
Received: 2 June 2022 Accepted: 13 June 2022

DOI: 10.1002/aaai.12073

ARTICLE

Hierarchical planning and reasoning about partially
ordered plans—From theory to practice

Pascal Bercher

School of Computing, College of
Engineering, Computing and Cybernetics.
The Australian National University,
Canberra, Australia

Correspondence
Pascal Bercher, School of Computing,
College of Engineering, Computing and
Cybernetics, The Australian National
University, Canberra, Australia.
Email: pascal.bercher@anu.edu.au

*The respective invited talk is available at
https://slideslive.com/38952027/
hierarchical-planning-and-reasoning-
about-partially-ordered-plans-from-
theory-to-practice

Abstract
This invited paper (part of the New Faculty Highlights Invited Speaker Program
of AAAI’21*) surveys my work done until today. The reviewed work focuses on
hierarchical task network (HTN) planning as well as on partial order causal link
(POCL) planning. Lines of research include theoretical investigations (mostly
computational complexity analyses), heuristic search, as well as the practical
application of the technology for planning-based assistants, which support a
human user in carrying out various tasks.

INTRODUCTION

AI planning is a general problem solving technique that
can be deployed for autonomously solving a wide range
of different problems (Ghallab, Nau, and Traverso 2004,
2016). This article surveys most of my work done in
that field, which encompasses various kinds planning
paradigms, as well as research areas that span from theory
to practice.

Involved problem classes

Classical planning (Ghallab, Nau, and Traverso 2004) is
concerned with the evolution of states. A state is simply
a finite set of facts, that is, properties currently being true
in the world that’s being planned for. Assume you want to
plan the setup of a complex home theater, where differ-
ent hifi devices had to be connected by different cables,
adapters, and the like. Each available object is repre-
sented by a constant, like HDMI-cable1, HDMI-cable2,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. AI Magazine published by Wiley Periodicals LLC on behalf of the Association for the Advancement of Artificial Intelligence.

or Amplifier. Relying on a restricted first-order logic,
predicates are used to express properties. For example,
Connected(HDMI-cable2, Amplifier) describes that
the cable HDMI-cable2 is connected with the amplifier.
States are then sets of such predicates thereby describing
all properties, which are currently true in the respective
state. Classical planning problems are about finding the
right sequence of actions (selected from a set of available
actions) to transform the initial state into one in which
all desired properties hold. In the example application,
actions may be plugging in or plugging out specific cables
into specific ports of the available devices. Not every action
is applicable in every state, so for example neither can
an HDMI cable be plugged into a port that already has
another cable inside, nor into a (free) port of a wrong
kind, such as cinch. To express this, actions have precon-
ditions, which are sets of predicates that must be true (or
false if they are negated) in the state to which the respec-
tive action is applied. Their effects, again sets of possibly
negated predicates, specify how states are changed due to
action application.

AI Magazine. 2022;43:353–364. wileyonlinelibrary.com/journal/aaai 353



354 AI MAGAZINE

In the scenario above, finding a plan that solves the prob-
lem (in this case, the successful setup of the system, so that
every device gets the required signals via connecting them
to each other using the right cables) is relatively easy. The
reason is that there is not a reason to ever apply any action
twice. Once a cable is plugged in somewhere it does not
have to be plugged out again (unless during plan execu-
tion something can go wrong, or new information can be
obtained, but in this work, we assume full observation and
a deterministic world), which means that we only need
to find the right selection of actions. Even the order in
which actions are applied is not important for the success
of the plan in our example, although different ordersmight
be differently intuitive when a user is being instructed to
execute them (this is also a research question addressed
later). Whatmakes planning hard in general is that actions
may have to be applied multiple times (to different world
states) and that it is not clear which or how many actions
have to be applied when to solve a problem. To solve
problems efficiently, heuristic search is often applied (one
of the areas to which contributions are surveyed later).
Another way of coping with the complexity of planning
problems is using a different kind of planning paradigm,
hierarchical planning.
In hierarchical planning (Ghallab, Nau, and Traverso

2004; Bercher, Alford, andHöller 2019), we still use actions
as described above, but in this context, they are called
primitive tasks. They are called primitive to emphasize that
they are the most “atomic” or “simple” form there is, par-
ticularly that they can be executed in the world. That is
because hierarchical planning now also features a second
kind of action/task, which the literature refers to as either
abstract, complex, or compound. We use the latter termi-
nology, that is, compound tasks. They are called that way
because they are literally “compound” placeholders for
other tasks, whichmay be either compound again or prim-
itive. So in a sense each compound task can be regarded a
macro as it will be substituted by some other tasks, prede-
fined in the model. This defines a possibly cyclic/recursive
hierarchy among all tasks. For example, Figure 1 shows
how a (recursive) task hierarchy in the domain sketched
above.
The figure shows a compound task at the top,

connect(?𝑑𝑠𝑜, ?𝑑𝑠𝑖), representing the abstract activity
to connect the source device ?𝑑𝑠𝑜 with a sink device
?𝑑𝑠𝑖 . The questionmarks are used to indicate variables
in contrast to concrete constants such as Amplifier.
There are two possibilities how these two devices could
be connected. Either directly by plugging in a cable right
in between them—this is depicted on the left, where
two primitive tasks (i.e., actions) are used to plug in the
two ends of the respective cable. An alternative, shown
on the right, is to establish this connection via another

F IGURE 1 A compound task at the top with two
decomposition methods. The method on the left contains two
primitive tasks (their preconditions and effects have been omitted),
and the one on the right contains two compound tasks. (Bercher,
Alford, and Höller 2019, Figure 1). Copyright: International Joint
Conferences on Artificial Intelligence, Proceedings 2019,
IJCAI.ORG. All rights reserved. Reproduced by permission

device in between, called intermediate device ?𝑑𝑖𝑛 in that
figure. The two involved tasks, connect(?𝑑𝑠𝑜, ?𝑑𝑖𝑛) and
connect(?𝑑𝑖𝑛, ?𝑑𝑠𝑖) are again compound because there
could be yet other devices in the middle. This model
makes sense because we could rely on combinations of
adapters and cables (also regarded devices), or because of
other devices in between. For example, we could provide
a television with a video signal from a blu-ray player, but
by going through an audio/video amplifier in between.
We thus see that hierarchical problem modeling gives

more control on plans as this task hierarchy must be
adhered during plan generation—similar to formal gram-
mars (Höller et al. 2014). It thus provides a means to
domain modelers to model expert knowledge on how var-
ious tasks may be solved. Seemingly paradoxically, this
control over possible plans also makes the problem com-
putationally more complex and allows the specification of
problems that could not be modeled without a task hier-
archy. Therefore, heuristic search is also deployed in this
paradigm to speed up the solving process or to even find
a solution at all. Note that on top of advice and/or higher
expressivity, two further noteworthymotivations of using a
hierarchical planning paradigm are to simply have another
way of modeling problems (as in some applications, it
might be easier to encode a problem by means of “first do
X, then Y, then Z” instructions rather than by specifying
all state-based preconditions and effects), and to exploit
the hierarchy for conveying solutions on higher levels of
abstraction (as we will later see as well).

Investigated research questions and outline

My main contributions surveyed in this article are con-
cerned with both planning paradigms, classical and hier-
archical planning, though most results are achieved in
the latter.



AI MAGAZINE 355

Most results are concerned with theoretical investiga-
tions. In the realm of classical, nonhierarchical problems,
investigated questions are concerned with reasoning about
partially ordered plans, for example whether actions can
be removed without making the plan not executable any-
more, or whether a given nonsolution plan can be turned
into a solution. In the realm of hierarchical planning, ques-
tions mostly evolve around the so-called plan existence
problem, that is, the question whether a given planning
problem has a solution or not. These investigations aim
at determining the computational complexity of these
(and related) decision problems. The motivation behind
these investigations is manifold. Knowing the computa-
tional complexity of these problems provides us with a
deeper problem understanding; an idea for the selection
or design of algorithms to tackle the respective problem
as the complexity directly impacts algorithm time and
space requirements; possible problem reductions, which
enable the use of well-established problem solvers for dif-
ferent kinds of problems, such as SAT (satisfiability) or
ILP (Integer Linear Program) solvers for NP-complete
problems.
Still theoretical foundations but of amore applied nature

are my contributions to solving these problems efficiently.
In particular, in the area of hierarchical planning, I amcon-
cerned with algorithm and heuristic design that enables to
solve planning problems quickly via heuristic search.
Finally, my last line of research is the development

and deployment of planning-based technology that con-
tributes towards the successful application of planning in
practice. On top of plan generation via heuristic search,
such technology involves plan recognition (based on an
observed partial plan, which goals does the agent pursue?),
plan repair (how can a failed plan be fixed such that
the problem can still be solved?), plan linearization (in
which order should actions best be instructed to a human
user?), and plan explanation (why is a certain action in the
plan?). Many of these technologies have been deployed
in two implemented systems: We implemented an assis-
tance system that supports a human user in the task
of assembling a home theater by providing a detailed
sequence of step-by-step instructions. In cooperation with
Robert Bosch GmbH, we created a follow-up system
that assists handymen in the execution of do-it-yourself
(DIY) projects.
The article is structured as follows: The next sec-

tion covers the investigated problem classes in a bit
more detail, and lays out some of my concrete con-
tributions. The rest of the article follows the outline
from above: Section 3 covers my research on theoretical
foundations, Section 4 covers heuristic search, and Sec-
tion 5 gives some overview about the two planning-based
assistants.

F IGURE 2 Example POCL plan that is not yet a solution due
to a missing causal link (Bercher and Olz 2020, Figure 1)

PROBLEM FORMALIZATION

In the Introduction, we already provided the core con-
cepts of the problem classes used throughout this article.
Here, we provide slightly more technical definitions and
point towards specific contributions related to the prob-
lem classes.

Classical planning and POCL plans

We already covered classical planning problems, which
require to find a plan—a sequence of actions that turns the
initial state into a state in which all desired goal properties
hold. Many of my contributions are, however, concerned
with partial order causal link (POCL) planning (Weld
1994), which evolves around partially ordered plans. Here,
plans are not totally ordered action sequences, but only
partially ordered as for example shown in Figure 2. POCL
plans have several applications, but are mostly used today
for plan optimization techniques (Siddiqui and Haslum
2015; Muise, Beck, and McIlraith 2016; Waters et al. 2018;
Waters, Padgham, and Sardina 2020).
POCL plans do not only differ from action sequences in

having only a partial order defined amongst actions, but
they are also more complicated in the way executability
is checked. Checking this for action sequences is trivial
as we have the initial state to check executability of the
first action, thenwe can easily compute the successor state,
check executability of the next action, and so on. In case of
a plan whose actions are only partially ordered, we do not
have states available and thus need anothermeans to check
executability. This is done via causal links.
A POCL plan is considered a solution when every pre-

condition is supported by a causal link and there do not
exist any causal threats. A causal threat is the situation
where an action that deletes a fact 𝑓 (the threatening
action) could be ordered in between two other actions
that share a causal link protecting 𝑓. If such a situation
occurs, it cannot be guaranteed that the respective causal
link “does its job,” which is ensuring that the precondition
𝑓 will hold when it is required. Such a situation can be
resolved bymoving the threatening action before the link’s



356 AI MAGAZINE

producer, or moving it behind the link’s consumer. POCL
solution plans have the property that every linearization
(i.e., every total order that is compatible with the ordering
constraints) is an executable action sequence that satis-
fies all goals. Such plans can, therefore, encode up to an
exponential number of linearizations in just a single plan.
When considering the example in Figure 2, we see that

it is not yet a solution since one causal link is still miss-
ing. Adding such a causal link will then, however, raise a
causal threat that needs to get resolved. For example, if the
link protecting 𝑃 of the goal is added using𝑤1 as producer,
then 𝑠2 (which is currently not ordered w.r.t. 𝑤1) is threat-
ening that causal link and must thus be ordered before
𝑤1 to resolve that causal threat. Afterwards, the respec-
tive plan is a solution. This example shows that causal links
are overly restrictive, since in this case, this causal threat
is actually not an issue: Even though 𝑠2 threatens the link
produced by 𝑤1, the action 𝑤2 would repair it again. The
causal threat criterion still forces us to add an ordering
constraint thus reducing the set of linearizations that can
be obtained.

HTN planning

Hierarchical planning centers around the idea of prob-
lem decomposition. There are many different variants,
some decompose tasks, others decompose goals (facts)—
an overview is given in a recent survey of the field (Bercher,
Alford, and Höller 2019). In this work, we focus on the
decomposition of tasks, the most influential formalization
of which is hierarchical task network (HTN) planning by
Erol, Hendler, and Nau (1996).
The high-level introduction to hierarchical planning

given in Introduction was to HTN planning—so we know
already the most basic concepts. A bit more formally, an
HTN planning problem consists of: A set of primitive tasks
(those are the actions as we have seen them in classical
planning and graphically illustrated in Figure 2); a set of
compound tasks and for each a set of decompositionmeth-
ods, each stating by which predefined plan its compound
task may be replaced by—hence the name “compound”
as each such task can be interpreted as the combination
of all tasks in either of its methods; and an initial set of
compound or primitive tasks.
The goal of an HTN planning problem is to refine all

initially given compound tasks into a primitive executable
plan. So the hardness arises from choosing for each com-
pound task in a current plan such a method that will
eventually contribute towards finding a primitive plan
whose actions allow the plan to be executed. Formally,
the respective primitive plan must possess an executable
action linearization.

An important contribution to the field of HTN plan-
ning was a novel formalization of HTN planning problems
(Geier and Bercher 2011), which became another accepted
standard (Bercher, Alford, and Höller 2019). Apart from
its simplicity, a major plus compared to the original by
Erol, Hendler, and Nau (1996) is that it makes the solution
criteria explicit that clearly and declaratively state under
which circumstances a plan is regarded a solution to an
HTN problem. Simplicity of the problem was achieved
by removing some constraints that are available in the
original formalism, and also by choosing a propositional
formalism. In Introduction and as illustrated in Figure 1,
we were explaining that states and thus action precondi-
tions and effects are defined based on a first-order logic,
where facts are formalized as predicates. Formalizations
do, however, get significantly simplified if just proposi-
tional symbols are allowed, such as 𝑃, 𝑄, and 𝑅, as used
in our introduction to POCL plans.
Whereas formalization, proofs, and algorithms can

be described (and understood) much more easily in
a propositional formalism than one based on a first-
order logic, actual problems (e.g., for a benchmark set)
are still described in terms of the latter. For this we
developed HDDL, the hierarchical domain description
language (Höller et al. 2020). It was also used as the
official description language for the International Plan-
ning Competition (IPC) on Hierarchical Planning that we
carried out in 2020 (see ipc.hierarchical-task.net). Prob-
lems described in such a way can then be turned into a
propositional one via grounding, where—conceptually—
each variable is replaced by an appropriate constant.
The actual technique does, however, perform various
reachability analyses that eliminate groundings that can
provably never contribute towards finding a solution
(Behnke et al. 2020).

TIHTN planning

In HTN planning, the only means to change a plan is
by decomposing one of its compound tasks by replacing
it by one of its methods, specifically by the plan of the
respective method. This requires careful domain model-
ing as the HTN model must be designed in a way that
all desired solutions can be found by strictly adhering the
task hierarchy.
For example, when going back to the example shown

in Figure 1, it becomes apparent that without the method
on the right, we could only connect two devices with
exactly one cable in between. This, for example, precludes
solutions where multiple cables have to be connected
via adapters. So designing an HTN model that allows to
generate all intended solutions is not exactly trivial.



AI MAGAZINE 357

In some cases, it might be easier to write a model that is
only partially hierarchical (Kambhampati, Mali, and Sri-
vastava 1998) in the sense that certain parts of desired
solution plans do not have to be found by strictly adher-
ing the task hierarchy, but instead by arbitrary (primitive)
task insertion, just as in classical planning where there is
no restriction on “allowed” action sequences other than
allowing only executable ones (a requirement still present
in HTN planning).
Another major contribution of mine is thus the formal-

ization of a hierarchical problem class where such action
insertions are permitted. The resulting framework is called
HTN planning with task insertion—or (TIHTN) planning
(Geier and Bercher 2011; Alford, Bercher, and Aha 2015b).

THEORETICAL INVESTIGATIONS

Much of my work is concerned with the theoretical analy-
sis of planning problems. Most notably, this involves the
investigation of the computational complexity of impor-
tant decision problems, such as the plan existence problem
(“Does the current problem have a solution?”) or about
change requests (“Can we perform change 𝑋 and still
maintain property 𝑌?”), which have been done for all
problem classes.

Complexities for POCL plan existence

The question we are interested in is to know whether a
given POCL plan can be turned into a solution by adding
additional actions, causal links, and ordering constraints.
Standard classical planning problems are well-known to

be PSPACE-complete (Bylander 1994). In such problems,
we check plan existence from an initial state rather than
from some POCL plan. But having to deal with some addi-
tional initial actions, causal links, and orderings does not
make this harder, so the POCL plan existence problem
is also PSPACE-complete (Bercher 2021). The computa-
tional complexity of special cases was also investigated,
for example, when all actions have only positive effects
but no negative ones. Such special cases are of interest
because they can be created, for example, by just ignor-
ing all negative effects, although they are in the model
(this is called delete-relaxation). This is desirable if the
respective relaxation/special case is of lower computa-
tional complexity than the original problem as heuristics
can them as exploit them due having a lower runtime.
This is the case as our investigations show complexities
of poly-time or NP, depending on the chosen relaxation
(Bercher 2021).

Complexities for HTN plan existence

Erol, Hendler, and Nau (1996) proved that HTN planning
is expressive enough to encode undecidable problems.
They did so by showing that the (undecidable) language
intersection problem of two context-free grammars can be
encoded by an HTN planning problem. We reproduced
their result for our formalism thus showing that their
result still holds despite our simplifications (Geier and
Bercher 2011).
The comprehensive complexity study by Erol, Hendler,

and Nau (1996) does not just show the hardness of the gen-
eral case, but also several important special cases, namely,
acyclic problems (shown to be decidable)—these are prob-
lems where the task hierarchy does not allow recursion,
so no compound task can introduce itself again. Totally
ordered problems (shown to be in EXPTIME)—these are
problems where the initially given tasks as well as those
in all methods are totally ordered task sequences. Regu-
lar problems (shown to be PSPACE-complete)—these are,
similar to right-regular formal grammars, problems where
the plans in decomposition methods may only have at
most one compound task, which then has to be the last
one. The results above are for a propositional setting. In
case of first-order formalization with variables complexi-
ties are one exponential factor harder (Erol, Hendler, and
Nau 1996).
Tight bounds for all these special cases (and their combi-

nations) were shown by Alford, Bercher, and Aha (2015a).
Tight bounds were also shown for tail-recursive problems,
a novel generalization of regular HTN problems, identi-
fied by Alford et al. (2012). Tail-recursive problems are a
generalization of regular problems and the computation-
allymost expensive (and thusmost expressive) special case
currently known to be decidable. Due to its decidability,
problems adhering these syntactical restrictions can be
compiled into classical planning problems (Alford et al.
2016).
Directly motivated by the design of heuristics, we also

investigated the complexity of delete-relaxed HTN prob-
lems with empty ordering constraints. We showed this
problem to be NP-complete (Höller, Bercher, and Behnke
2020), which is in line with results by Alford et al. (2014)
who showed it for delete-relaxed HTN problems (i.e.,
without the relaxation of ignoring all ordering constraints).

Extensions

We also conducted complexity investigations for the plan
existence problem of two extensions of the HTN formal-
ism introduced.



358 AI MAGAZINE

One is referred to as hybrid planning (Kambhampati,
Mali, and Srivastava 1998; Bercher et al. 2016; Bercher, Lin,
and Alford 2022), which combines HTN planning with
POCL planning. In a nutshell, compound tasks specify
preconditions and effects, which are used to pose con-
straints on decompositions methods, which now may also
contain causal links. These constraints are used to make
sure that methods “implement” the modeler’s intent of
the compound task. We showed that these constraints do
not change the formalism’s expressiveness in terms of plan
existence complexity (Bercher et al. 2016; Bercher, Lin, and
Alford 2022).
The second is an extension of deterministic actions to

nondeterministic ones (Chen and Bercher 2021, 2022).
In this setting, we are usually interested in generating a
plan that can be executed no matter the nondeterminis-
tic outcome. We proposed various ways on when actions
are selected for execution from primitive solution plans:
offline before plan execution or online after we witnessed
the effects of the action executed last. While the latter is
more flexible, it comes with higher computational costs.

Complexities for landmarks and compound
tasks’ implications on states

Landmarks and TDGs.
In recent work, we investigated the complexity of deciding
whether a given fact, task, ormethod is a landmark (Höller
and Bercher 2021). Landmarks are an important concept in
planning as landmark information may be exploited both
by algorithms and heuristics. A landmark fact is a fact that
has to be true at some point during plan execution for any
solution. Likewise, a primitive task landmark is an action
that is contained in any solution. A compound task land-
mark is a compound task that is eventually decomposed
for finding a solution. Likewise, a method is a landmark
if it has to be applied in order to find a solution. Checking
whether a fact, task, ormethod is a landmarkwas shown to
be in the co-class of the corresponding plan existence prob-
lem. This is because one essentially has to check whether a
slightlymodified problemdoesnothave a solution—which
is the co-version of a problem. To illustrate the concept
of landmarks, consider the so-called task decomposition
graph (TDG) that is illustrated in Figure 3.
The TDG is an AND/OR graph and a canonical data

structure in HTN planning that I formalized for the
exploitation of landmarks (Elkawkagy et al. 2012). But
since a TDG is a canonical structure representing a prob-
lem’s task hierarchy, it may also serve other purposes
such as the computation of nonlandmark-based heuris-
tics (Bercher et al. 2017) or for grounding an HTN model
(Behnke et al. 2020). The TDG is the extension of the

F IGURE 3 A task decomposition graph (TDG) of an HTN
planning problem. The primitive task 𝑡3 is a landmark, as well as the
compound task 𝑡4. Since the only way to refine 𝑡4 into a primitive
task network is using𝑚5, this method and its primitive task 𝑡9 are
also landmarks.

task decomposition tree (TDT) (Elkawkagy, Schattenberg,
and Biundo 2010) that can also represent task recursion
without becoming infinite. That is, in the absence of recur-
sion, the TDGs and TDTs coincide, though Elkawkagy,
Schattenberg, and Biundo (2010) did not provide a for-
mal definition for the TDT yet. TDGs contain two kinds
of nodes: task nodes for the primitive and compound tasks
as well as method nodes representing the decomposition
methods. Figure 3 uses connectors for method nodes to
indicate that all tasks within a method have to be dealt
with (i.e., applied to a state or decomposed further). TDGs
are finite structures since recursion just results in the addi-
tion of another edge to an existing node (thus making the
graph cyclic), it will not create another instance of said task
as it would during planning. TDGs can be built starting
from the initial tasks (here just 𝑡1) until all tasks that are
reachable via methods have been included. While some
landmarks can be inferred and computed efficiently (in
polynomial time) as illustrated in the example TDG, in
general, this deduction is as hard as solving the problem
itself. This should not be hard to see: for example, task 𝑡6
becomes a landmark only if method 𝑚1 will not be suc-
cessful for turning 𝑡1 into a primitive executable plan. This,
however, resembles solving the planning problem where
𝑚2 was removed and checking whether it has a solution.

Preconditions and effects of compound tasks.
Somehow related to the concept of landmarks is some
of our more recent work on preconditions and effects of
compound tasks (Olz, Biundo, and Bercher 2021). Recall
that the purpose of compound tasks is just to get replaced
by the plan of the chosen decomposition method. So in
contrast to their primitive counterparts, they do not have



AI MAGAZINE 359

any preconditions or effects. Yet sometimes we can infer
some state information anyway, for example, when each
method of a task always adds a fact 𝑓, but never deletes
in, then we know that 𝑓 can be regarded an “inferred
effect” of said task. Generally, such inferred effects are
state properties that will hold true after the last task
resulting from the decomposition was executed, no mat-
ter what method was chosen. (preconditions were defined
similarly.) The results turned out to be the same as for
landmarks: Determining whether a fact is precondition
or an effect is as hard as solving the respective planning
problem itself (Olz, Biundo, and Bercher 2021). How-
ever, we also identified a problem relaxation that allows
computing some of these preconditions and effects in
polynomial time.

Complexities for TIHTN plan existence

When we developed the TIHTN formalism, we were
primarily interested in the question whether the frame-
work maintains its undecidability when we are allowed
to insert tasks. In short: no, TIHTN planning is decid-
able (Geier and Bercher 2011). To be more precise, we
showed that due to task insertion, we will never have to
use cyclic decompositions because we can instead just rely
on task insertion.
To illustrate, consider the planning model visualized in

Figure 3 once more. Assume 𝑚2 is a landmark, so it will
be used. Further assume that for making tasks 𝑡5 and 𝑡6
executable, we will have to introduce task 𝑡10. This means
that—when using HTN planning—we will first decom-
pose 𝑡4 using 𝑚6 into 𝑡10 and 𝑡4 again, and then, we
apply 𝑚5 to turn 𝑡4 into the primitive task 𝑡9. We thus
had to rely on the cyclic model to generate a solution. In
TITHN planning that is not required, we could have just
used 𝑚5 directly and added the required 𝑡10 using task
insertion instead.
Based on this observation, we conducted a comprehen-

sive complexity analysis of all the special cases for HTN
planning outlined before (Alford, Bercher, andAha 2015b).

Complexities of change requests

POCL planning

Each POCL solution is a compact representation of an up
to exponentially large number of totally ordered plans—
each of which is a solution to the underlying classical
planning problem. Such solutions do not need to be
locally optimal, however, which means that one or more
actions could potentially be removed without making it

invalid. We thus asked the question how hard it is to
determine whether we can delete a single given action
from a solution plan and making it a solution again by
adding missing causal links and ordering constraints (Olz
and Bercher 2019). It turns out that this task is already
NP-complete.
In a follow-upwork,we investigated the problemof opti-

mizing a plan’s makespan (Bercher and Olz 2020), that is,
its execution time when exploiting parallelism. For exam-
ple, the POCL plan depicted in Figure 2 (even when the
missing link and ordering constraint would be added) has
a makespan of 2, since 𝑠1 and 𝑠2 can be executed in par-
allel as well as 𝑤1 and 𝑤2. The concrete modifications we
looked at is deordering, which means removing ordering
constraints. Ourmain result is that deciding whether there
exists a deordering of a given plan resulting in a makespan
of 𝑘 isNP-complete. If changing causal links is not allowed,
then deordering becomes decidable in polynomial time.

HTN planning

Also in the context of HTN planning, we were looking into
plan optimizations. Motivated by user requests, we inves-
tigated the computational complexity of checking whether
a certain change request to a given HTN solution plan can
be performed (Behnke et al. 2016). The main result is that
basically all changes (like adding or deleting an action or
an ordering etc.) are NP-complete. This result is actually
not surprising since Behnke, Höller, and Biundo (2015)
showed that just the verification whether a given task net-
work is a solution is already NP-complete (and we need to
check that the resulting plans after the change is again a
solution). If however 𝑘 changes are allowed (where 𝑘 is an
argument to the decision problem encoded binary), then
the problems turn NEXPTIME-complete.
A closely related question was investigated recently

(Barták et al. 2021), where we are again given a plan as an
input. This time, however, it is not a solution already—it
is just supposed to be a solution, but plan verification tells
that it is not, for example, because the plan cannot be pro-
duced by the task hierarchy alone. Sowewere interested in
deleting the minimal number of actions from the plan so
that the resulting (maximally long) plan is a solution. This
was shown to be NP-complete.
We also investigated the opposite case (Lin and Bercher

2021). Again we are provided with a plan that is not
a solution, but should. But instead of fixing the prob-
lem by changing the plan, we change the model. That
is, allowed operations are adding and removing actions
to decomposition methods. Despite restricting to a total-
order setting, the problems turns out to be NP-complete.
We also investigated the similar question for changing



360 AI MAGAZINE

actions’ preconditions and effects. The main result here is
that checking whether 𝑘 such changes exist is polytime-
decidable if we are allowed to change add effects, and
otherwise NP-complete.

HEURISTIC SEARCH IN HTN PLANNING

As explained inmore detail in our survey onHTNplanning
(Bercher, Alford, and Höller 2019), there are various stan-
dard algorithms for solvingHTNplanning problems.Many
of them are implemented within the PANDA framework
(Höller et al. 2021).
Our early work on heuristics is implemented in a plan

space-based hybrid planner (Bercher, Keen, and Biundo
2014), which is essentially a standard POCL planner
extended so that it can deal with task decomposition in
HTN planning. The planner is not maintained anymore,
so all more novel heuristics from 2018 and later are imple-
mented in a state-based progression planner (Höller et al.
2018, 2020) in the spirit of the famous SHOP2 system
(Nau et al. 2003). For the latter, we also proposed novel
variants of standard progression search that eliminate
redundant choice points during search thus producing
fewer redundant search nodes.

TDG- and landmark-based heuristics

Early work on domain-independent heuristics for HTN
planning centered around the computation of landmarks
(Elkawkagy et al. 2012; Bercher, Keen, and Biundo 2014).
This work focused on constructing a TDG (as the one
provided in Figure 3) and computed landmarks via tak-
ing the intersection of all decomposition methods that
belong to the same compound task. This method was how-
ever only able to identify task landmarks (i.e., method
and fact landmarks were not computed yet). Our most
recent work subsumes all these approaches, that is, even
restricted to task landmarks it finds a (not necessarily
strict) superset of landmarks although it only deploys
a poly-time landmark procedure (Höller and Bercher
2021). This procedure transfers a landmark extraction tech-
nique from classical planning to the HTN setting—also
by computing an AND/OR graph. We refer to our paper
for details. So far we only deployed a simple heuris-
tic based on these landmarks defined as the number of
landmarks, which are not yet fulfilled by the current
search node.
Also based on TDGs is a heuristic that (admissibly)

estimates for each task the size of the primitive plan
that can be achieved from it (Bercher et al. 2017). This
is a simple min/sum equation that sums over all tasks

in a decomposition method and chooses the cheapest
method per compound task. Even in the presence of loops,
these estimates can be computed in polynomial time. In
our example from Figure 3, the heuristic for 𝑡1 would
be 3, based on the (cheapest) method 𝑚1 producing a
relaxed plan consisting of 𝑡7, 𝑡3, and 𝑡9. (Choosing 𝑚2

would have resulted in an estimate of 4 using 𝑡3, 𝑡9,
𝑡5, and 𝑡6.) Task interaction is captured only in a lim-
ited way. Reconsider our example, where the only way
to make 𝑡5 and 𝑡6 executable is by adding 𝑡10. Still, the
heuristic is not able to detect this. Estimates are, how-
ever, improved upon search progress by rebuilding the
TDG during search thus ruling out decomposition meth-
ods (and thus parts of the tree) that are not available
anymore.

Compilation-based heuristics

Encoding into classical problems

We can observe that there are only a few heuristics avail-
able for HTN planning, yet many for state-based classical
planning. To exploit this situation, we proposed a compila-
tion that encodes each HTN search node into a (relaxed)
classical planning problem, so that we can use an exist-
ing classical heuristic as estimate instead (Höller et al.
2018, 2020). From a more abstract viewpoint, we encode
the TDG of the current search node as classical planning
problem. That is, we encode that a primitive executable
refinement of the current search node must be found,
while task repetition does not matter, that is, a compound
task is regarded decomposed if each subtask is executed
at least once. Note that here we have two relaxations: one
by the encoding into the classical problem and a further
one done by the deployed classical heuristic. This is in con-
trast to approaches (I was involved in) that compile the
entire HTN problem in a solution-preserving way into a
(sequence of) classical planning problem(s) (Alford et al.
2016; Behnke et al. 2022).

Encoding into (integer) linear programs

Section 3.2 mentioned that we proved NP-completeness of
delete- and ordering-free HTN problems (Höller, Bercher,
and Behnke 2020). In the same work, we exploit this
by encoding this problem into an ILP, one of the best-
known frameworks for efficiently solving NP-complete
problems. While this heuristic is also empirically the
most-informed one (resulting into the smallest search
space), it is not the best-performing one due to higher
runtime costs.



AI MAGAZINE 361

F IGURE 4 Back panels of the modeled amplifier (Bercher
et al. 2014, Figure 1)

PLANNING-BASED ASSISTANCE
SYSTEMS

Motivated by our research on Companion technology
(Biundo et al. 2016)—a technology enabling cognitive tech-
nical systems to behave as companions that provide their
functionality in a smart and adaptive way to their human
users—we conducted work on integrating various plan-
ning capabilities with dialog and interactionmanagement,
as well as a central knowledge base for the provision of
planning-based assistance (Biundo et al. 2011; Bercher et al.
2017).
The main ingredient for flexible assistance is to rely on

a planning model in the first place—that way plans can be
generated based on the current situation and thus made
highly adaptive. These plans are then provided to the user
in a step-by-step fashion so that he or she just has to fol-
low the presented instructions. Each instruction is in turn
generated automatically from the respective action. Due to
relying on planning models, plan repair may be applied
in case nonanticipated execution errors occur, and plan
explanation may be deployed to answer questions about
the plan that may come up at runtime. Two systems have
been implemented following this approach.

Assembly assistant

As a proof of concept of how the interaction of various
planning technologies can provide advanced assistance,
we implemented a system that supports in the task of
setting up a complex home theater (Bercher et al. 2014,
2015, 2018). In a fully general hifi assembly assistant, users
would be able to select the available hardware devices and
cables (only the ports are required, so image recognition
could do the job), but in our running system, we onlymod-
eled one specific scenario. Here, the home theater consists
of the four hifi devices illustrated in Figures 4 and 5.
In order to successfully use this system, the television

must receive the video signals of the satellite receiver and
the blu-ray player, and the amplifier must receive their
audio signals (since the speakers are connected to this

device). As can be seen due to the very high number of
different ports, this might be a quite challenging task, in
particular for nonexpert users.
This taskwasmodeled as a planning problem and solved

by our hybrid planner that combines HTN planning with
POCL planning (Bercher, Keen, and Biundo 2014; Bercher
et al. 2017).
Slightly simplified, required actions have the form illus-

trated in Figure 1, that is, plugIn(?𝑐, ?𝑐𝑝1, ?𝑑𝑠𝑜, ?𝑑𝑝𝑠𝑜). The
variables indicate the objects that the action refers to, that
is, the cable ?𝑐, its port ?𝑐𝑝1, the device 𝑑𝑠𝑜, and its port
?𝑑𝑝𝑠𝑜. This information is enough to render, automatically
at runtime, a graphical instruction complemented by a tex-
tual representation in text form. For example, a text can
be provided based on a schema like this: “Please plug the
[X] port of the [Y] cable into the [X] port of [Z].” We used
different variants of this so that the user does not get frus-
trated of always hearing the same. Since we kept images
of all involved hardware, the dialog management was able
to illustrate these instructions appropriately as shown in
Figure 6.
At any point in time, the user is able to report the cur-

rently used cable as being broken. If that happens, the
respective cable was marked as broken/unusable and a
new plan was found and presented user based on plan
repair (Bercher et al. 2014). The new plan incorporated the
already executed plan so that the user did not have to start
from scratch. Users are also able to ask about the purpose
of any executed step. Then plan explanation (Seegebarth
et al. 2012; Bercher et al. 2014) is initiated, which analyzes
the causal links in the plan as well as the task hierarchy
and exploits them to generate an explanation at runtime.
We also conducted an empirical evaluation about our sys-
tem in general and the impact of our plan explanations
in particular (Bercher et al. 2014, 2018). One of the longer
explanations presented in that evaluation (representing
the causal link structure of the presented plan) was “This
step serves the goal to transmit the video signal of the blu-ray
player to the TV. To this end, the video signal of the blu-ray
player is transmitted over the HDMI-to-DVI adapter and the
HDMI-to-DVI cable to the amplifier. From there, it is trans-
mitted over the video-cinch cable to the TV.” (Bercher et al.
2014).

DIY assistant

In cooperation with the Corporate Research Sector of the
Robert Bosch GmbH, we developed a successor of the pre-
vious system applied to the scenario of DIY handyman
support (Behnke et al. 2019; Bercher et al. 2021). Such DIY
tasks include renovating furniture or constructing some-
thing from scratch, like a bird nesting house or any other



362 AI MAGAZINE

F IGURE 5 Back panels of the modeled devices. From left to right: blu-ray player, satellite receiver, and television

F IGURE 6 An instruction of our assembly assistant (Bercher
et al. 2015, Figure 1, modified for enlargement)

F IGURE 7 An instruction in our DIY assistant (Bercher et al.
2021, Figure 4). Reprinted by permission from Springer: Nature.
KI—Künstliche Intelligenz. Do It Yourself, but Not Alone:
Companion-Technology for Home Improvement—Bringing a
Planning-Based Interactive DIY Assistant to Life. Bercher et al.
(2021)

hobby project. Working on such projects often involves
electric devices like drills or saws, where automated assis-
tance can show even more of its potential since it can
explain how these devices are to be used, remind of safety
procedures, or even communicate with devices directly to
inform the user about their internal states or wrong usage.
Assistance is again provided by a sequence of detailed

instructions, generated at runtime based on the current sit-
uation, that is, available tools and equipment like nails or
screws. An example instruction is shown in Figure 7.
In earlier work, we investigated how various compo-

nents of complex assistance systems (including the under-

F IGURE 8 Illustration of navigation among different levels of
abstraction of the assistant (Bercher et al. 2021, Figure 1).Reprinted
by permission from Springer: Nature. KI—Künstliche Intelligenz.
Do It Yourself, but Not Alone: Companion-Technology for Home
Improvement—Bringing a Planning-Based Interactive DIY
Assistant to Life. Bercher et al. (2021)

lyingHTNplanningmodel) can be represented in a central
ontology to allow for a coherent knowledgemodel (Behnke
et al. 2015). We again store certain parts of the model in
an ontology to enable automatic question answering about
certain background knowledge, e.g., why a certain kind of
saw blade is used and how to recognize it, or why we ask
to pre-drill (Behnke et al. 2019).
We exploit the model’s task hierarchy by allowing the

user to choose between different levels of abstraction
and navigate back and forth on all levels (cf. Figure 8).
Compound tasks were tasks like “Cut board into two
pieces”. This level of abstraction is appropriate for more
experienced users, but others might need more detailed
instructions. Reducing the abstraction level shows all
involved primitive substeps such as steps to set up the tools.
The example project we modeled is the creation of a

keyrack. We conducted a series of experiments with test
subjects over the course of the project, evaluating the assis-
tant’s various development stages (Behnke et al. 2019, 2020;
Kraus et al. 2020; Bercher et al. 2021). The last stages
included communication between the assistant and the
electric tools including pro-active dialogs (Kraus et al.
2020; Behnke et al. 2020).



AI MAGAZINE 363

CONCLUSION

This paper surveyed my work in the fields of POCL
planning as well HTN planning. It spans from theory to
practice, where most work done is on foundations of these
frameworks, in particular via complexity investigations
of various decision problems such as plan existence and
changes to plans or models. Work surveyed also includes
heuristic search aswell as the application of the technology
to two planning-based assistance systems.

CONFL ICT OF INTEREST
The author declares that there is no conflict.

ORCID
Pascal Bercher https://orcid.org/0000-0002-0795-4320

REFERENCES
Alford, R., G. Behnke, D. Höller, P. Bercher, S. Biundo, and D. Aha.
2016. “Bound to plan: exploiting classical heuristics via automatic
translations of tail-recursive HTN problems.” In Proceedings of the
ICAPS 2016, 20–8. AAAI Press.

Alford, R., P. Bercher, and D. Aha. 2015a. “Tight bounds for HTN
planning.” In Proceedings of the ICAPS 2015, 7–15. AAAI Press.

Alford, R., P. Bercher, and D. Aha. 2015b. “Tight bounds for HTN
planning with task insertion.” In Proceedings of the IJCAI 2015,
1502–8. AAAI Press.

Alford, R., V. Shivashankar, U. Kuter, and D. Nau. 2012.
“HTN problem spaces: structure, algorithms, termi-
nation.” In Proceedings of the SoCS 2012, 2–9. AAAI
Press.

Alford, R., V. Shivashankar, U. Kuter, and D. Nau. 2014. “On the fea-
sibility of planning graph style heuristics for HTN planning.” In
Proceedings of the ICAPS 2014, 2–10. AAAI Press.

Barták, R., S. Ondrčková, G. Behnke, and P. Bercher. 2021. “Correct-
ing hierarchical plans by action deletion.” In Proceedings of the KR
2021. IJCAI.

Behnke, G., P. Bercher, M. Kraus, M. Schiller, K. Mickeleit, T. Häge,
M. Dorna, et al. 2020. “New developments for robert—assisting
novice users even better in DIY projects.” In Proceedings of the
ICAPS 2020, pp. 343–7. AAAI Press.

Behnke, G., D. Höller, P. Bercher, and S. Biundo. 2016. “Change the
plan—how hard can that be?” In Proceedings of the ICAPS 2016,
38–46. AAAI Press.

Behnke, G., D. Höller, and S. Biundo. 2015. “On the complexity of
HTN plan verification and its implications for plan recognition.”
In Proceedings of the ICAPS 2015, 25–33. AAAI Press.

Behnke, G., D. Höller, A. Schmid, P. Bercher, and S. Biundo.
2020. “On succinct groundings of HTN planning problems.” In
Proceedings of the AAAI 2020, 9775–84. AAAI Press.

Behnke, G., F. Pollitt, D.Höller, P. Bercher, andR.Alford. 2022. “Mak-
ing translations to classical planning competitive with other HTN
planners.” In Proceedings of the AAAI 2022. AAAI Press.

Behnke, G., D. Ponomaryov, M. Schiller, P. Bercher, F. Nothdurft, B.
Glimm, and S. Biundo. 2015. “Coherence across components in

cognitive systems – one ontology to rule them all.” In Proceedings
of the IJCAI 2015, pp. 1442–9. AAAI Press.

Behnke, G., M. Schiller, M. Kraus, P. Bercher, M. Schmautz, M.
Dorna, M. Dambier, W. Minker, B. Glimm, and S. Biundo.
2019. “Alice in DIY wonderland or: instructing novice users on
how to use tools in DIY projects.” AI Communications 32(1):
31–57.

Bercher, P. 2021. “A closer look at causal links: Complexity results for
delete-relaxation in partial order causal link (POCL) planning.” In
Proceedings of the ICAPS 2021, 36–45. AAAI Press.

Bercher, P., R. Alford, and D. Höller. 2019. “A survey on hierarchi-
cal planning—one abstract idea, many concrete realizations.” In
Proceedings of the IJCAI 2019, 6267–75. IJCAI.

Bercher, P., G. Behnke, D.Höller, and S. Biundo. 2017. “An admissible
HTN planning heuristic.” In Proceedings of the IJCAI 2017, 480–8.
IJCAI.

Bercher, P., G. Behnke, M. Kraus, M. Schiller, D. Manstetten, M.
Dambier, M. Dorna, W. Minker, B. Glimm, and S. Biundo.
2021. “Do it yourself, but not alone: companion-technology for
home improvement—bringing a planning-based interactive DIY
assistant to life.” KI 35: 367–75.

Bercher, P., S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter,
and B. Schattenberg. 2014. “Plan, repair, execute, explain—how
planning helps to assemble your home theater.” In Proceedings of
the ICAPS 2014, 386–394. AAAI Press.

Bercher, P., D. Höller, G. Behnke, and S. Biundo. 2016. “More than a
name? on implications of preconditions and effects of compound
HTN planning tasks.” In Proceedings of the ECAI 2016, 225–233.
IOS Press.

Bercher, P., D. Höller, G. Behnke, and S. Biundo. 2017. Companion
Technology—A Paradigm Shift in Human-Technology Interaction.
Chapter 5: User-Centered Planning. Cognitive Technologies, 79–
100. Springer. https://doi.org/10.1007/978-3-319-43665-4_5

Bercher, P., S. Keen, and S. Biundo. 2014. “Hybrid planning heuristics
based on task decomposition graphs.” In Proceedings of the SoCS
2014, 35–43. AAAI Press.

Bercher, P., S. Lin, and R. Alford. 2022. “Tight bounds for hybrid
planning.” In Proceedings of the IJCAI 2022. IJCAI.

Bercher, P., and C. Olz. 2020. “Pop≡ POCL, right? Complexity results
for POCL makespan minimization.” In Proceedings of the AAAI
2020, 9785–93. AAAI Press.

Bercher, P., F. Richter, F. Honold, F. Nielsen, F. Schüssel, T. Geier,
T. Hörnle, et al. 2018. “A Companion-system Architecture for
Realizing Individualized and Situation-adaptive User Assistance.”
Technical report, Ulm University.

Bercher, P., F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke, F.
Nothdurft, et al. 2015. “A planning-based assistance system for set-
ting up a home theater.” In Proceedings of the AAAI 2015, 4264–5.
AAAI Press.

Biundo, S., P. Bercher, T. Geier, F. Müller, and B. Schattenberg. 2011,
April. “Advanced user assistance based on AI planning.” Cogni-
tive Systems Research 12(3-4): 219–36. Special Issue on Complex
Cognition.

Biundo, S., D. Höller, B. Schattenberg, and P. Bercher. 2016.
“Companion-technology: an overview.” Künstliche Intelligenz
30(1): 11–20. Special Issue on Companion Technologies.

Bylander, T. 1994. “The computational complexity of propositional
STRIPS planning.” Artificial Intelligence 94(1-2): 165–204.



364 AI MAGAZINE

Chen, D., and P. Bercher. 2021. “Fully observable nondetermin-
istic HTN planning—formalisation and complexity results.” In
Proceedings of the ICAPS 2021, 74–84. AAAI Press.

Chen, D. Z., and P. Bercher. 2022. “Flexible fond htn planning: a
complexity analysis.” In Proceedings of the ICAPS 2022. AAAI
Press.

Elkawkagy, M., P. Bercher, B. Schattenberg, and S. Biundo. 2012.
“Improving hierarchical planning performance by the use of
landmarks.” In Proceedings of the AAAI 2012, 1763–9. AAAI Press.

Elkawkagy, M., B. Schattenberg, and S. Biundo. 2010. “Landmarks in
hierarchical planning.” In Proceedings of the ECAI 2010, 229–34.
IOS Press.

Erol, K., J. A. Hendler, and D. S. Nau. 1996. “Complexity results for
HTN planning.” Annals of Mathematics and Artificial Intelligence
(AMAI) 18(1): 69–93.

Geier, T., and P. Bercher. 2011. “On the decidability of HTN plan-
ning with task insertion.” In Proceedings of the IJCAI 2011, 1955–61.
AAAI Press.

Ghallab, M., D. Nau, and P. Traverso. 2016. Automated Planning and
Acting. New York: Cambridge University Press.

Ghallab, M., D. S. Nau, and P. Traverso. 2004. Automated Planning:
Theory and Practice. Amsterdam: Morgan Kaufmann.

Höller, D., G. Behnke, P. Bercher, and S. Biundo. 2014. “Language
classification of hierarchical planning problems.” In Proceedings
of the ECAI 2014, 447–52. IOS Press.

Höller, D., G. Behnke, P. Bercher, and S. Biundo. 2021. “The PANDA
framework for hierarchical planning.” KI 35: 391–6.

Höller, D., G. Behnke, P. Bercher, S. Biundo, H. Fiorino, D. Pellier,
and R. Alford. 2020. “HDDL: An extension to pddl for expressing
hierarchical planning problems.” In Proceedings of the AAAI 2020,
9883–91. AAAI Press.

Höller, D., and P. Bercher. 2021. “Landmark generation in HTN
planning.” In Proceedings of the AAAI 2021. AAAI Press.

Höller, D., P. Bercher, and G. Behnke. 2020. “Delete- and ordering-
relaxation heuristics for HTN planning.” In Proceedings of the
IJCAI 2020, 4076–83. IJCAI.

Höller, D., P. Bercher, G. Behnke, and S. Biundo. 2018. “A generic
method to guide HTN progression search with classical heuris-
tics.” In Proceedings of the ICAPS 2018, 114–22.

Höller, D., P. Bercher, G. Behnke, and S. Biundo. 2020. “HTN
planning as heuristic progression search.” JAIR 67: 835–80.

Kambhampati, S., A. Mali, and B. Srivastava. 1998. “Hybrid planning
for partially hierarchical domains.” In Proceedings of the AAAI
1998, 882–8. AAAI Press.

Kraus,M.,M. Schiller, G. Behnke, P. Bercher,M. Dorna,M. Dambier,
B. Glimm, S. Biundo, and W. Minker. 2020. “Was that successful?
On integrating proactive meta-dialogue in a DIY-assistant system
using multimodal cues.” In Proceedings of the ICMI 2020, 585–594.
ACM.

Lin, S., and P. Bercher. 2021. “Change the world—how hard can that
be? On the computational complexity of fixing planning models.”
In Proceedings of the IJCAI 2021, 4152–9. IJCAI.

Muise, C., J. C. Beck, and S. A.McIlraith. 2016. “Optimal partial-order
plan relaxation via maxsat.” JAIR, 57: 113–49.

Nau, D., T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F.
Yaman. 2003. “SHOP2: an HTN planning system.” JAIR 20: 379–
404.

Olz, C., and P. Bercher. 2019. “Eliminating redundant actions in par-
tially ordered plans—a complexity analysis.” In Proceedings of the
ICAPS 2019, 310–9. AAAI Press.

Olz, C., S. Biundo, and P. Bercher. 2021. “Revealing hidden precondi-
tions and effects of compoundHTN planning tasks—a complexity
analysis.” In Proceedings of the AAAI 2021, pp. 11903–12. AAAI
Press.

Seegebarth, B., F.Müller, B. Schattenberg, and S. Biundo. 2012. “Mak-
ing hybrid plans more clear to human users—a formal approach
for generating sound explanations.” In Proceedings of the ICAPS
2012, 225–33. AAAI Press.

Siddiqui, F. H., and P. Haslum. 2015. “Continuing plan quality
optimisation.” JAIR 54: 369–435.

Waters, M., B. Nebel, L. Padgham, and S. Sardina. 2018. “Plan relax-
ation via action debinding and deordering.” In Proceedings of the
ICAPS 2018, 278–87. AAAI Press.

Waters, M., L. Padgham, and S. Sardina. 2020. “Optimising partial-
order plans via action reinstantiation.” In Proceedings of the IJCAI
2020, 4143–51. IJCAI.

Weld, D. S. 1994. “An introduction to least commitment planning.”
AI Magazine 15(4): 27–61.

AUTH OR BIOGRAPH Y

Pascal Bercher is a Senior Lecturer at the Australian
National University. Before joining the ANU late 2019,
he was at the Institute of Artificial Intelligence of Ulm
University, where he pursued his doctoral degree from
2009 to 2017, followed by 2 years of post-doc. From
2016 to 2019, he was the project coordinator of a tech-
nology transfer project, which was a collaboration of
UlmUniversity’s Institute of Artificial Intelligence and
its Institute of Communications Engineering with the
Corporate Research Sector of Robert Bosch GmbH. He
focuses on theoretical investigations as well as algo-
rithm and heuristic development for hierarchical task
network (HTN) planning and partial order causal link
(POCL) planning—as surveyed in this paper.

How to cite this article: Bercher, P. 2022.
“Hierarchical planning and reasoning about
partially ordered plans—From theory to practice.”
AI Magazine 43: 353–364.
https://doi.org/10.1002/aaai.12073


