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INTRODUCTION

Abstract

Offline evaluation is an essential complement to online experiments in the selec-
tion, improvement, tuning, and deployment of recommender systems. Offline
methodologies for recommender system evaluation evolved from experimental
practice in Machine Learning (ML) and Information Retrieval (IR). However,
evaluating recommendations involves particularities that pose challenges to the
assumptions upon which the ML and IR methodologies were developed. We
recap and reflect on the development and current status of recommender system
evaluation, providing an updated perspective. With a focus on offline evalua-
tion, we review the adaptation of IR principles, procedures and metrics, and the
implications of those techniques when applied to recommender systems. At the
same time, we identify the singularities of recommendation that require differ-
ent responses, or involve specific new needs. In addition, we provide an overview
of important choices in the configuration of experiments that require particu-
lar care and understanding; discuss broader perspectives of evaluation such as
recommendation value beyond accuracy; and survey open challenges such as
experimental biases, and the cyclic dimension of recommendation.

Current offline evaluation methodologies evolved
from experimental practice in Machine Learning (ML)

Recommendation technologies started to develop nearly
three decades ago, and have grown to a point where they
are perceived nowadays as a connatural feature in our
daily online experience. We have grown accustomed to
recommendations as we are shopping online, listening
to music, watching series and movies, reading news,
making social connections and browsing through their
posts, or planning for vacation. As in any applied science
domain, evaluation is central in recommendation tech-
nology development and research. After three decades of
development, evaluating recommender systems remains a
challenging endeavor.

and Information Retrieval (IR). However, evaluating
recommender systems involves added complexities that
challenge the simplifications upon which the ML and IR
evaluation methodologies were developed. In particular,
the ground truth for evaluating recommendations—
required for meaningful experimentation—is difficult
to obtain at scale in any controlled environment. This
is because the source of ground truth information is
people—end-users—in large numbers, who cannot be
bypassed or proxied in any meaningful way, since the
“truth” being sought is precisely the individual and
subjective inclinations and preferences of those people.
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Moreover, the scale requirement applies to the input for
the evaluated systems as well. An (unsupervised) search
algorithm can produce effective results for a single query,
whereas even the simplest collaborative filtering algo-
rithms need thousands of users to produce meaningful
output. Data collection is thus unavoidably expensive in
even the humblest recommendation experiment.

Collecting test data “in the wild” (that is, from a
live operational system) introduces substantial complex-
ities, such as fragmentary and/or biased ground truth
data. Unlike other ML domains, recommendation does
not aim to predict exactly what users will do (in the
way that weather prediction aims to forecast what the
weather will be tomorrow, or fraud detection aims to rec-
ognize untoward data access), but what users would do
if they were to be offered a particular choice. In this
respect, recommendation is more akin to medical research,
where recommendation is the “treatment,” and the goal is
improved “health” (user satisfaction) as a consequence of
the recommended treatment. From this perspective, valu-
able information may lie in what is best referred to as
the “unobserved truth”—the choices that users were not
offered, never experienced, and hence were not collected in
the experimental data. These unexplored truths pose great
challenges to recommendation evaluation.

A simplistic representation of the recommendation
problem as a pure regression or classification task, dis-
regarding the underpinning motivations of the system’s
users, or the context of the business in which recommen-
dation is deployed, can render an evaluation approach
irrelevant. Evaluating recommendation in a narrow per-
spective may still be useful nonetheless, and inform partial
but important aspects of the effectiveness of an algorithm
or a system, or a specialized component with a very spe-
cific mission as a component of a larger system. But even
in a simplified representation, recommendation has pecu-
liarities of its own, that do not arise in other ML and
IR problems, and that need to be reflected in the task
representation and the experimental setup.

In this article, we explore offline evaluation of recom-
mender systems, with an emphasis on the techniques
and methodologies that might be employed by academic
researchers making use of static resources, or practitioners
selecting, training, and optimizing models for subsequent
online testing. Our purpose is to examine the many design
choices required when planning such an experiment, and,
at the same time, highlight areas in recommendation
measurement that remain vexed, and where innovative
solutions continue to be sought.

In particular, after briefly reprising the recommen-
dation task and summarizing the differences between
offline and online evaluation, we provide a status report
describing the current practice in offline recommenda-
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FIGURE 1 The rating matrix

tion evaluation. We explore recommendation evaluation
through a lens derived from IR evaluation, drawing on
more than five decades of work, progress, knowledge, and
lessons learned. We then present subtle details of experi-
mental setups, with the goal of guiding other researchers
past the many possible pitfalls. After this, we discuss
updated perspectives in recommendation evaluation in
regard to discovery, bias, exploration, and the interactive
recommendation cycle.

THE RECOMMENDATION TASK

In a generic definition of the recommendation task, users
are observed interacting with (rating, clicking, playing,
purchasing) products and choices in a particular system,
and the problem consists of predicting which choices users
might enjoy next. User—item interactions can be viewed as
a user—item matrix (Figure 1), where interaction data are
associated to the corresponding matrix cell (Adomavicius
and Tuzhilin 2005). As a useful simplification, the data can
be abstracted to a scalar (or binary) value reflecting the
degree of enjoyment or utility that a user draws from an
item. In this representation, a recommender system should
predict values for the unobserved matrix cells.

In early work in the field, the cell values output by
recommender systems were intended to literally predict
user actions or accurately match rating values (Herlocker
et al. 1999). From a practical perspective, the specific val-
ues are not of any consequence, as long as they are not
displayed to users. Only the item selection and order they
induce is important. In typical recommender system appli-
cations, the item scores determine where to place the
recommended items in the user interface. From this point
of view, the recommendation task can be cast as a rank-
ing problem (where we use “ranking” as a simplification to
mean selecting and arranging items in some display order)
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and—for most purposes—an IR task (Bellogin, Castells,
and Cantador 2017; Herlocker et al. 2004).

The list of algorithmic solutions to the recommenda-
tion task is endless and keeps growing—a review would
far exceed the scope of the present paper. The point to be
noted is that suitable evaluation methodologies are criti-
cally important to such algorithmic developments, because
they provide the basis on which researchers can differen-
tiate amongst the many proposed approaches, and/or find
optimal configurations for them.

OFFLINE VERSUS ONLINE EVALUATION

Algorithm selection and updates in recommender system
applications are generally informed by online evalua-
tion, typically consisting of A/B tests (Amatriain and
Basilico 2015; Gomez-Uribe and Hunt 2015). In an A/B
test (Figure 2A), the system currently in production
(“control”) is compared to one or more updated variants
(“treatments”), by diverting a fraction of live user traffic
to the latter and comparing their effectiveness in terms of
business metrics (Jannach and Jugovac 2019) commonly
related to user engagement (click-through rate, time
watching, etc.) and sales (order size, revenue, profit, etc.).

A/B tests provide the most direct assessment of the
impact of recommendation in the business performance,
but require time, have limited bandwidth, and involve risk
as they directly expose system changes to customers. For
such reasons, new ideas are tuned and filtered through
extensive offline experiments, before bringing them to the
final A/B test (Amatriain and Basilico 2015; Gomez-Uribe
and Hunt 2015). Academic research, as the far end in the
innovation to production funnel, rarely has access to a pro-
duction system and therefore commonly relies on offline
experimentation entirely.

Offline evaluation consists in collecting user interaction
data—most commonly from a working system—over a
period of time and setting it aside for repeated experimen-
tation (Figure 2B). The offline data are usually divided

into two disjoint subsets: the “training” subset is passed
as input to the evaluated systems, and the “test” subset is
taken as ground truth for metric computation.

Offline experimentation aims to be predictive of online
performance, yet the correlation between offline and
online evaluation outcomes is often weak (Amatriain
and Basilico 2015; Garcin et al. 2014; Gomez-Uribe and
Hunt 2015; Jannach and Jugovac 2019). What is more, the
outcomes of different offline experiments (on the same
systems and data) do not correlate well with each other all
too often (Cafiamares, Castells, and Moffat 2020). Several
causes can be pointed out at the root of this divergence:

» Lack of shared, sufficiently detailed protocols, and
shared tools for offline experimentation.

* A sometimes partial understanding of the subtleties and
effects of detailed experimental settings.

* Considerable, intrinsic hidden complexity involved in
offline recommender system evaluation.

The above challenges are partly a consequence of differ-
ent fields and views confluencing in the recommendation
task, such as ML, IR, and Human-Computer Interaction.
The idea of producing personalized recommendations ini-
tially arose as a regression/classification problem, and
solutions were, therefore, evaluated with corresponding
protocols and metrics, focusing on prediction error (Her-
locker et al. 1999). As recommender systems grew into an
established industry, the view shifted towards an IR per-
spective (Cremonesi, Koren, and Turrin 2010; Herlocker
et al. 2004), more in accordance with real applications.
The adoption of IR evaluation methodologies took time to
overcome the rating prediction view, ingrained for years
of previous research in the field. Evaluation methodology
developed in the IR field over decades of community effort
towards sound and standardized practice and principles.
Its adoption in a new area such as recommendation is,
therefore, not necessarily trivial and deserves dedicated
study. This motivates an overview of IR evaluation, which
we provide next.
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OFFLINE EVALUATION IN
INFORMATION RETRIEVAL

The field of IR is closely related to Recommender Systems,
but also differs in several important ways. This section pro-
vides an overview of offline evaluation in IR. Sanderson
(2010) provides details of several of the areas covered
below. In this section, a document is a text object stored
in a retrieval system, and is one member of a collection of
such items; a topic is a specification of an information need
as might be regarded as being typical of the users of that
retrieval system; a query is one user’s crystallization of the
topic into a short list of terms (often, but not always, as a
bag-of-words statement); and a relevance judgment (some-
times also called a grel) is a human-determined assessment
of the degree to which (if at all) a particular document in
the collection is responsive to (that is, helps address) the
information need expressed via the corresponding topic.

Key questions

Critical issues associated with the evaluation of retrieval
quality for ordered document rankings include: determin-
ing which subset of the documents should most usefully
be judged for each topic, assuming that only a limited
judgment budget is available; deciding how ordered doc-
ument rankings (each of which is referred to as a run)
should be numerically scored, and what principles those
scores should be based on; and dealing with the possible
uncertainty in run scores arising from the likely absence
of complete judgments.

Document collections and pooling

In the early 1990s, the US National Institute of Standards
and Technology embarked upon a quite remarkable project
to provide infrastructure in support of IR experimenta-
tion. The ensuing Text REtrieval Conference (see Harman
(1992) and the many subsequent volumes of TREC con-
ference proceeding) initiated a generation of research into
“at scale” retrieval systems, with even the first published
TREC document collection approaching a gigabyte in size,
arather large amount of storage at the time, and something
like 10 times bigger than previously available collections.
Other “shared community” efforts followed, including the
CLEF initiative in Europe, the NTCIR collections in Japan,
and the FIRE project in India.

To build sets of relevance judgments, TREC adopted a
depth-dpooling strategy (Figure 3). The runs submitted by
each participating research group were truncated at depth
d, with typically the top d = 100 documents or top d = 200
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documents extracted from submitted runs of length 1000
or more, and then merged to get a list (for each topic) of
documents that appeared within any group’s top-d. Those
documents were then shuffled, and presented to human
annotators for labeling, with the assumption being that
the majority of any documents that were indeed relevant
would be identified, and that any unjudged documents
could be safely assumed to be nonrelevant (Harman 2005).
That is, compared to recommender evaluation, the ground-
truth data used in IR evaluations are typically generated
post hoc, and in volumes determined by an experimental
budget rather than by user behavior.

A range of investigations into the robustness of pooling
have been carried out, concluding that while even deep
pooling is unlikely to find all of the relevant documents,
the system comparisons that emerge from the partial
judgments are sufficient to allow systems to be, by and
large, reliably compared (Zobel 1998). Subsequent work
has investigated the resilience of evaluations based on
pooling and incomplete judgments (for example, Buckley
and Voorhees 2000; Buckley and Voorhees 2004; Buckley
et al. 2007; Biittcher et al. 2007; Sakai and Kando 2008;
Sanderson and Zobel 2005); including the issue of selecting
documents into the pool itself, and how to merge the runs
in more nuanced or sensitive ways (Buckley et al. 2007;
Lipani et al. 2021; Moffat, Webber, and Zobel 2007) so as to
improve the usefulness of the eventual measurement and
systems comparisons taking place.

An alternative response to the imprecision introduced
by incomplete judgments has been to quantify the max-
imum extent of measurement uncertainty via a residual
(Moffat and Zobel 2008). If the residual of a effectiveness
measurement derived from a run is low, it indicates that
the judgment set provided good coverage, and that the
score is reliable. If the residual is high, there is the possi-
bility of score imprecision, and hence a need for caution in
interpreting the results that were obtained.
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Ranked list evaluation

The first metrics applied to ranked lists were variants of
two traditional set retrieval measurements: precision@k is
the fraction of the first k items in the run that are relevant;
and recall@k is the fraction of the available relevant doc-
uments that appear in the first k items in the run. While
natural extensions of precision and recall, these metrics do
not account for the fundamental nature of runs, namely
that they represent the system’s preference ordering over
the collection’s documents, an issue that also arises in rec-
ommender systems evaluation. For example, precision@10
suffers the same degradation in score if relevant docu-
ments at rank 1 and at rank 10 are swapped for nonrelevant
ones. This is a correct outcome if users are assumed to pay
equal attention to each of the top-10 documents (and to not
ever look at any documents outside that top-10 set), but
does not sit well with the typical behavior of search system
users, who tend to process the ranking from top down.

It was thus natural for top-weighted effectiveness met-
rics to emerge. One important metric that has been closely
connected with TREC activities through many years is
called average precision, or AP, which was codified into
the program trec_eval. If a topic has R relevant docu-
ments, and a system places those relevant documents (in
any permutation) into positions {p;, ps, ..., pr} Within the
run, then AP is calculated as AP = (1/R) Zil(i /pi), that
is, as the average of R separate precision@ p; scores, one for
each place at which a relevant document appears.

Average precision is sometimes referred to as a systems
metric because its value is typically affected by document
relevance down to relatively deep positions in the run
(indeed, down to depth pg). At the other end of the spec-
trum, reciprocal rank, RR, is a user metric, more likely to
reflect the perceptions of a typical shallow-examination
user: RR = (1/p;). Reciprocal rank ignores the positioning
of all relevant documents after the first, modeling users as
being fully satisfied when they have found a single answer.

Both AP and RR assume binary topic-document query
relevance labels drawn from {0, 1}. A wide range of other
scoring formulae have been proposed, including ones that
make use of graded relevance labels, where each topic-
document combination is assigned a fractional gain value
between zero and one inclusive. Those gain values are
then accumulated down the system’s ranking, but are
also increasingly discounted as a way of ensuring that
the metric is more heavily weighted to the top of the
run. For example, Jdrvelin and Kekéldinen (2002) pro-
pose discounted cumulative gain, computed as DCG@k =
Zi;l(ri/logz(l +1)), where 0 <r; <1 is the gain value
associated with the document in position i of the run. Note
that DCG is unbounded as k increases, and values greater

than one can emerge. As one way of resolving that slight
awkwardness, Jarvelin and Kekédldinen also proposed a
normalized version, referred to as NDCG@k, in which the
DCG@k score is divided by the “ideal DCG@k” from a
run that contains every document in the collection sorted
by decreasing gain value r;. Now the metric values are
bounded above by one, with k still giving a sense of the
maximum depth to which the user will examine the run, or
of the length of the run. The latter is an important concern
in recommender systems evaluation.

A different approach to normalization was introduced
by Moffat and Zobel (2008). Their rank-biased precision
(RBP) metric uses a geometric decay function that has a
bounded sum, so that the evaluation can be taken to an
arbitrary depth. In RBP a parameter ¢ describes the user’s
persistence when scanning the ranking, and can be tai-
lored to the usage scenario that is anticipated. For example,
a user with ¢ = 0.5 is regarded as being relatively impa-
tient, and has (only) a 50% chance of viewing the i + 1th
document after they have viewed the ith. Their expected
viewing depth in the ranking is thus two documents; con-
trast that with a ¢ = 0.95 user, who is anticipated as having
a average search depth of 20. As foreshadowed above, RBP
also allows the computation of a residual, bounding the
maximum possible score change that could arise if all
unjudged documents were in fact fully relevant (Moffat
and Zobel 2008).

Goal/Task sensitivity

Many other metrics have also been proposed, and the
ones described in the previous section are but a sample
of the most widely used options. As one example, there
has been effort put into metrics that attempt to infer rel-
evance labels in the cases where judgments are missing
(Buckley and Voorhees 2004; Sakai 2007), rather than
simply assume such documents to be nonrelevant. As
yet, these approaches have yet to be considered by the
recommender community.

Another thread of development has been the emergence
of more sophisticated user browsing models. Chapelle et al.
(2009) propose expected reciprocal rank (ERR) in which
users are assumed to be seeking a single relevant docu-
ment, with each r; value indicative of the likelihood of
users regarding the ith document as being “the one.” More
generally, Moffat et al. (2017) suggest that three factors
should correlate positively with the decision made by the
user as to whether or not to continue to the document at
depth i + 1: (i) the current rank i in the ranking; (ii) the
amount of total gain desired by the user when they com-
menced their search, denoted by T; and (iii) the amount
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of that gain still unfound by depth i. These desiderata
define a family of metrics that are goal sensitive and also
adaptive, and specified in terms of a function C(i), the con-
ditional continuation probability of proceeding from rank
i to rank i + 1. Moffat et al. (2017) then use their “C/W/L
framework” to define a metric INST that has the proposed
properties. The adaptive property is one that makes good
sense—as users have success in finding in full or even in
part what they are looking for, they can be expected to be
less likely to continue looking.

Maxwell et al. (2015) also consider what it is that makes
users stop examining a ranking; and Azzopardi, Thomas,
and Craswell (2018) provide a further basis on which stop-
ping might occur, by considering a localized rate at which
relevance is being accrued. Other related work is by Zhang
et al. (2017) and Luo et al. (2017), who describe differ-
ent possible balances between gain and decay; and from
Smucker and Clarke (2012), who add document length
and document repetition into a time-based measurement
regime, arguing that gain should be measured relative to
the time spent accumulating it. Many of these ideas are yet
to be employed in offline evaluation of recommender sys-
tems, and offer directions that might be productive if the
question of ground truth data can be addressed.

Finally in this section, note that offline evaluation is only
one way in which IR systems can be compared, and that
A/B testing is very important in commercial search sce-
narios. User studies—via a wide range of techniques—can
also be very informative (Kelly 2009), with human factors
being at least as important in terms of overall “user satis-
faction with a search service” as is retrieval quality when
measured by an effectiveness metric of the type discussed
here. Human factors similarly play an important role in
user-focused recommender evaluation.

CHALLENGES IN OFFLINE
RECOMMENDATION EXPERIMENT
DESIGN

As discussed earlier, recommender system evaluation orig-
inally developed as a classification or regression task
(Herlocker et al. 1999; Shardanand and Maes 1995). The
particularities of recommendation soon made the com-
plexity of evaluation apparent though, motivating specific
analysis and research efforts (Cafiamares, Castells, and
Moffat 2020; Ferrari Dacrema et al. 2021; Herlocker et al.
2004; Sun et al. 2020). Seen as a ML task, recommenda-
tion is peculiar in (a) the key importance of ranking (the
selection and placement of recommended items in the user
display), along with the fact that (b) the system’s goal is to
predict human satisfaction and/or actions, whereby out-
put “correctness” becomes an elusive notion, in contrast to

ML tasks such as image recognition or medical diagnosis
where ground truth has a more objective basis.

These particularities are proper of IR problems. Yet
compared to a search task, recommendation has singu-
larities of its own such as the absence (or indirect role
at best) of an explicit user query, and the difficulty of
eliciting relevance judgments without intervention of the
end-users to whom the recommendations are to be deliv-
ered (Bellogin, Castells, and Cantador 2017; Lu et al. 2021).
These particularities bring additional complexity to exper-
imental design. As a consequence, small details in the
configuration of experiments can result in substantial dif-
ferences and contradictions in the outcomes (Cafiamares
and Castells 2020; Ferrari Dacrema et al. 2021). This calls
for an improved awareness and understanding of such fine
details by experimenters, and a detailed account of exper-
iment configurations when communicating evaluation
results (Cafiamares, Castells, and Moffat 2020). We discuss
next some of the most important aspects in this scope.

Collecting and splitting the data

The data for offline recommender system experimentation
are most typically collected from a working system, for
example, by a dump of a certain period of time’s worth
of logged user interaction records in the system (Bertin-
Mabhieux et al. 2011; Harper and Konstan 2016). When
specific data characteristics are sought, data can also be
sampled through surveyed (as opposed to spontaneous)
user feedback (Cafiamares and Castells 2018; Marlin et al.
2007; Schnabel et al. 2016).

As in any supervised ML task, the data are split into
training and test subsets. The former is given as input
to the evaluated systems, and the latter is used to com-
pute offline evaluation metrics on the system outputs. In
some datasets, the training and test data are collected sep-
arately, with different sampling protocols (Marlin et al.
2007; Schnabel et al. 2016). In most cases though, a sin-
gle set is supplied to the experimenter, who is responsible
for appropriately partitioning the data (Gunawardana and
Shani 2015).

The way the data are split can make a difference in
the experiment outcomes, not just in the metric values
(Bellogin, Castells, and Cantador 2017), but also in the
qualitative system comparisons (Cafiamares, Castells, and
Moffat 2020; Meng et al. 2020). Data partitioning options
include random versus temporal sampling, global ver-
sus per-user sampling, the choice of a split ratio, and
more (Cafiamares, Castells, and Moffat 2020; Said and
Bellogin 2014). The right approach may depend on what
is feasible to begin with (considering the data density,
the availability of meaningful timestamps, etc.), and the
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FIGURE 4 Data split and candidate set
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specific goal of the evaluation. As a general rule, the pre-
ferred approach should maximize the similarity to the
conditions where the system is to be deployed—or seek
maximum generality and minimum assumptions when no
specific deployment is targeted. At any rate, detailed trans-
parency about the experiment configuration should be the
best precept to make evaluation results most useful and
meaningful (Cafiamares, Castells, and Moffat 2020).

Candidate item set subsampling

Given a data partition, the evaluated systems should out-
put a ranking of recommended items for every user. A
question the experimenter faces at this point is what items
should the system be requested to rank for each user
(Figure 4). While a first naive answer might be “rank all
items in the dataset,” one can find reasons to consider
smaller sets. For instance, in most cases, we may not want
an evaluated system to recommend the user choices that
the system was given as training data—the same as we
would not ask a classifier to classify the training examples.
Koren (2008) was first to bring this idea further by restrict-
ing the system’s output to an arbitrary subset of candidate
item. The idea was carried on by many other researchers
(see e.g., the experiments reviewed by Ferrari Dacrema
et al. 2021). The motivation for this design option was not
always explicit, but might be related to a purpose of con-
ceptual simplicity, and potential savings in computational
cost for some algorithms.

The selection of target items has a direct impact on met-
ric values (see e.g. Bellogin, Castells, and Cantador 2017),
and can even flip the comparison between systems, as
proved by Krichene and Rendle (2020) and Cafiamares and
Castells (2020), and observed earlier by Steck (2013) and
Canamares, Castells, and Moffat (2020). Cafiamares and
Castells (2020) provided some insights to these discrep-
ancies, and found further reason for selecting a larger or

items

smaller number of candidate items: maximizing the statis-
tical power of experiments, and minimizing the evaluation
bias. At a minimum, all items with a test rating should be
arguably included in the candidate set. Experiment power
and fidelity were found to be highest at an intermedi-
ate point, where a certain amount of unrated candidate
items are included, but not all. A rule of thumb is hinted:
this ideal point may be determined as the candidate set
size with which the experiment produces the fewest ties
between the compared systems.

A potential drawback of reduced candidate sets is a
loss in similarity to the problem that a real system needs
to solve. But this is not exactly the case: recommender
systems in industry typically work as a chain of algo-
rithms that progressively narrow down the set of items to
be recommended (Amatriain and Basilico 2015; Gomez-
Uribe and Hunt 2015). Thus, the ideal candidate item set
would be the one that is most alike to what the evaluated
algorithm will handle at its specific point in the recom-
mendation pipeline. An algorithm may be very effective
at filtering large candidate sets early in the chain, while
another may be much better as a late-stage ranker of
small lists.

An ideal dataset would log what the candidate items
were when the data were collected, so that this can be used
as the target set in subsequent offline experiments. Know-
ing which among those items were actually impressed
within the user’s sight would enable additional offline eval-
uation possibilities. Publicly available datasets including
information of this kind would be certainly welcome by the
community (Pérez Maurera et al. 2020).

Computing offline metrics
By equating users to queries, items to documents, and test

data to relevance judgments (Bellogin, Castells, and Can-
tador 2017), any IR metric (such as the ones discussed
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earlier in the Information Retrieval section) can be used to
evaluate recommender systems. Precision, recall, MRR or
NDCG are indeed used routinely in recommender system
evaluation (Gunawardana and Shani 2015; Valcarce et al.
2020). False-positive metrics (measuring unpleasing rec-
ommendations) are less frequent in the literature but seem
important in industry, and might deserve wider consider-
ation as a complementary perspective (Mena-Maldonado
et al. 2021).

When analyzing evaluation results, statistical power can
be considered as important in recommendation as in IR
evaluation at large. As a noteworthy difference, the num-
ber of data points (number of users) is typically much
larger in recommendation datasets than it is in public
search evaluation benchmarks (number of queries)—as a
consequence, statistical significance is typically more eas-
ily achieved and less often an issue in the recommendation
literature. To this respect, Cafiamares and Castells (2020)
suggest measuring the number of ties between systems as a
complementary measure of discriminative power that can
surface nuances not captured by statistical tests.

Typical metric values in offline recommendation exper-
iments are very often orders of magnitude smaller than
in search evaluation. This raised doubts in the early days
when IR methodologies started to be adopted, but is
now better understood as just a consequence of a much
higher sparsity of test data in recommendation compared
to pooled relevance judgments for search evaluation (Bel-
login, Castells, and Cantador 2017), combined with the
lack of explicit direction in the user’s need, in contrast
to retrieval tasks involving an explicit need description (a
query). Low metric values therefore do not mean that sys-
tems are ineffective, but that most of the data to measure
their effectiveness is missing. Statistical significance tests
usually confirm that such low metric values are mean-
ingful in comparing systems, as much as they can be in
search experiments with TREC data, even if the values
are not meaningful as an absolute measure of individual
system performance.

Incomplete rankings

When data sparsity heavily affects the available train-
ing data for some user, some algorithms may find it
difficult to produce a reliable recommendation, or to
include as many items in the list as the evaluation
metric expects: if we wish to measure, for instance,
precision@k, the algorithm may return less than k items
(or none at all) for some users. This problem has been
barely discussed in the literature, and may come unno-
ticed to the unwary experimenter, inadvertently distorting
the experiment results (Cafiamares and Castells 2020;

Cafiamares, Castells, and Moffat 2020). Incomplete rank-
ings make the metric technically undefined, and require
a nonobvious decision as to how the recommenda-
tion shortage should be reflected in the metric scores.
Choices one may consider to cope with this situation
include:

1. Penalizing the algorithm for not filling the required
rank positions, counting them as equivalent to nonrel-
evant recommendations.

2. Forgiving the algorithm, lifting the metric cutoff to the
number of items the algorithm was able to rank.

3. Filling in the missing positions with some fallback algo-
rithm, such as random items, popular items, or another
recommender system.

Option 1 can be harsh, as it is sometimes wise to
abstain from making recommendations that might be
more harmful than beneficial —we might want to recog-
nize the algorithm’s ability to “quit while ahead” (Liu et al.
2016). However, option 2 can be unfair to algorithms that
make their best to recommend as many items as they are
requested, as opposed to others that refuse to rank all but
the easiest items. Option 3 can make especial sense when
the fallback algorithm is some appropriate baseline, or a
system that the evaluated algorithm competes against.

In general, none of these options is necessarily bet-
ter than the others; the best option is the one that
better matches the specific experiment purpose. What-
ever the choice is, we suggest reporting recommendation
coverage@k (the rate of filled rank positions for a cut-
off k across users) as a complementary measure, to put
the main metric in perspective and better understand the
potential fluctuations due to coverage issues (Cafilamares
and Castells 2020; Cafiamares, Castells, and Moffat 2020).

Beyond relevance

While relevance is a basic condition for recommenda-
tion to be useful, matching the user’s tastes may not
be enough to provide valuable suggestions. For instance,
recommendation often comes along with a purpose of
discovery. Recommending well-known user favorites, no
matter how relevant, may then be rather pointless. Rele-
vant but less obvious suggestions that users may not have
even thought of searching for is likely to be far more use-
ful (Castells, Hurley, and Vargas 2015). Recommending less
widely known items is also important to overcome cold-
start stages and surface the potential value of new and
underexposed choices. With many e-commerce and online
services evolving into online marketplaces, avoiding over-
concentration around a small set of choices becomes



AI MAGAZINE

=

also a requirement for effective and fair recommendation
(Abdollahpouri et al. 2020; Mehrotra et al. 2018).

Specific metrics have been thus developed to measure
novelty and diversity in different angles, and have become
common in offline evaluation. These include, for instance,
the average pairwise dissimilarity between recommended
items (Ziegler et al. 2005), the average pairwise dissimilar-
ity between recommendations and previously consumed
choices (Vargas and Castells 2011), the “unpopularity”
(scarcity of past interaction) of recommended items (Zhou
et al. 2010), or the Gini index of recommendations over
items (Chaney, Stewart, and Engelhardt 2018; Fleder and
Hosanagar 2009). The reader is referred to Castells, Hurley,
and Vargas (2015) for a comprehensive survey.

BIAS AND LOOPS IN EVALUATION

Closely related to novelty and diversity, bias is one of the
major challenges of offline evaluation. In particular, offline
data are subject to a strong selection bias, as interaction
is much more likely to be observed for some user-item
pairs than others, regardless of how much the user likes
each item (Marlin and Zemel 2009). We may broadly con-
sider two components in the formation of such biases: item
exposure and user selection.

Self-selection bias

When presented with an item, users are more prone to
engage with some items than others (Marlin et al. 2007).
Reasons include the perception by the user that one item
will be more interesting to them than others, or will suit
their needs better, or the item simply draws the user’s
attention or curiosity (e.g., a shocking video).

Exposure bias

Users are more likely to discover some items than others
(Canamares and Castells 2018). These differences are intro-
duced by both internal biases created by the system, and
external biases. External bias factors include, for instance,
advertisement, fashion, mouth-to-mouth communication,
or virality in social media, that boost the popularity of
particular products, news, artists, brands, and so forth,
outside the system. These biases may leak into offline data
when users actively seek such popular items in the data
logging system, or are influenced by their external envi-
ronment in their choices in the system. Internal exposure
biases are generally stronger than external ones, and are
produced by the algorithms (such as search, browsing and
recommendation functionalities) that decide which items
are presented when collecting offline data. The placement
of retrieved items in the user interface is an additional
major internal source of bias: items at prominent positions

receive a disproportionately higher user attention. Of
course, time is another major factor in item exposure:
the longer an item exists, the more opportunity it gets to
attract people’s attention—in this respect, item cold start
can be seen as a natural case of observation bias.

From the items point of view, the sampling bias is often
referred to as the popularity bias (Bellogin, Castells, and
Cantador 2017; Cafiamares and Castells 2018; Jannach et al.
2015; Steck 2011). Bias is typically more visible when aggre-
gated over users, but bias can also be user-specific: items
can be more popular over (or more exposed to) some
groups of users than others.

The effects of bias in recommendation

Sampling bias can distort offline evaluation considerably:
when the test data are biased, systems are rewarded for
learning and reproducing the bias in the data, besides
just pleasing users. Without any intervention, popular-
ity thus gets amplified by recommendation; for internal
biases, new systems may find resistance to change, as
offline experiments will evaluate—along with recommen-
dation relevance—how similar the evaluated algorithms
are to the system with which test data were collected. In
an application context, established system decisions may
tend to perpetuate themselves, as models are selected and
trained on the data that the current system collects: system
variants that agree with the hypotheses that the deployed
models build upon have higher chances to be successful
in offline experiments. From a business perspective, self-
reinforced biases result in missing opportunities, by failing
to surface underexposed but potentially valuable items.

Broader reinforcement loops might affect the field
as a whole: algorithmic research is evaluated with
data collected from applications that draw from algo-
rithmic research. Researchers have found indeed how
strongly state-of-the-art collaborative filtering algorithms
are biased towards recommending majority choices (Cafia-
mares and Castells 2017; Jannach et al. 2015). However,
whether this challenges the status quo as to what the
best algorithms really are is an open question (Caiia-
mares and Castells 2018)—we briefly touch on this in the
next subsection.

Coping with bias

The realization of the strong biases in evaluation came
along with efforts to mitigate them (Jannach et al. 2015;
Marlin and Zemel 2009; Steck 2010; 2011), in order to
achieve more reliable, undistorted measurements of the
relevance of recommendations, better matching online
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performance. Simple approaches can be conceived as
test data sampling and subsampling procedures. For
instance, test data can be segmented into head, torso, and
tail items—or any number of strata—according to their
amount of test data (Bellogin, Castells, and Cantador 2017;
Cremonesi, Koren, and Turrin 2010). Popularity bias is
then equalized across the compared algorithms, reducing
the advantage of popularity-biased algorithms. Another
simple approach in this line is to sample an equal amount
of test data for all items (Bellogin, Castells, and Cantador
2017). These ideas can be effective but come with their own
issues and limitations (Castells and Cafiamares 2018), and
tend to further increase the gap between the offline and
the online settings, by the introduction of additional data
manipulation steps.

More principled solutions have been developed by defin-
ing metrics that correct for the bias (Steck 2010; 2011). In
this line, so-called counterfactual evaluation consists in
modeling the bias, and correcting the metrics accordingly
(Gilotte et al. 2018; Gruson et al. 2019; Jadidinejad, Mac-
donald, and Ounis 2021; Swaminathan et al. 2017; Yang
et al. 2018). A widely considered method in this scope is
inverse propensity scoring (IPS), which divides the value
(e.g., relevance) procured by a recommended item to a
user by the probability (propensity) that an interaction
between this user and this item is present in the test data.
The IPS correction guarantees an unbiased metric estimate
in expectation.

One important challenge in IPS is estimating propen-
sity, which can be as much of a challenge as predicting
user tastes in the first place. This is feasible, however when
we have some information about the test data logging pol-
icy (such as a controlled retrieval environment): propensity
can be modeled knowing, for instance, the number of
times an item has been presented, and the probability that
users actually noticed the item according to a position bias
model. IPS is known to suffer from other issues such as
high variance on underexposed items, and specific elabo-
rations have been devised to this avail (Gilotte et al. 2018).
Counterfactual evaluation is still an open area and IPS may
not always work as expected in all cases (Gruson et al.
2019). It is currently actively researched as a promising
direction in dealing with bias in offline evaluation and
feedback loops in model training.

An alternative to bias neutralization is to avoid the
bias altogether when collecting test data, by sampling
the data uniformly at random, thereby enabling unbiased
metric estimates. Example datasets of this kind include
Yahoo! R3 (Marlin et al. 2007), Coat (Schnabel et al. 2016),
and CM100k (Cafiamares and Castells 2018). Collecting
random data is, however, expensive as it requires explicit
effort and time from users, and is not trivial to scale as a
sustained solution. Unbiased data can nonetheless be a

useful element in developing improved debiasing methods
on top of it (Wang et al. 2021), and is certainly a valuable
resource for research.

On the other hand, recent studies show that evaluation
with biased data may still agree (in terms of system com-
parisons) with unbiased evaluation, when the sampling
biases agree with relevance distributions in appropriate
ways (Canamares and Castells 2018; Mena-Maldonado
et al. 2021). This is not to say that biases are not a
problem, but these studies indicate that many experi-
ments can still be informative even if they are subject to
bias. This notwithstanding, bias can introduce impreci-
sion in measurements (Bellogin, Castells, and Cantador
2017), impoverished recommendations (Chaney, Stewart,
and Engelhardt 2018; Fleder and Hosanagar 2009), and
uncertainty as to what the degree of potential distortion in
evaluation really is.

Evaluating recommendation cycles

An additional perspective in mitigating bias from feedback
loops has gained traction in recent years, consisting in
incorporating the cyclic nature of recommendation in the
task definition. In this view, the goal of recommendation
shifts from seeking local optima to procuring sustained
value over a continued relationship with users. When
longer-term optima are sought, one realizes that the effec-
tiveness of recommendation at a given time step builds
on the data collected from users’ reactions to the previous
recommendations. The recommendation problem at each
step becomes fundamentally twofold: (a) pleasing the user
now, and (b) improving the system knowledge about user
interests, for future use. That is: making the most of the
evidence of user preferences collected so far (exploitation),
and optimizing data acquisition to maximize the value of
future recommendations (exploration).

This realization casts recommendation as a reinforce-
ment learning problem (Sutton and Barto 2018). In this
area, multiarmed bandits (MAB) have become a popular
problem representation, for which specific algorithmic
solutions have been explored in the last few years (Li et al.
2010; Wang et al. 2019). Under this perspective, common
recommendation algorithms are referred to as “greedy”
or “myopic:” by making deterministic decisions based
on incomplete user preference observations, greedy algo-
rithms are, in statistical terms, mistaking the sample for
the population. MAB, in contrast, explicitly acknowledge
the uncertainty involved in the collected evidence and
make stochastic recommendations, handling observations
as samples from unknown distributions. In addition to
long-term relevance improvements, MAB approaches
enhance recommendation novelty and diversity, as a
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collateral effect of their exploratory side (Sanz-Cruzado,
Castells, and Lopez 2019).

This task redefinition raises new challenges for offline
evaluation. Reinforcement learning algorithms engage
in cyclic interaction with users, which does not fit easily
in a purely offline setting. We briefly discuss the main
approaches reported to this date.

Full user simulation.

User interaction with recommended items can be modeled
as a parameterized probabilistic model of user behavior
(browsing, clicking, etc., see e.g., Rohde et al. 2018). The
model can then be used to simulate user reactions in
response to the evaluated algorithms’ output. The algo-
rithms feed and are evaluated on the data produced by such
synthetic users, and cyclic recommendation experiments
can be thus run. The obvious limitation of this approach
is that the user model is artificial and does not necessarily
represent the behavior of real users. Full user simulation
can be useful, however, to analyze and compare general
properties of the evaluated algorithms, such as learning
convergence, parameter sensitivity, computational cost,
and so forth.

Looping through offline datasets.

Some authors have simulated cyclic recommendation by
splitting an offline dataset into initial training and test sub-
sets, and then running the evaluated system repeatedly,
adding to the input training subset every test data record
that the system “discovers” by recommendation (Huang
et al. 2020; Kawale et al. 2015; Sanz-Cruzado, Castells, and
Lopez 2019). Real test data are thus used to simulate what
the users’ response might have been in a live situation.
The step is repeated until all test data are discovered, or
after a certain number of steps. Metrics of interest, such as
the cumulative recall (ratio of discovered positive test user
preferences) can be monitored during the iteration.

The main problem with this approach is that experi-
ments get biased by the sampling policy (e.g., a working
system) that was used in collecting the data—the same
issue we discussed earlier. To this respect, recent work has
explored debiasing techniques on top of this procedure to
improve this aspect (Huang et al. 2020).

Replay

The so-called “replay” approach was proposed by Li et al.
(2011) to avoid the bias from offline data. The procedure
consists in, first, collecting a large amount of online user
feedback to randomly presented items. In the feedback
collection procedure, the items are sampled, one at a
time, from a small pool of options, that changes over
time. In the original paper, the items were news, and
the pools were hourly refreshed sets of headline stories.

The resulting dataset thus consists of a set of triplets (
pool/sampled item/user feedback ), where the feedback is
binary (click/no click).

Systems (e.g., bandits) are evaluated using this data by
iterating over the triplets, and requesting the system to
recommend one of the items in the corresponding pool.
If the recommended item is the same as the one that was
randomly sampled, the user feedback (positive or nega-
tive) is revealed to the evaluated system—otherwise, the
triplet is ignored. This is not very data-efficient, as most
data records get discarded, but it can be shown that this
procedure enables an unbiased offline estimate of online
performance without running an online test (Li et al. 2011).

CONCLUSIONS

We have summarized the current situation with regard to
recommender system evaluation, and described a num-
ber of aspects of experimentation to which researchers
must pay careful attention if they are to avoid the pos-
sible pitfalls. Improved replicability and reproducibility
of experimental outcomes is a worthwhile goal in all
areas of computing, and recommender systems research
is no exception to that observation. Despite the many
and varied concerns that we have noted, our overall mes-
sage is one of hope, rather than despair. Forewarned is
forearmed, and we believe that if researchers do indeed
pay attention to these risk areas, they will have more
confidence in the robustness and resilience of their
experimental outcomes, and will thus be more sure-
footed when making claims about new and improved
algorithmic approaches.
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