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Abstract
This article summarizes the New Faculty Highlights talk with the same title
at AAAI 2021. Intelligent agents such as different types of robots will soon
become an integral part of our daily lives. In real-world multi-agent systems,
the most fundamental challenges are assigning tasks to multiple agents (task-
level coordination problems) and planning collision-free paths for the agents to
task locations (motion-level coordination problems). This article surveys four
directions of our research on using intelligent planning techniques for the above
multi-agent coordination problems. Link to video abstract: https://youtu.be/
HDAFcatq9_I

INTRODUCTION

Self-driving cars, autonomous drones, autonomous
aircraft towing vehicles, automated warehouse robots,
automated-guided port vehicles, home and office service
robots, and other intelligent agents will become an inte-
gral part of our daily lives. For example, in the coming
years, hundreds of autonomous aircraft towing vehicles
will tow their assigned aircraft between runways and
terminal gates (Morris et al. 2016). Today, hundreds of
warehouse robots already navigate fully autonomously
in automated fulfillment and sortation centers to deliver
inventory shelves and express parcels to fulfill online
orders (Wurman, D’Andrea, and Mountz 2008; Kou et al.
2020). For these real-world applications of large-scale
multi-agent systems, the basic building blocks include
assigning tasks to agents and planning paths for the agents
to reach task locations. Agents must avoid collisions
in a congested environment while reaching their task
locations as promptly as possible and completing a large
number of tasks as quickly as possible. The resulting task-
and motion-level coordination problems, which model
the task-assignment and path-planning operations of the
agents, are fundamental for these multi-agent systems
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but, at the same time, computationally challenging since
there are typically many agents in such a system and the
operating time of the system is long.
In the artificial intelligence (AI) community, much

attention has been placed on a simplified one-short version
of the path-planning problem in the abovemulti-agent sys-
tems, known asmulti-agent path finding (MAPF) (Ma and
Koenig 2017; Stern et al. 2019; Ma 2022). The problem of
MAPF is to move multiple agents from their start vertices
to their target vertices in discrete time steps on a given
graph that models the environment and let the agents wait
in their target vertices. During each time step, each agent
can wait in its current vertex or move to an adjacent ver-
tex. Agents are not allowed to collide. Two agents collide
if and only if, during the same time step, they move to the
same vertex or traverse the same edge in opposite direc-
tions. A MAPF solution consists of a set of collision-free
paths, one for each agent that specifies the vertex occupies
by the agent at each time step. The objective is to minimize
the flowtime (also known as the sum-of-costs; Felner et al.
2017), that is, the sum of the numbers of time steps for the
agents to reach their target vertices, or the makespan, that
is, the earliest time step when all agents are at their target
vertices.MAPF isNP-hard to solve optimally formakespan
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(Surynek 2010) or flowtime (Yu and LaValle 2013c) mini-
mization.MAPF algorithms include reductions to Boolean
satisfiability (Surynek et al. 2016), integer linear program-
ming (Yu andLaValle 2013b), and answer set programming
(Erdem et al. 2013) and specialized combinatorial search
algorithms (Standley and Korf 2011; Sharon et al. 2013;
Wagner and Choset 2015; Sharon et al. 2015).
Nevertheless, the following concerns should be

addressed when we generalize MAPF to the above real-
world applications of large-scale multi-agent systems
(Ma et al. 2016): 1. MAPF algorithms need to be made
more efficient, namely they need to compute a solution
faster for the same number of agents or scale to a larger
number of agents in the same amount of time. 2. New
variants and extensions of MAPF need to be studied to
tackle problems arising in practice, such as executing
MAPF solutions with unmodeled motion delays and
robot constraints, combining target assignment and path
finding, and long-term and online planning.
This article surveys our research on intelligent plan-

ning for large-scale multi-agent systems in four research
directions that addresses the above concerns:

∙ Improved MAPF algorithms: We propose several
improvements to state-of-the-art optimal MAPF algo-
rithms based on heuristic search techniques and lever-
aging insights from solvers of other combinatorial prob-
lems. The resulting improved MAPF algorithms are
several orders ofmagnitude faster.We develop bounded-
suboptimal and suboptimal MAPF algorithms that pro-
duce close-to-optimal MAPF solutions for hundreds of
agents in seconds of computation time. Furthermore,we
demonstrate the benefits of our algorithms by applying
them to the navigation of drones and video characters.

∙ Safe execution of MAPF solutions: We study the
problem of handlingmotion delays when robots execute
MAPF solutions.We propose to use execution policies to
guarantee safe execution of MAPF solutions. These exe-
cution policies determine the correct timing for robots
to follow each step of a given MAPF solution. We show-
case how we have combined insights from this study
andMAPF techniques to win a railway scheduling com-
petition that was held at a top-tier machine learning
conference. We also develop a hierarchical framework
for generating and executing MAPF solutions for real-
world multirobot systems. This framework makes use
of an efficient procedure that accounts for kinematic
constraints of robots to transform a MAPF solution to a
continuous-time plan-execution schedule that is safe for
robots to execute. We demonstrate our framework using
different types of simulated and real robots.

∙ Combined target assignment and path finding: We
formalize and study a variant of MAPF, called com-
bined target-assignment and path finding (TAPF) (Ma

and Koenig 2016), that models the joint problem of (1)
which locations the robots go to next and (2) how the
robots go to the locations. The problem of TAPF is to
assign target vertices to multiple agents and move the
agents from their start vertices to their target vertices on
a given graph without collisions. We develop an optimal
TAPF algorithm that computes solutions for hundreds
of agents in minutes of computation time. We apply
our TAPF algorithm to solving the formation control
problem with teams of real robots.

∙ Long-term task and path planning: We formalize
and study an extension to MAPF and TAPF, called
multi-agent pickup and delivery (MAPD) (Ma et al. 2017).
MAPD models a long-term problem where a system
needs to repeatedly assign incoming tasks to a set of
agents and plan paths for the agents to the targets of
their assigned tasks.We develop complete and deadlock-
free MAPD algorithms for both online and offline
settings and techniques to account for kinematic con-
straints of robots when solvingMAPD. These algorithms
made decisions for hundreds of agents and thousands
of tasks in seconds of computation time. We applies
our techniques for solving MAPD to automated parcel
sortingwithwarehouse robots and demonstrate the ben-
efits of our techniques on an industrial simulator with
real-world data.

IMPROVEDMAPF ALGORITHMS

Modern large-scale real-world multi-agent systems such
as the automated fulfillment and sortation centers con-
structed by Amazon (Wurman, D’Andrea, and Mountz
2008) and Alibaba (Kou et al. 2020) require solving MAPF
efficiently, namely, planning high-quality paths for hun-
dreds of agents in a short computation time. However,
it is NP-hard to solve MAPF optimally (Surynek 2010;
Yu and LaValle 2013c). In our theoretical study (Ma
et al. 2016), we further prove that MAPF is NP-hard to
approximate within any constant factor less than 4/3 for
makespan minimization by a reduction from a special-
ized NP-complete version (Tovey 1984) of the Boolean
satisfiability problem.
Nevertheless, a state-of-the-art MAPF algorithm, called

Conflict-Based Search (CBS) (Sharon et al. 2015) can com-
pute optimal MAPF solutions for dozens of agents in a few
minutes of computation time. CBS is a two-level combina-
torial search algorithm. It first finds individually optimal
paths for all agents (ignoring collisions). On the high level,
CBS performs a best-first search to resolve each collision
of the computed paths by imposing constraints on both the
agents involved in the collision. The constraints forbid the
agents from occupying a vertex or traversing an edge at a
given time step. On the low level, CBS uses an A* search in
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both the space and the time dimensions to find a path for
an agent that obeys its constraints. The high-level search
of CBS branches on which collision to resolve.
We have explored three directions to make CBS more

efficient. First, we have developed admissible heuristics
for the high-level best-first search of CBS to significantly
reduce the size of the search tree (Felner et al. 2018; Li
et al. 2019). Experimental results show that the resulting
algorithm CBSH (Li et al. 2019) is up to 50 times faster
than CBS and can thus compute solutions for up to 3 times
more agents than CBS within 1 min of computation time.
Second, we have proposed a high-level branching rule for
CBS called disjoint splitting (Li et al. 2019). Disjoint split-
ting guarantees that CBS solution spaces explored under
the child nodes resulting from each node expansion are
disjoint, thereby reducing duplicate search effort. Exper-
imental results show that CBS with disjoint splitting is up
to two orders of magnitude faster than CBS. Third, we
have developed several techniques (Li et al. 2019, 2020,
2021) to tackle “pairwise path symmetry,” which occurs
when two agents each has multiple paths of the same
cost but any paths of the two agents are pairwise incom-
patible since they result in collisions. Our recent work
(Li et al. 2021) experimentally demonstrates that the com-
bination of several of the above directions result in an
improved version of CBS that is up to four orders of mag-
nitude faster than CBS and can thus compute solutions
for up to 30 times more agents than CBS within 1 min of
computation time.
We have also explored five directions to make MAPF

algorithms more suitable for practical applications of
large-scale multi-agent systems. First, we have developed
an anytime bounded-suboptimal version of CBS (Cohen
et al. 2018) that can be stopped at any time and return a
MAPF solution with a guaranteed suboptimality bound.
The suboptimality bound become smaller as the algorithm
runs longer. Second, we have developed prioritized-based
search (PBS) (Ma et al. 2019), a MAPF algorithm that
searches in the space of all possible orderings of agents.
PBS is a two-level algorithm similar to CBS but performs
a depth-first search on the high level. Unlike CBS, PBS
is suboptimal and complete only for a realistic family of
MAPF instances. However, empirical study shows that
PBS always returns close-to-optimal solutions (with a cost
no more than 105% of the optimal cost) in our experimen-
tal setting and can compute solution for 600 agents in half
a minute of computation time. Third, we have addressed
the MAPF problem where a deadline is given for agents to
reach their target vertices (Ma et al. 2018b, 2018a). We have
developed an integer linear programming-based algorithm
and a CBS-based algorithm that both maximize the num-
ber of agents reaching target vertices before the deadline.
Fourth, we have addressed the MAPF problem for large-
size agents with different geometric shapes and volumes of

agents (Li et al. 2019). We tackle this challenge by allowing
each agent to occupy more than one vertex and generaliz-
ing the definition of collisions since the agent can intersect
with multiple vertices and edges at each time step. We
have developed a version of CBS to solve this problem opti-
mally and demonstrate it for the navigation of a drone fleet.
Fifth, we have shown how a combination of swarm-based
approaches from the robotics community and an adapted
version of CBS can be applied to the navigation of multi-
ple game characters that needs to keep a desired formation
while moving (Li et al. 2020). This adapted version of CBS
balances between the makespan and the cost of deviating
from the desired formation.

SAFE EXECUTION OFMAPF SOLUTIONS

MAPF algorithms can be used to compute collision-
free paths for multiple agents in real-world multi-agent
systems. However, real-world agents such as warehouse
robots cannot perfectly execute the computed solutions,
namely following their paths, since they can be delayed
unexpectedlywhen theymove, they have unmodeled kine-
matic constraints (for example, they do not move at the
same speed), and so forth existing AI research has not
studied how the agents can safely execute the computed
MAPF solutions.
In our recent work (Ma, Kumar, and Koenig 2017), we

study a variant of MAPF where each agent is delayed
and stays in its current vertex with a given probability
whenever it intends to move to another vertex during
plan execution. We propose several decentralized execu-
tion policies to guarantee safe execution ofMAPF solutions
under such delay uncertainty. Decentralized execution
policies use a GO or STOP command to control, at each
time step, whether an agent should follow its planned path
to move to the next vertex or not. For example, a naive
policy is to move all agents in locked time steps accord-
ing to a given MAPF solution, namely it stops all other
agents if an agent is delayed, which requires all agents
to communicate with each other at every time step. We
proposed minimal communication policy (MCP) to make
the execution more efficient. The key idea of MCP is to
respect the precedence constraints that, if two different
agents visit the same vertex, they have to visit it in the
same order as specified by the givenMAPF solution. To do
so, MCP constructs a directed acyclic graph whose nodes
represent events of agents visiting vertices and whose arcs
represent precedence constraints. During execution, MCP
thus stops an agent only when a precedence constraint
is not satisfied until it receives a signal from another
agent for the constraint. MCP also attempts to minimize
the number of arcs between events of different agents,
namely precedence constraints between agents, and thus
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the communication cost. Furthermore, we have developed
a version of CBS that computesMAPF solutionswith small
expected makespan for given delay probabilities, assum-
ing that MCP is used for plan execution. In our most
recent work (Li et al. 2021), we combine MAPF algorithms
and MCP to develop a software that won the NeurIPS-
20 Flatland Challenge1, a railway scheduling competition,
which was held in partnership with German, Swiss, and
French railway companies. Our software uses automated
planning and combinatorial search techniques only but
outperformed all other entries, including all reinforcement
learning entries, to win overall first place in both rounds
of the competition in the top machine learning confer-
ence NeurIPS 2020. The problem in the competition is
a MAPF variant similar to above where the agents can
be stopped at a random time step for a random duration
during plan execution.
We have also extended the above idea to a hierarchi-

cal framework (Ma et al. 2017) for plan generation and
execution to account for kinematic constraints of agents
during planning and other system dynamics during plan
execution. This framework uses a post-processing proce-
dure calledMAPF-POST (Hönig et al. 2016) that transforms
a MAPF solution into a plan-execution schedule in con-
tinuous time using a simple temporal network (STN). The
STN is also directed acyclic graph similar to the one con-
structed by MCP. The STN takes into account important
kinematic constraints such as various edge lengths, differ-
ent agent sizes, and translational and rotational velocity
limits of agents by representing the kinematic constraints
as temporal constraints between agents, which are arcs
annotated with time bounds in the directed acyclic graph,
in the computation. The resulting plan-execution schedule
guarantees a user-specified safety distance among agents
and avoids replanning, namely resolving MAPF problems,
in many cases during execution. We have verified our
framework using different types of simulated and real
robots. The pipeline of our framework is as follows. First,
our framework runs an optimal MAPF algorithm such
as CBS to compute a MAPF solution. Second, it then
uses MAPF-POST to construct an STN that transforms
the MAPF solution into a plan-execution schedule, which
specifies the expected execution time when a robot should
arrive at each location. Third, all robots move along their
paths to meet the expected execution time at each loca-
tion. If the execution deviates from the plan in the third
step, the framework constructs a new STN based on the
real execution times and computes a new plan-execution
schedule for the rest of the plan. The framework needs
to perform the first step to replan, namely to solve a new
MAPF instance, only when MAPF-POST fails to compute
a plan-execution schedule in the second step. In prac-
tice, our experimental results show that the robots can

almost always execute the given MAPF solution safely
without replanning.

COMBINED TARGET ASSIGNMENT AND
PATH FINDING

Many real-world applications of multi-agent systems
require the coordination of not only path-planning oper-
ations but also target-assignment operations. For example,
an automated warehouse system needs to decide which
robots to deliver which parcels and on what routes the
robots should move. In our recent work (Ma and Koenig
2016), we formalize and study a variant of MAPF called
TAPF that couples the target-assignment and the path-
finding problems for multiple teams of agents. In TAPF,
agents are partitioned into teams and each team is given
the same number of target vertices as there are agents in
the team. The problem of TAPF is to assign the target ver-
tices of each team to agents in the same team and plan
collision-free paths for the agents to their target vertices so
that each agent reaches exactly one target vertex and each
target vertex is reached by an agent. Existing AI research
has considered only two extremes of TAPF. On one hand,
the special case of TAPF with one team of agents can
be solved optimally in polynomial time (Yu and LaValle
2013a) by solving a max-flow problem. On the other hand,
MAPF algorithms assume that each agent forms a single-
agent team, namely the agent is assigned the only target
vertex in its team. It remains unclear how and how well
one can solve the general case of TAPFwithmultiple teams
of agents.
Therefore, we have developed an optimal TAPF algo-

rithm called Conflict-BasedMinCost Flow (CBM) (Ma and
Koenig 2016). CBMbreaks TAPF down to theNP-hard sub-
problem of coordinating different teams of agents and the
polynomial-time solvable subproblems of coordinating the
agents in every team. It then tackles these subproblems by
using a combination of CBS for the NP-hard sub-problem
and a min-cost max-flow algorithm (Goldberg and Tarjan
1987) for the polynomial-time solvable subproblems. Our
experimental results demonstrate that CBM can compute
optimal TAPF solutions for more than 400 agents in min-
utes of runtime, showcasing its potential for large-scale
multi-agent systems. In our empirical study (Hönig et al.
2016), we verify CBMusing both simulated and real robots.
We demonstrate how CBM can be combined with MAPF-
POST to generate plan-execution schedules that allow for
the safe execution of TAPF on these real-world agents. We
apply the resulting techniques to solve a formation control
problem where drones in different colors move to desired
locations to display an English word in 3D space with each
letter in a unique color.



380 AI MAGAZINE

LONG-TERM TASK AND PATH
PLANNING

Agents in many multi-agent systems need to constantly
attend to new tasks after they finish their current tasks.
For example, a warehouse robot in an Amazon fulfillment
center (Wurman, D’Andrea, and Mountz 2008) needs to
pick up and deliver another inventory shelf after it finishes
delivering its current inventory shelf. Existing AI research
on MAPF and TAPF has focused mostly on one-shot prob-
lems only where each agent has one target vertex and the
agents stopmoving after they all reach their target vertices.
Therefore, in our recentwork (Ma et al. 2017), we formalize
and study MAPD that generalizes the one-shot problems
MAPF and TAPF to a long-term problem. InMAPD, agents
have to attend to a stream of incoming tasks. Each task
enters the system at an unknown time and is characterized
by two target vertices, namely a pickup vertex and a deliv-
ery vertex. A free agent, namely one that is currently not
executing any task, can be assigned an unexecuted task. To
execute the task, the agent has to firstmove from its current
vertex to the pickup vertex of the task, become occupied
and start to execute the task upon reaching the pickup ver-
tex of the task, and thenmove from the pickup vertex to the
delivery vertex of the task, while avoiding collisions with
other agents.
There are three benefits of modeling “pickup-and-

delivery” tasks that have an intermediate target vertex (the
pickup vertex) and a final target vertex (the delivery vertex)
each instead of “navigation” tasks that have only one tar-
get vertex each. 1. Modeling “pickup-and-delivery” tasks
results in a mix of both single-agent teams (each con-
sisting of an occupied agent) and a team of free agents,
while modeling “navigation” tasks results in only one
team of agents, which limits its generalizability. 2. The
resulting MAPD algorithms still apply directly to “naviga-
tion” tasks because each such task is a special case of a
“pickup-and-delivery” task with the pickup and delivery
vertices being the same vertex. (c) Modeling “pickup-and-
delivery” tasks also makes it easy to explain the resulting
MAPD algorithms, even though these algorithms can eas-
ily be generalized to cases where the tasks have multiple
(ordered) intermediate target vertices and a subsequent
final target vertex each.
We have considered an online setting (Ma et al. 2017)

of MAPD where tasks can enter the system at any time
and are not known until they have been added to the
system. We develop decentralized and centralized MAPD
algorithms that are deadlock-free. The key idea of these
online MAPD algorithms is to decouple the long-term
problem of MAPD into a sequence of one-shot subprob-
lems at each time and repeatedly apply task-assignment,
MAPF, and TAPF algorithms to these subproblems. Exper-

imental results show that these MAPD algorithms can
determine the tasks and paths for 500 agents in seconds
of computation time. We also demonstrate how one of
our MAPD algorithms can account for kinematic con-
straints of robots directly during planning (Ma et al. 2019)
in an online setting. The resulting algorithm can com-
pute an executable solution for 30 min of operation of 250
robots and 2000 tasks in less than 10 s of computation
time, which is more efficient than using MAPF-POST in
a post-processing phase.
We have also considered an offline setting (Liu et al.

2019) of MAPD where all tasks are known a priori, thus
affording opportunity to optimize the order in which
agents execute tasks. We develop an offline MAPD algo-
rithm that models the task scheduling problem as a
specialized asymmetric version of the Traveling Sales-
man problem to compute a chronologically ordered task
sequence for each agent. Experimental results show that
the offline MAPD algorithm can compute solutions where
agents finish all tasks by up to 46% sooner than online
MAPD algorithms.
Finally, we have applied MAPD algorithms to an appli-

cation of parcel sorting with warehouse robots in an
automated sortation center (Kou et al. 2020) where the
robots need tomove to sorting stations to obtain an express
parcel and deliver it to a correct sorting bin associated with
the postal code of the shipping address of the parcel. A
machine in each sorting station scans the shipping address
of a parcel, determines the sorting bin the parcel should
be delivered to, and load the parcel onto a robot as long
as there are robots waiting in the queue of the sorting sta-
tion. Our goal is to optimize the idle time of the sorting
stations, namely the duration when there are no robots
queuing, since it is often the throughput bottleneck of such
automated sortation centers. The problem is to assign sort-
ing stations to robots that are not delivering parcels and
plan paths for all the robots. We develop an algorithm that
solves the TAPF subproblem for robots that are not deliv-
ering parcels and solves the MAPF subproblem for robots
that are delivering parcels. We test our algorithm using an
industrial simulator with real-world data of online orders.
Experimental results show that our algorithm can make
decisions for 350 agents in nomore than 2 s of computation
time and improve throughput (measured in the average
number of parcels obtained by robots per second) of a
sortation center by up to 12%.

SUMMARY

We described our research on using intelligent plan-
ning techniques to tackle multi-agent coordination
problems. We outlined four directions that generalize
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task-assignment and MAPF research to real-world appli-
cations of large-scalemulti-agent systems. For our ongoing
research, we are currently developing a deeper theoretical
understanding of using MAPF algorithms for long-term
autonomy of such systems (Ma 2021), a learning-based
distributed MAPF algorithm (Ma, Luo, and Ma 2021),
and algorithms that can jointly solve MAPF and complex
task-planning problems (Zhong et al. 2022; Xu et al. 2022).
We hope that researchers working in this area can benefit
from the insights provided in this article.
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