple task, transfer that knowledge,
and then learn in a difficult task, rather than
directly training on the difficult task. The authors
suggest that in order to reduce the total training
time, it may be advantageous to spend enough
time to learn a rough value function, transfer into
the target task, and then spend the majority of the
training time refining the value function in the tar-
get task. 

However, value function transfer is not a
panacea; the authors also admit that transfer may

fail to improve learning. For instance, consider the
game of Giveaway, where 3 agents must try to lose
the ball as fast as possible. The authors show that
transfer from Giveaway to Keepaway can be harm-
ful, as might be expected, as the transferred action-
value function is not only far from optimal, but it
also provides an incorrect bias. 

The authors provide no guarantees about their
method’s effectiveness but do hypothesize condi-
tions under which their TL method will and will not
perform well. Specifically, they suggest that their
method will work when one or both of the follow-
ing conditions are true: (1) The best learned actions
in the source task, for a given state, are mapped to
the best action in the target task through the inter-
task mappings. (2) The average Q-values learned for
states are of the correct magnitude in the trained
target task’s function approximator. 

The first condition biases the learner to select
the best actions more often in the target task, even
if the Q-values are incorrect. For instance, Hold is
often the best action to take in 3 versus 2 Keep-
away and 4 versus 3 Keepaway if no taker is close
to the keeper with the ball. The second improves
learning by requiring fewer updates to reach accu-
rate Q-values. The second condition is true when
reward functions and learned performances are
similar, as is true in different keepaway tasks. 

Higher-Level Transfer Approaches. We now turn
our attention to methods that transfer higher-lev-
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el advice than an action-value function. Our intu-
ition is that such domain-level information should
transfer better than low-level, task-specific infor-
mation, but no empirical or theoretical studies
have examined this particular question. 

Torrey et al. (2006) introduce the idea of trans-
ferring skills between different tasks, which are
similar to options. Inductive logic programming is
used to identify sequences of actions that are most
useful to agents in a source task. These skills are
then mapped by human-supplied intertask map-
pings into the target task, where they are used to
bootstrap reinforcement learning. Torrey’s subse-
quent work (Torrey et al. 2007) further generalizes
the technique to transfer relational macros, or
strategies, which may require composing several
skills together. Inductive logic programming is
again used to identify sequences of actions that
result in high reward for the agents, but now the
sequences of actions are more general (and thus,
potentially, more useful for agents in a target task). 

Once the strategies are remapped to the target
task through a human-provided mapping, they are
used to demonstrate a strategy to the target-task
learner. Rather than explore randomly, the target-
task learner always executes the transferred strate-
gies for the first 100 episodes and thus learns to
estimate the Q-values of the actions selected by the
transferred strategies. After this demonstration
phase, the strategies are discarded, having success-
fully seeded the agent’s action-value function. For
the remainder of the experiment, the agent selects
from the MDP’s base actions, successfully learning

to improve on the performance of the transferred
strategies. 

One particularly interesting challenge the
authors tackle in their papers is to consider source
tasks and target tasks that not only differ in terms
of state variables and actions, but also in reward
structure. Positive transfer is shown between 3 ver-
sus 2 Keepaway, 3 versus 2 MoveDownfield, and
different versions of BreakAway. MoveDownfield is
similar to Keepaway, except that the boundary area
shifts over time (similar to how players may want
to maintain possession of a ball while advancing
towards an opponent’s goal). BreakAway is less
similar, as the learning agents now can pass to a
teammate or shoot at the goal — rather than a
reward based on how long possession is main-
tained, the team reward is binary, based on
whether a goal is scored. Figure 9 reports one set of
results, showing that using relational macros sig-
nificantly improves the jump start and total reward
in the target task when transferring between dif-
ferent BreakAway tasks. The simpler method, skill
transfer, also improves learning performance, but
to a lesser degree, as the information transferred is
less complex (and, in this case, less useful for learn-
ing the target task). 

Similar in spirit to relational macro transfer, our
past work introduced rule transfer (Taylor and
Stone 2007a), which uses a simple propositional
rule-learning algorithm to summarize a learned
source-task policy (see figure 10). In particular, the
learning algorithm examines (state, action) pairs
from the source-task agent and generates a deci-

Articles

28 AI MAGAZINE

0

5

10

15

20

25

30

35

0 10 50 100 250 500 1000 3000 6000

Si
m

ul
at

o
r 

H
o

ur
s

Number of 3 Versus 2 Episodes

Time to Threshold in 4 Versus 3 Keepaway

Average 4 Versus 
Average 3 Versus 2 Time

Figure 9. One Set of Results in a Simulated Soccer Goal Scoring Task.

This graph compares relational macro transfer, skill transfer, and learning without transfer. 



sion list to approximate the agent’s policy (that is,
the mapping from states to actions). In addition to
again allowing high-level knowledge to be trans-
ferred between tasks, this work is novel because it
looks at transferring knowledge between different
domains, producing substantial speedups when
the source task is orders of magnitude faster to
learn than the target task. 

The learned propositional rules are transformed
through intertask mappings so that they apply to
a target task with different state variables and
actions. The target-task learner may then bootstrap
learning by incorporating the rules as an extra
action, essentially adding an ever-present option
“take the action suggested by the source-task poli-
cy,” resulting in an improved jump start, total
reward, and time to threshold. By using rules as an
intermediary between the two tasks, the source
and target tasks can use different learning meth-
ods, effectively decoupling the two learners. Two
different source tasks are hand constructed: Ring-
world and Knight Joust. Both tasks can be learned

optimally in a matter of seconds, but the knowl-
edge gained by agents in these simple tasks could
still significantly improve learning rates in 3 versus
2 Keepaway, reducing both the target-task learning
time and total learning time, relative to learning 3
versus 2 Keepaway. For instance, high-level con-
cepts like “perform a knight jump if the opponent
gets close, otherwise move forward” can transfer
well into Keepaway as “perform the pass action if
a keeper gets close, otherwise hold the ball.” 

Learning Intertask Mappings 
The transfer algorithms considered thus far have
assumed that a hand-coded mapping between
tasks was provided, or that no mapping was need-
ed. In this section we consider the less-well
explored question of how an intertask mapping
can be learned, a critical capability if a human is
unable, or unwilling, to provide a mapping. There
are two high-level approaches to learning task sim-
ilarity. The first relies on high-level structure of the
tasks and the second uses low-level data gathered
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from agents in both tasks (see figure 11 for an
example data-driven approach, discussed later in
this section). 

The first category of techniques uses high-level
information about tasks to reason about their sim-
ilarity. If the full model of both MDPs were known
(that is, agents could plan a policy without explor-
ing), a careful analysis of the two MDPs could
reveal similarities that may be exploited. More rel-
evant to this article is when some information
about the source task and the target task is known,
but a full model is not available. For instance, Liu
and Stone (2006) assume that a type of qualitative
model is available for learning a mapping, but such
a model is insufficient for planning a policy. An
algorithm based on the Structure Mapping Engine
(Falkenhainer, Forbus, and Gentner 1989) is used
to learn similarities between the tasks’ qualitative
models. The Structure Mapping Engine is an algo-
rithm that attempts to map knowledge from one

domain into another using analogical matching —
it is exactly these learned similarities that can be
used as intertask mappings to enable transfer. 

The second category, data-driven learners, do
not require a high-level model of tasks, allowing
for additional flexibility and autonomy. Soni and
Singh (2006) develop a TL method that requires
much less background knowledge than the previ-
ous method, needing only information about how
state variables are used to describe objects in a mul-
tiplayer task.4 First, an agent is supplied with a
series of possible state transformations and an
intertask action mapping. Second, after learning
the source task, the agent’s goal is to learn the cor-
rect transformation: in each target-task state s, the
agent can randomly explore the target-task
actions, or it may choose to take the action rec-
ommend by the source-task policy using a map-
ping, source(X(s)). This method has a similar moti-
vation to that of Fernández and Veloso (2006), but

Articles

30 AI MAGAZINE

Source
Environment

Target
Environment

Source Agent

Source Task

Target Agent

Target Task

Action State Reward
rsource atarget atarget

Action
ssourceasource

State Reward
rtarget

Target Task DataSource Task Data

Intertask Mapping

Similarity
Learner

Figure 11. One Class of Methods to Learn Intertask Mappings.

This class of methods relies on collecting data from (that is, allowing an agent to interact with) source and target tasks.
Similarities in the transitions and rewards in the two tasks are used to learn state variable and action mappings. 



here the authors learn to select
between possible mappings rather than
possible previous policies. Over time
the agent uses Q-learning in Keepaway
to select the best state variable map-
ping (X), as well as learn the action
values for the target task (A). The jump
start, total reward, and asymptotic per-
formance are all slightly improved
when using this method, but its effica-
cy will be heavily dependant on the
number of possible mappings between
any source and target task. As the num-
ber of possibilities grows, so too will
the amount of data needed to deter-
mine which mapping is most correct. 

The MASTER algorithm (Taylor, Jong,
and Stone 2008) further relaxes the
knowledge requirements for learning
an intertask mapping: no knowledge
about how state variables are related to
objects in the target task is required.
This added flexibility, however, comes
at the expense of additional computa-
tional complexity. The core idea of
MASTER is to (1) record experienced
source-task instances, (2) build an
approximate transition model from a
small set of experienced target-task
instances, and then (3) test possible
mappings offline by measuring the pre-
diction error of the target-task models
on source-task data (see figure 11). This
approach is sample efficient but has a
high computational complexity that
grows exponentially as the number of
state variables and actions increase. 

The main benefit of such a method is
that this high computational cost
occurs “between tasks,” after the source
task has been learned but before the
target-task agent begins learning, and
thus does not require any extra inter-
actions with the environment. The cur-
rent implementation uses an exhaus-
tive search to find the intertask
mappings that minimize the predic-
tion error, but more sophisticated (for
example, heuristic) search methods
could also be incorporated. It is worth
noting that MASTER is one of the few
methods that transfers information
when using a model-based learning
method (rather than a model-free TD
method). This method may also be
used to assist with source-task selec-
tion, but MASTER’s primary contribu-
tion is to demonstrate that fully
autonomous transfer is possible. 

Open Questions 
This section discusses a selection of
current open questions in transfer for
reinforcement learning domains. Hav-
ing discussed a number of successful
methods in TL, this section will help
the reader better understand where TL
may be further improved and we hope
that it will inspire others to examine
problems in this area. Many people
have demonstrated empirical successes
with transfer learning, but we discuss
how (1) related paradigms may offer
insight into improving transfer, (2)
there are currently few theoretical
results or guarantees for TL, (3) current
TL methods are not powerful enough
to completely remove a human from
the loop, and (4) there are many ways
the current TL methods could be more
efficient. 

Related Paradigms 
Thus far, we have focused on algo-
rithms that use one or more source
tasks to better learn in a different, but
related, target task. There are many
other paradigms that may also be com-
bined with, or provide ideas for, trans-
fer learning. This section provides a
brief discussion of these, as well as their
relationship to TL. 

Lifelong Learning. Thrun (1996) sug-
gested the notion of lifelong learning
where an agent may experience a
sequence of temporally or spatially sep-
arated tasks. Transfer would be a key
component of any such system, but
the lifelong learning framework is
more demanding than that of transfer.
For instance, transfer algorithms are
typically “told” when a new task has
begun, whereas in lifelong learning,
agents may be reasonably expected
automatically to identify new subtasks
within the global environment (that is,
the real world). Transfer learning algo-
rithms could, in theory, be adapted to
automatically detect such task changes,
similar to the idea of concept drift
(Widmer and Kubat 1996). 

Domain-Level Advice. There is a
growing body of work integrating
advice into RL learners, which is often
provided by humans (see Maclin and
Shavlik [1996] or Kuhlmann et al.
[2004]). More relevant to this article are
those methods that automatically
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extract domain advice, effectively
speeding up future tasks within a given
domain (Torrey et al. 2006). 

Reward Shaping. Reward shaping in
an RL context typically refers to allow-
ing agents to train on an artificial
reward signal (R) rather than the
MDP’s true reward (R). While there
have been notable cases of humans
providing shaping rewards, most
important are methods that can learn
domain-level shaping rewards (Ko -
nidaris and Barto 2006), representing a
bias that may transfer well across mul-
tiple tasks. Another option that has not
been explored in the literature, to the
best of our knowledge, would be to
shape the source task so that (1) the
agent learned faster and reduced the
total learning time, or (2) the source
task became more similar to the target
task, improving how useful the trans-
ferred information would be to the tar-
get-task agent. 

Representation Transfer. Transfer
learning problems are typically framed
as leveraging knowledge learned on a
source task to improve learning on a
related, but different, target task. In
other work, we (Taylor and Stone
2007b) examine the complimentary
task of transferring knowledge between
agents with different internal represen-
tations (that is, the function approxi-
mator or learning algorithm) of the
same task. Allowing for such shifts in
representation gives additional flexibil-
ity to an agent designer as well as
potentially allowing agents to achieve
higher performance by changing repre-
sentations partway through learning.
Selecting a representation is often key
for solving a problem (see the mutilat-
ed checkerboard problem [McCarthy
1964] where humans’ internal repre-
sentations of a problem drastically
change the problem’s solvability) and
different representations may make
transfer more or less difficult. Repre-
sentation selection is a difficult prob-
lem in RL in general and we expect that
the flexibility provided by representa-
tion transfer may enhance existing
transfer learning algorithms. 

Theoretical Advances 
In addition to making progress in
empirical enquiries, attempting to bet-
ter understand where and how TL will



can define transformations between
MDPs based on transition and reward
dynamics, similar in spirit to intertask
mappings, and have been used success-
fully for transfer (Soni and Singh
2006). However, discovering homo-
morphisms is NP-hard (Ravindran and
Barto 2003) and homomorphisms are
generally supplied to a learner by an
oracle. While these two theoretical
frameworks may be able to help avoid
negative transfer or to determine when
two tasks are “transfer compatible,”
significant work needs to be done to
determine if such approaches are feasi-
ble in practice, particularly if the agent
is fully autonomous (that is, is not pro-
vided domain knowledge by a human)
and is not provided a full model of the
MDP. 

With a handful of exceptions (see
Bowling and Veloso [1999]), there has
been relatively little work on the theo-
retical properties of transfer in RL. For
example, there is considerable need for
analysis that could potentially (1) pro-
vide guarantees about whether a par-
ticular source task can improve learn-
ing in a target task (given a particular
type of knowledge transfer); (2) corre-
late the amount of knowledge trans-
ferred (for example, the number of
samples) with the improvement in the
source task; (3) define what an optimal
intertask mapping is and demonstrate
how transfer efficacy is affected by the
intertask mapping used. 

Autonomous Transfer 
To be fully autonomous, an RL transfer
agent would have to perform all of the
following steps: (1) Given a target task,
select an appropriate source task or set
of tasks from which to transfer. (2)
Learn how the source task(s) and target
task are related. (3) Effectively transfer
knowledge from the source task(s) to
the target task. 

While the mechanisms used for
these steps will necessarily be interde-
pendent, TL research has focused on
each independently, and no TL meth-
ods are currently capable of robustly
accomplishing all three goals. In par-
ticular, successfully performing all
three steps in an arbitrary setting may
prove to be “AI-Complete,” but achiev-
ing the goal of autonomous transfer in
at least some limited settings will

improve the ability of agents to quick-
ly learn in novel or unanticipated situ-
ations. 

Optimizing Transfer 
Recall that in value function transfer
(figure 8), the amount of source-task
training was tuned empirically for the
two competing goals of reducing the
target-task training time and the total
training time. No work that we are
aware of is able to determine the opti-
mal amount of source-task training to
minimize the target-task training time
or total training time. It is likely that a
calculation or heuristic for determining
the optimal amount of source-task
training time will have to consider the
structure of the two tasks, their rela-
tionship, and what transfer method is
used. This optimization becomes even
more difficult in the case of multistep
transfer, as there are two or more tasks
that can be trained for different
amounts of time. 

Another question not (yet) ad -
dressed is how best to explore in a
source task when the explicit purpose
of the agent is to speed up learning in
a target task. For instance, it may be
better to explore more of the source
task’s state space than to learn an accu-
rate action-value function for only part
of the state space. While no current TL
algorithms take such an approach,
there has been some work on the ques-
tion of learning a policy that is
exploitable (without attempting to
maximize the online reward accrued
while learning) in nontransfer contexts
(Simsek and Barto 2006). 

Finally, while there has been success
creating source tasks by hand (Taylor
and Stone 2007a), there are currently
no methods for automatically con-
structing a source task given a target
task. Furthermore, while multistep
transfer has proven successful, there
are currently no guidelines on how to
select/construct a single source task, let
alone a series of source tasks. In cases
where minimizing the total training
time is critical, it may well be worth the
effort to carefully design a curriculum
(Taylor 2009) or training regimen
(Zang et al. 2010) of tasks for the agent
to sequentially learn, much as Skinner
trained dogs to perform tricks through
a series of tasks with increasing difficul-

provide benefits, it is important to con-
tinue advancing theoretical under-
standing. For example, the majority of
TL work in the literature has concen-
trated on showing that a particular
transfer approach is plausible. None, to
our knowledge, has a well-defined
method for determining when an
approach will succeed or fail according
to one or more metrics. While we can
say that it is possible to improve learn-
ing in a target task faster through trans-
fer, we cannot currently decide if an
arbitrary pair of tasks are appropriate
for a given transfer method. Therefore,
transfer may produce incorrect learn-
ing biases and result in negative trans-
fer. While some methods can estimate
task similarity (Taylor, Jong, and Stone
2008), these methods do not provide
any theoretical guarantees about its
effectiveness. 

One potential method for avoiding
negative transfer is to leverage the ideas
of bisimulation (Milner 1982). Ferns et
al. (2006) point out that: 

In the context of MDPs, bisimulation
can roughly be described as the largest
equivalence relation on the state space
of an MDP that relates two states pre-
cisely when for every action, they
achieve the same immediate reward
and have the same probability of tran-
sitioning to classes of equivalent
states. This means that bisimilar states
lead to essentially the same long-term
behavior. 

However, bisimulation may be too
strict because states are either equiva-
lent or not, and may be slow to com-
pute in practice. The work of Ferns and
colleagues (Ferns, Panangaden, and
Precup 2005; Ferns et al. 2006) relaxes
the idea of bisimulation to that of a
(pseudo)metric that can be computed
much faster, and gives a similarity
measure, rather than a boolean. It is
possible, although not yet shown, that
bisimulation approximations can be
used to discover regions of state space
that can be transferred from one task to
another, or to determine how similar
two tasks are in toto. Such an approach
may in fact be similar to that of ana-
logical reasoning (for example, the
Structure Mapping Engine), but to our
knowledge such a comparison has not
been closely investigated. 

Homomorphisms (Ravindran and Bar-
to 2002) are a different abstraction that
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ty (Skinner 1953). Likewise, if a fully
autonomous agent discovers a new task
that is particularly hard, the agent may
decide to first train on an artificial task,
or series of tasks, before attempting to
master the full task. 

Conclusion 
In the coming years, deployed agents
will become increasingly common and
gain more capabilities. Transfer learn-
ing, paired with reinforcement learn-
ing, is an appropriate paradigm if the
agent must take sequential actions in
the world and the designers do not
know optimal solutions to the agent’s
tasks at design time (or even if they do
not know what the agent’s tasks will
be). There are many possible settings
and goals for transfer learning, but RL-
related approaches generally focus on
increasing the performance of learning
and therefore potentially making RL
more appropriate for solving complex,
real-world systems. 

Significant progress on transfer for
RL domains has been made in the last
few years, but there are also many
open questions. We expect that many
of the above questions will be
addressed in the near future so that TL
algorithms become more powerful and
more broadly applicable. Additionally,
we hope to see more physical and vir-
tual agents utilizing transfer learning,
further encouraging growth in an
exciting and active subfield of the AI
community. 

Through this article, we have tried to
provide an introduction to transfer
learning in reinforcement learning
domains. We hope that this article has
served to better formulate the TL prob-
lem within the community, and to
highlight some of the more prominent
approaches. Additionally, given the
number of open questions currently
facing the field, we hope that others
will be motivated to join in research of
this exciting area. 
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Notes
1. For details and videos of play, see
cs.utexas.edu/˜AustinVilla/sim/keepaway.

2. A standard assumption is that a task is
Markovian, meaning that the probability
distribution over next states is independent
of the agent’s state and action history. Thus,
saving a history would not assist the agent
when selecting actions, and it can consider
each state in isolation. 

3. An intertask mapping often maps multi-
ple entities in the target task to single enti-
ties in the source task because the target task
is more complex than the source, but in
general the mappings may be one-to-many,
one-to-one, or many-to-many. 

4. For instance, an agent may know that a
pair of state variables describe “distance to
teammate” and “distance from teammate to
marker,” but the agent is not told which
teammate the state variables describe. 
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