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Introduction to the 
Special Issue on 
AI and Networks

Marie desJardins, Matthew E. Gaston, 
and Dragomir Radev

� This introduction to AI Magazine’s
special issue on networks and AI summa-
rizes the seven articles in the special issue
by characterizing the nature of the net-
works that are the focus of each of the ar-
ticles. A short tutorial on graph theory and
network structures is included for those
less familiar with the topic.
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of the “blogosphere.” Each article repre-
sents a snapshot of the area it describes;
for example, the collective classification
problem surveyed by Prithviraj Sen,
Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Gallagher, and Tina Eliassi-
Rad is just one of many problems within
the emerging research area of link mining.
Moreover, networks are influential in
many other areas of AI that are not repre-
sented here, including Bayesian networks
and graphical models, sensor networks,
swarm systems and cellular automata,
graphical games, trust and reputation sys-
tems, and computational organizational
design.

Table 1 summarizes the articles in this
collection by characterizing the nature of
the networks that are the focus of each of
the seven papers.

Basic Graph Theory
In reading the articles presented here,
some basics of graph and network theory
may be useful for the reader who is not fa-
miliar with these terms. We start with
some basic terminology.

A graph G is defined to be a pair (V, E),
where V is a vertex set and E is an edge set
(see following). The terms graph and net-
work are often used interchangeably.

The finite vertex set V is a set of descrip-
tors for the vertices in the graph. Each ver-
tex may just have an identifier, or it may
have an arbitrarily complex set of attrib-
utes. The terms vertex and node are often
used interchangeably. Depending on the

Most people … would agree that a funda-
mental property of complex systems is
that they are composed of a large number
of components or “agents,” interacting in
some way such that their collective be-
havior is not a simple combination of
their individual behaviors.

– Mark Newman

The importance of networks perme-
ates the world today. From biology
to social systems, from the brain to

the Internet, networks play an important
and central role in the way the world
works. In the last 10 years, due in part to
large increases in computational power,
large-scale, real-world networks have re-
ceived much attention from a variety of
fields of study.

Within the artificial intelligence com-
munity, networks appear in some form in
nearly every subdiscipline: knowledge rep-
resentation, inference, learning, natural
language processing, multiagent systems,
analogical reasoning, and many others.
The goals of this special issue are to pro-
vide a sampling of research efforts focused
on how networks can be used in AI sys-
tems and to facilitate cross-communica-
tion among subdisciplines that are study-
ing networks from different perspectives.

The seven papers we include here cover
a broad range of network-inspired AI re-
search—in natural language processing,
data mining, the semantic web, peer-to-
peer networks, multiagent systems, analog
networks, and the modern social network



Authors Topic Nodes Edges Tasks 

Radev and 
Mihalcea 

Natural language 
processing 

Words, word 
senses, 
sentences, 
documents 

Cooccurrences, 
collocations, syntactic 
structure, lexical 
similarity 

Analyze syntax, identify 
lexical semantics, retrieve 
and summarize text, extract 
keywords 

Berners-Lee and 
Kagal 

Semantic web Agents, terms, 
ontologies 

Connections between 
communities, subtask 
relationships, ontological 
relationships 

Disseminate knowledge, 
construct and share 
ontologies, provide and 
request services, create new 
communities 

Menczer, Wu, 
and Akavipat 

Peer-to-peer 
networks 

Agents “Social” connections 
along which queries flow 

Locate relevant knowledge 
sources, learn which peers 
can answer queries 

Pearce, Tambe, 
and 
Maheswaran 

Cooperative 
multiagent 
systems 

Agents Interactions, joint reward 
structures 

Multiagent plan 
coordination, meeting 
scheduling, teamwork (such 
as RoboCup soccer) 

Mattiussi, 
Marbach, Dürr, 
and Floreano 

Analog networks Dynamic 
devices 

Signal flows with varying 
strength 

Synthesize and reverse-
engineer analog networks 
(for example, gene 
regulatory networks and 
analog electronic circuits) 

Finin, Joshi, 
Kolari, Java, 
Kale, and 
Karandikar 

Blogosphere Web pages, 
blog postings, 
bloggers, blog 
sites 

Social networks, 
comments, trackbacks;, 
advertisements, tags, RDF 
data, metadata 

Recognize spam blogs 
(splogs), find opinions on 
topics, identify 
communities of interest, 
derive trust relationships, 
detect influential bloggers 

Sen, Namata, 
Bilgic, Getoor, 
Gallagher, and 
Eliassi-Rad 

Social and 
natural networks 

Entities (such 
as scientific 
articles) 

Relationships among the 
entities (for example, 
citations or cocitations) 

Perform collective 
classification, construct 
features for relational 
classification 

Table 1. An Overview of the Articles in This Special Issue.
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understanding the behavior of graph structures. 
The path length between two nodes is the mini-

mum number of edges that must be traversed to
move from one node to the other in the graph. The
average path length is an average across all pairs of
nodes in the graph.

Real-world graphs often exhibit short average path
lengths, meaning that the average path length is
less than would be expected in a random graph.
This “small-world effect” was first recognized by
Stanley Milgram (1967) in analyzing the number
of hops it took for human subjects to send a piece
of postal mail to a predefined destination by fol-
lowing only links to people whom they knew on a
first name basis. This phenomenon is sometimes
called “six degrees of separation,” based on the hy-
pothesis that any two people in the world can be
connected by at most a six-link “chain” of ac-
quaintances. A game created in the mid-1990s

application, nodes may also be referred to as agents
or entities.

The finite edge set E specifies the relationships be-
tween the vertices in the graph. Each edge e ∈ E is
a pair of vertices, which are called the end points of
the edge. Edges may be ordered or unordered and al-
so weighted or unweighted. A hyperedge may connect
more than two vertices. Edges are often used to
represent relations.

The degree of a node, ki, is the number of edges
that are connected to node i. In directed graphs,
degree can be broken down into “in-degree” (num-
ber of edges coming into the node) and “out-de-
gree” (number of edges pointing out of the node).

Network Properties
A number of properties prove to be useful in graph
theory and social network theory for analyzing and
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processes and graph behaviors. Several of the most
common models are described in the following
paragraphs.

Regular graphs have a homogeneous connectivi-
ty pattern for all of the nodes in the graph. In these
graphs, the degree distribution is trivial: all nodes
have the same degree. Examples of regular graphs
include lattices, hypercubes, and fully connected
networks (in which all nodes are connected to all
other nodes).

The coordination number (Watts 1999) of a lat-
tice graph determines the number of connections
that each node has with its spatial “nearest neigh-
bors” in each dimension. An example of a one-di-
mensional lattice with K = 2 is shown in figure 1(a).

Random graphs were first introduced by Paul
Erdös and Alfréd Rényi (1959). A random graph
Gn,p consists of n nodes where p denotes the prob-
ability of an edge existing between each pair of ver-
tices. Random graph models have been widely
studied, in part because their properties can be
computed analytically. For instance, the expected
number of undirected edges in Gn,p is n(n – 1)p/2,
and the average degree of a vertex is k = p(n – 1).

A random geometric graph is a special case of a ran-
dom graph that is generated by randomly placing
N nodes in the unit square, then connecting pairs
of nodes if they are within some specified distance
of each other (Dall and Christensen 2002). More
specifically, two nodes, i and j, are connected in a
random geometric graph if d(i, j) < φ, where φ is a
threshold parameter of the model. Figure 2 shows
an instance of a random geometric graph with φ =
0.09.

The small-world network model of Duncan Watts
and Steven Strogatz (1998) is an attempt to pro-
duce networks that exhibit the real-world proper-
ties of excess clustering and short average path
length. Small-world networks have properties that
lie between those of regular (lattice) networks and
random graphs. Small-world networks are con-
structed by randomly “rewiring” each edge in a lat-
tice network with some probability ρ. This process
results in shortcut connections across the network,
as seen in figure 1. (When edges are replaced with
random shortcuts with probability ρ = 1, the re-
sulting graph is a random graph.)

The scale-free graph model is motivated by the
empirically measured degree distributions of the
Internet and the World Wide Web (Albert and
Barabási 2002; Albert, Jeong, and Barabási 1999).
The model is a highly intuitive model based on the
way that many networks are believed to evolve and
grow in the real world. The generation of scale-free
graphs has two simple rules: (1) growth—at each
time step, a new node is added to the graph, and
(2) preferential attachment—when a new node is
added to the graph, it attaches preferentially to ex-
isting nodes with high degree. Figure 3 shows an

called Six Degrees of Kevin Bacon (find a short
path connecting any given movie actor or actress
to Kevin Bacon) in fact initiated some of the re-
search work that led to the current boom in inter-
est in network studies.

Several other properties are related to path
length: The betweenness of a node i is the number
of other pairs of nodes (j, k) whose shortest paths
pass through i. The closeness of a node is the aver-
age shortest path to all other nodes in the graph.
The diameter of a graph is the length of the longest
of all shortest paths (that is, it is the maximal dis-
tance between any pair of nodes (i, j)).

Clustering measures are used to characterize the
frequency of transitive relationships in networks
(Newman 2003, Albert and Barabási 2002, Watts
and Strogatz 1998). The clustering coefficient of a
network is the ratio of triangles in a network (sets
of three nodes that are all connected to each oth-
er) to the number of connected triples (sets of three
nodes in which at least one node is connected to
the other two).

Real-world networks often exhibit excess cluster-
ing, in the sense that they have a much higher (of-
ten two orders of magnitude or more) clustering
coefficient than would be expected in a random
graph of the same size (Newman 2003). This is be-
cause in many processes that generate networks,
two nodes that are connected to a common neigh-
bor are more likely to become connected.

The degree of a node is also sometimes called its
degree centrality, since the number of edges that are
connected to a node give an indication of how
“central” it is to the network. The degree distribu-
tion of a network is the frequency of occurrence of
nodes with each degree. A useful summary proper-
ty is the network’s average degree, which can be
thought of as the density of the network. The nor-
malized standard deviation of the degrees of the nodes
can be used to characterize how much variability
there is in the network density. The degree correla-
tion of adjacent nodes in a network indicates
whether neighboring nodes are likely to have sim-
ilar degree.

Many real-world networks have highly skewed
degree distributions, with high normalized stan-
dard deviation. In particular, the degree distribu-
tion in real-world networks often follows a power
law, where the probability of a node in the network
having degree k is proportional to k–γ for some pa-
rameter γ (typically γ is between –2 and –3) (New-
man 2003). Such networks have a hub-and-spoke
structure, with some nodes having very large de-
gree (Albert and Barabási 2002).

Network Models
A variety of network models have been proposed
to represent various types of network formation



Figure 2. An Instance of a Random Geometric Graph 
on the Unit Square with 400 Nodes and φ = 0.09.
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example of a scale-free network structure and the
power-law degree distribution that it exhibits.

Summary
Networks have been studied in artificial intelli-
gence in a variety of contexts since AI’s inception
over 50 years ago. However, new insights from the
study of very large real-world networks and from
the connective power of the Internet call for an up-
dated perspective on the importance and role of
networks in AI. This special issue provides a sam-
pling of the most innovative recent research in
networks and AI.
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ρ = 0.0

b

ρ = 0.1

c

ρ = 0.3

Figure 1. Three Increasingly Random Small-World Networks.

(a) A small world with no shortcut links. (b) The same small world with a few shortcuts. (c) A small world with many shortcuts, which be-
gins to resemble a random graph. All three of the networks are constructed from a one-dimensional lattice where nodes are connected to
K = 2 other nodes in each direction, based on physical proximity. This particular choice of initial layout is deliberate in that it ensures a
high initial clustering coefficient.
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Figure 3. An Example of a Scale-Free Network Structure with 250 Nodes.

(a) A rendering of the network that clearly shows the hub-and-spoke structure. (b) A log-log plot of the cumulative degree distribution of
the network shown in (a). Note that a linear curve in a log-log plot implies a power-law behavior of the underlying system.
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