
■ We describe an application of AI search and in-
formation visualization techniques to the prob-
lem of school redistricting, in which students
are assigned to home schools within a county or
school district. This is a multicriteria optimiza-
tion problem in which competing objectives,
such as school capacity, busing costs, and so-
cioeconomic distribution, must be considered.
Because of the complexity of the decision-mak-
ing problem, tools are needed to help end users
generate, evaluate, and compare alternative
school assignment plans. A key goal of our re-
search is to aid users in finding multiple quali-
tatively different redistricting plans that repre-
sent different trade-offs in the decision space.

We present heuristic search methods that can
be used to find a set of qualitatively different
plans, and give empirical results of these search
methods on population data from the school
district of Howard County, Maryland. We show
the resulting plans using novel visualization
methods that we have developed for summariz-
ing and comparing alternative plans.

Motivation and Overview
This research focuses on developing decision
support tools for the problem of school redis-
tricting. In this domain, the goal is to assign
the students from each geographic region
(neighborhood or planning polygon) in a
county or school district to a home school at
each level (elementary, middle, and high
school). We are working with the Howard
County, Maryland, school system to develop
tools that will aid in generating, evaluating,
and comparing alternative school-assignment
plans. Related applications include emergency
response planning, urban planning and zon-

ing, robot exploration planning, and political
redistricting.

The school assignment plan should ideally
satisfy a number of different goals, such as
meeting school capacities, balancing socioeco-
nomic and test score distributions at the
schools, minimizing busing costs, and allowing
students in the “walk area” of a school to at-
tend that home school. Since these objectives
are often at odds with each other, finding the
best plan is a complex multicriteria optimiza-
tion problem. It is also often desirable to create
several alternative plans for consideration;
these plans should be qualitatively different—
that is, they should represent different trade-
offs among the evaluation criteria. Finally, be-
cause of the complexity of the problem, it is
difficult for users to fully understand these
trade-offs. Therefore, developing effective visu-
alizations is an important challenge.

The contributions of our work are (1) a com-
putational formulation of the school redistrict-
ing problem as a multicriteria optimization
problem, (2) novel heuristic local search tech-
niques for generating high-quality, diverse
(that is, qualitatively different) plans, (3) visu-
alization methods for comparing alternative
plans,1 and (4) empirical results demonstrating
the effectiveness of our search methods on ac-
tual Howard County school data.

The remainer of this article is organized as
follows. We first describe the current redistrict-
ing process in Howard County and present
some example plan visualizations that we have
developed. Next, we describe the search meth-
ods and present empirical results comparing
manually and automatically generated plans in
terms of plan quality and diversity. Finally, we

Articles

FALL 2007   59Copyright © 2007, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Heuristic Search 
and Information 

Visualization Methods 
for School Redistricting

Marie desJardins, Blazej Bulka, Ryan Carr, 
Eric Jordan, and Penny Rheingans

AI Magazine Volume 28 Number 3 (2007) (© AAAI)



summarize related work and then present our
future work and conclusions.

Redistricting Process
The Howard County Public School System
(HCPSS) serves a rapidly growing county in
suburban Maryland. The pace of development
and population growth has necessitated the
opening of 25 new schools in the last 14 years,
turning the adjustment of school attendance
areas into an almost annual event. Under the
current process, candidate plans and feasibility
studies are generated manually2 by school sys-
tem staff. These plans are evaluated and refined
by a committee of citizens, then presented at
regional meetings for public comment. A small
set of candidate plans is forwarded to the su-
perintendent, who presents two or three rec-
ommended alternatives to the board of educa-
tion. The board has final decision-making au-
thority and will typically select one of the
recommended plans, sometimes making minor
modifications in response to concerns raised by
parent groups or staff. Note that this process is
specific to Howard County; other school dis-
tricts may have different processes and models.

Candidate plans are evaluated according to
11 measured criteria: (1) the educational bene-
fits for students, (2) the frequency with which
students are redistricted, (3) the number and
distance of students bused, (4) the total busing
cost, (5) the demographic makeup and aca-
demic performance of schools, (6) the number
of students redistricted, (7) the maintenance of
feeder patterns (that is, the flow of students
from elementary to middle to high school), (8)
changes in school capacity, (9) the impact on
specialized programs, (10) the functional and
operational capacity of school infrastructure,
and (11) building utilization. Some of these cri-
teria can be clearly quantified (for example,
building utilization and busing costs), while
others are harder to quantify (for example, ed-
ucational benefits and impact on specialized
programs).

In practice, the process is primarily driven by
building utilization, but serious consideration
is given to feeder patterns, the number of stu-
dents redistricted, demographic makeup, bus-
ing costs, and the frequency with which stu-
dents are redistricted. Ideally, building utiliza-
tion should be between 90 percent and 110
percent of program capacity and should stay in
that range as projected population and capaci-
ty changes occur. Desired feeder patterns en-
sure that there is a critical mass of students
who move together from one school level (ele-
mentary, middle, and high school) to the next.

For instance, the students from a particular
middle school should constitute at least 15 per-
cent of the population of any high school that
they feed into. Consideration of the demo-
graphic makeup of schools helps to ensure that
economically and academically disadvantaged
children are not unnecessarily segregated into
a few schools.

The specific redistricting problem that we fo-
cus on in this article is one that the county
faced during the 2004–2005 school year, that
of developing a school assignment plan for a
twelfth high school (Marriotts Ridge) that
opened in fall 2005. Figure 1 shows the parti-
tioning of planning regions into school atten-
dance areas before the new school was opened.
A circle shows the location of each school, and
each planning polygon is shaded according to
the high school attended. For instance, all stu-
dents in the northwest region of the county are
assigned to Glenelg High School (labeled G;
light gray region) in the original plan. The un-
used capacity at a school is shown by a black
area (wedge) inside the school circle. Schools
that are over capacity are outlined with a ring.
Glenelg is slightly under capacity; Marriotts
Ridge (labeled MR) has zero utilization (that is,
is completely black), since no students have yet
been assigned to this school in this plan; and
Mt. Hebron (labeled MH) is significantly over
capacity.

Figure 2 shows a comparison picture of two
alternative plans that include Marriotts Ridge.
The school assignments for the closest-school
plan—generated by assigning every polygon to
the school closest to its geographic center—are
indicated by the outer rings in each planning
polygon. This plan provides a useful baseline,
because it optimizes both walk usage and bus-
ing costs, but may be undesirable in terms of
capacity and demographics. The inner ring
shows the school assignments for the “green”
plan that was recommended by the superin-
tendent’s office. The “tree ring” effect allows
the user to easily see the planning polygons
where the two plans make different recom-
mendations. Polygons with the same shade are
assigned to the same school in both plans.

For example, in the center of the county, sev-
eral polygons are assigned to Marriotts Ridge
by the recommended plan, but to the nearby
Mount Hebron (labeled MH in figure 1), River
Hill (RH), and Centennial (C) High Schools by
the closest-school plan. The inner ring (center)
of these polygons is displayed as medium gray
(Marriots Ridge); the outer ring is either darker
gray (Mount Hebron), dark gray (River Hill), or
light gray (Centennial). Along the southeast
border of the county, the closest-school plan
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assigns a number of polygons to Hammond
High School (H) that are assigned to Reservoir
(R) by the recommended plan. This difference
occurs because assigning them to Hammond
would cause that school to be over capacity; al-
so, in this case, those polygons help to balance
the socioeconomic distribution at Reservoir.

Search Methods
The search space for the redistricting problem
is very large. For p polygons and s schools,
there are s(p – s) possible assignments of schools
to polygons (since polygons containing a
school are constrained to be assigned to that
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Figure 1. Original 2004–2005 School Assignment Plan. 

Each planning polygon is shaded according to the school to which it is assigned. School glyphs show underutilization as a “pie wedge” (per-
centage of black fill). Overutilization is shown by a ring outlining the glyph; the diameter of the ring is proportional to the degree of overuti-
lization.



school). Requiring that school attendance ar-
eas be geographically contiguous reduces the
number of possible plans, but the number of
plans still grows exponentially with the num-
ber of schools and polygons. Because of this
complexity, we have chosen to use heuristic lo-
cal search methods, which do not guarantee
optimality but which can be used to find good
solutions reasonably quickly.

Our basic approach is a two-stage process:
first, we generate an initial “seed” plan using
one of several methods described below; sec-

ond, we use local search to “hill-climb” to a lo-
cal optimum. Because of the multicriteria na-
ture of the redistricting problem, we have de-
signed several different variations of hill-climb-
ing search that can be used to find qualitatively
different alternative plans in the solution
space, as discussed later.

Before describing the methods for finding
seed plans and for performing local search, we
first introduce the evaluation criteria that we
use to measure the quality of a school assign-
ment plan.
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Figure 2. A Comparison of the Recommended (“Green”) Plan to the Closest-School Plan.

The shade of the inner and outer rings in each planning polygon indicate the school assignments for the recommended and closest-school
plan, respectively.



Evaluation Criteria
A school plan assignment can be evaluated
along multiple dimensions. The measured cri-
teria used by the Howard County schools were
summarized earlier. We have defined five quan-
titative criteria, f1, …, f5, based on these meas-
ured criteria. Each of these criteria is scaled and
normalized so that the value for a given plan
will always fall in the range [0, 1], with a lower
value being preferred.

Using concepts from the multiattribute deci-
sion theory literature (Keeney and Raiffa 1993),
a plan P1 is said to dominate a second plan P2 if
P1 is better along some dimension, and no
worse along any dimension, than P2:

Dom(P1, P2) ⇔ ∃i fi (P1) < fi (P2) ∧ ∀i fi (P1) 
≤ fi (P2).

Two plans are incomparable if neither plan
dominates the other.

It is often desirable to define a combined
score that incorporates all of the evaluation cri-
teria. For this purpose, we use a simple linear
combination, F:

where the weights wi ∈ [0, 1] represent the rel-
ative importance of each of the criteria. Since
each fi ranges from 0 to 1, F will range from 0
to 5.

We introduce the following notation:
Pop(p) is the number of students in planning
polygon p.

Pop(s, P) is the number of students assigned to
school s by plan P.

Cap(s) is the capacity of school s.

Nschools is the number of schools in the county
(12 in this particular planning problem).

Nstudents = Σp Pop(p) is the number of students in
the county. 

s(p, P) is the school to which polygon p is as-
signed by plan P. 

p ∈ s refers to the set of polygons assigned to
school s by a given plan. This notation is short-
hand for the more space-consuming set nota-
tion, {p : s(p, P) = s}.

The five evaluation criteria, which are de-
fined in the following paragraphs, are school
capacity (f1), socioeconomic distribution (f2),
test score distribution (f3), busing costs (f4), and
walk area usage (f5).

School Capacity (f1). A plan that utilizes
any school at less than 90 percent or greater
than 110 percent of its capacity is considered
to be highly undesirable. Therefore, we com-
pute the school utilization (that is, the ratio of
proposed school enrollment to school capaci-

F P w f Pi
i

i( ) = ( )∑
ty) and map it to a penalty function with its
minimum at 100 percent. For this purpose, we
used a scaled arctan function (figure 3):

where σ is a scaling factor that causes the scaled
arctan to be equal to 0.5 when the school uti-
lization is either 0.9 or 1.1 (σ = 10.0). As seen in
figure 3, the penalty function increases rapidly
away from the ideal capacity of 100 percent
and assigns high values for values that are sig-
nificantly outside the target range, [0.9, 1.1].

Socioeconomic Distribution (f2). The
school system uses the percentage of students
that qualify for free and reduced meals (FARM)
as a measure of socioeconomic distribution.
The goal in creating a school assignment plan
is to equalize this distribution across the coun-
ty: ideally, each school will have the same
FARM rate as the county as a whole. FARM
rates are given in the data on a per-polygon ba-
sis, denoted as FARM(p). We compute FARMC,
the average FARM rate for the county as a
whole:
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Figure 3. Penalty Function for School Utilization.



(2)

In order to penalize greater deviations from the
average FARM rate more heavily, we take the
square root of the difference between the
school and county FARM rates (which both
range from 0 to 1), and then average this over
the schools in the county to compute the over-
all socioeconomic distribution criterion:

Figure 4 shows what one school’s contribution
to the f2 penalty function would look like for a
county rate of FARMC = 0.15, as a function of
the school’s FARM rate, FARM(s, P).

Test Score Distribution (f3). The test score
rate is measured by the percentage of students
in a given polygon or school who achieve a
score at the proficient or advanced level on the
Maryland State Assessment (MSA) standardized
test. As with the FARM data, these rates are giv-
en on a per-polygon basis in the input data.
This criterion is defined analogously to f2:

where MSAC and MSA(s, P) are computed as in
equations 1 and 2, respectively.

Busing Costs (f4). Busing costs would be
minimized by sending all students to the geo-
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graphically closest school. Our evaluation cri-
terion for busing costs is based on the “average
excess busing distance”—that is, the average
distance traveled beyond the minimum re-
quired. To simplify the computation, we treat
each polygon as a group of students all travel-
ing from the geometric centroid of the poly-
gon. The distance from this point to the as-
signed school is calculated; we then subtract
the distance to the closest school (denoted by
CS(p)) to determine the excess busing distance.
This distance is normalized by the excess bus-
ing distance that would be needed to bus those
students to the fourth closest school (denoted
by 4CS(p)).3

These computations are weighted by the
population of each polygon:

Walk Area Usage (f5). It is preferable to
send children who are within walking distance
of some school to their neighborhood (“walk”)
school. This criterion is based on the percent-
age of such students who are in fact assigned to
a school within walking distance.4

where w is the number of students who are
within walking distance of the closest school:

and w’ is the number of students who are with-
in walking distance of their assigned school:

Generating Seed Plans
In this article, we use two seed plans: the clos-
est-school plan and the current (“original”) re-
districting plan.

The closest-school plan simply assigns each
polygon to the school that is geographically
closest to the centroid of the polygon. This
plan minimizes busing costs and allows all stu-
dents in the walk area of a school to attend that
school. However, as seen in table 1, it results in
poor school utilization, since some schools are
overcrowded and others are underutilized. The
closest-school plan also performs somewhat
poorly on test-score and socioeconomic distri-
bution, since it reinforces geographic “cluster-
ing” of income levels.

The original plan, for this data set, is the high
school assignment plan before the new Mar-
riotts Ridge High School was built. It assigns no
polygons to the new high school, so its utiliza-
tion is not particularly good (table 1). However,
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in terms of the other criteria, it is approximate-
ly as good as the final accepted plans.

We have also experimented with several oth-
er seed methods, including random seeds,
“breadth-first” assignment of polygons to
schools, and a minimum-spanning-tree assign-
ment based on distance. The latter two are sim-
ilar to the closest-school assignment, but make
less sense to an end user. Random seeds are use-
ful for a baseline but are actually nonsensical
from an application perspective, since there is
no geographic contiguity at all. In our prelimi-
nary experiments, we also found that these
seeds do not yield good search performance; in
particular, the random seeds cause the local
search to take a very long time to converge
(since they are so far from a reasonable plan),
and the resulting plans are not particularly
good. Therefore, we omit these alternatives
from the results that we present here.

Local Search Methods
We have developed and applied three basic
search methods: basic hill climbing, biased hill
climbing with blind bias, and biased hill climb-
ing with diversity bias.

Basic Hill Climbing. This method simply
performs a variation of hill climbing on the
combined score, F(P) = Σi wi fi (P). At each step,
the search algorithm considers moving a single
polygon to a different school. The branching fac-
tor for this search is high (there are (s – 1)(p – s)

possible actions), so rather than evaluating
every possible move, we consider each of these
moves in a random order, and take the first one
(if any) that improves the combined score. In
other words, at each step, a random polygon is
selected and assigned to a randomly selected
neighboring school. If this improves (reduces)
the combined score, then the change is made
to the plan. This process continues until a local
minimum is reached; that is, until there is no
individual polygon that can be moved in order
to improve the score.

Biased Hill Climbing with Blind Bias. Bi-
ased hill climbing is a novel technique that we
introduce here. It uses the notions of dominat-
ed and incomparable solutions in the multicri-
teria optimization space to find multiple alter-
native plans. As with basic hill climbing, this
search method tries to move a random polygon
to a randomly selected neighboring school.
The difference is that this move will be accept-
ed only if it results in a dominating plan—that
is, if some fi is improved by the change and no
fi is made worse. If the change is strictly worse,
it is ignored. However, if the change results in
an incomparable solution (that is, one that is
better with respect to some fi, but worse with

respect to some other fj), then the resulting
plan is placed on a list of “incomparable” solu-
tions, which we refer to as I.

When a local optimum is reached in “domi-
nated plan space,” under the blind-bias option,
this plan is added to the solution list, S, then a
plan is selected randomly from the incompara-
ble solution list I and used as the seed for a new
search. This process is repeated until a prespec-
ified number, k, of alternative plans is found.
The set of k plans, S, is returned.

Biased Hill Climbing with Diversity Bias.
This method uses the same basic “dominated
hill climbing” approach as the previous
method to find the initial solution. However,
to find subsequent solutions, a diversity bias is
applied. Specifically, after a local optimum is
found, the new seed will be the plan from the
incomparable list I whose average Euclidean
distance (in the evaluation space) from S, the
local optima found so far, is greatest. That is, 

where

(3)

Since each of the fi ranges from 0 to 1, the max-
imum possible pairwise distance between any
two solutions for the five-dimensional evalua-
tion space is (5)1/2 = 2.24. Of course, it is un-
likely that we would find locally optimal plans
with such extreme values, so typically the pair-
wise distance will be much smaller.

Empirical Results
In this section, we present results using the
Howard County school data for the 2004–2005
redistricting process. The first experiment was
designed to compare the quality of the plans
that are produced by different heuristic search
methods, using different seed plans, to those
produced by the redistricting committee. The
second experiment was designed to assess the
diversity (with respect to the evaluation crite-
ria) of the sets of plans produced by different
search methods.

Plan Quality
In table 1, we compare the average and com-
bined values for the original, closest-school,
recommended (green), and alternate (red)
plans to the plan generated by each search
method. (The alternate plan was proposed by
the superintendent’s office as an alternative to
the green plan.) To generate this data, we ran
each search method ten times, since some of
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the search steps are stochastic. In general, the
search process is heavily influenced by the
choice of seed. The results of basic hill climbing
search when starting from the closest-school
plan are better than the closest-school plan
with respect to capacity (f1), but still worse on
this measure than the other manually generat-
ed plans (original, recommended, and alter-
nate). Similarly, the search results for basic hill
climbing starting with the closest-school plan
are much better with respect to busing (f4) and
walk usage (f5) than the other plans.

The biased hill climbing methods show a
pathological behavior when starting from the
closest-school seed. Because the closest-school
plan is already optimal with respect to busing
costs and walk area usage, the local area con-
tains many incomparable plans, so the search
is unable to make any progress.

The overall combined plan quality (F) is bet-

ter for all of the search methods than for any of
the manually constructed plans. This is a good
sign, since it means that we are able to find
high-quality plans using our search methods.
However, we have not yet performed a user
study to determine whether plans that appear
better with respect to these criteria are, in fact,
seen to be better by end users. The result is cer-
tainly promising, though, since the general
framework can easily be used with different
evaluation criteria that are “tuned” to the end
users’ actual preferences.

Plan Diversity
In table 2, we compare sets of three plans gen-
erated by each of our search methods to a
group of hand-generated plans (recommended,
alternate, and closest-school). We give the di-
versity (average pairwise distance in evaluation
space) and the average fi and F scores for each
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Plan f1  
Cap. 

f2  

FARM 
f3  

MSA 
f4  

Bus 
f5 Walk F  

Σfi 

Closest 0.64 0.26 0.24 0.0 0.0 1.15 

Original 0.47 0.25 0.22 0.13 0.17 1.24 

Green 0.40 0.24 0.21 0.16 0.16 1.17 

Red 0.40 0.24 0.21 0.15 0.17 1.19 

Closest/Basic 0.44 0.26 0.24 0.04 0.04 1.02 

Closest/Blind 0.64 0.26 0.24 0.00 0.00 1.15 

Closest/Div 0.64 0.26 0.24 0.00 0.00 1.15 

Original/Basic 0.26 0.24 0.21 0.14 0.17 1.02 

Original/Blind 0.37 0.22 0.20 0.13 0.17 1.09 

Original/Div 0.44 0.23 0.20 0.11 0.12 1.10 

Table 1. Average Evaluation Criteria Values for Seed Plans and Search Results. 

Criteria values are fi and combined score (with all weights wi set to 1). Search results represent the average of
10 runs.

Method Diversity f1 f2 f3 f4 f5 F 

Basic 0.044 0.22 0.24 0.21 0.14 0.15 0.96 

Weighted 0.048 0.23 0.24 0.21 0.14 0.14 0.96 

Blind 0.032 0.44 0.20 0.18 0.11 0.11 1.04 

Diversity 0.389 0.61 0.19 0.15 0.18 0.23 1.36 

 

Table 2. Average Diversity (Average Pairwise Distance in 
Evaluation Space) and Evaluation Measures for Different Methods.



of the sets. All numbers are the average of 10
runs of the specified search method, using the
original plan as the seed.

Examining three manually generated plans
(closest, green [recommended], and red [alter-
nate]) gives us a baseline for the diversity meas-
ure. The pairwise evaluation distances of the
manually generated plans are 0.337 (closest
versus green), 0.333 (closest versus red), and
0.019 (red versus green), for an average pair-
wise distance of 0.223.

Not surprisingly, basic hill climbing with all
weights set to 1.0 produces sets of very similar

plans, with almost no diversity (0.044 on aver-
age—“Basic” in table 2). Therefore, we experi-
mented with performing hill climbing three
times, each time with different weights. (The
three runs assign weight 1.0 to f1 [capacity], f2
[socioeconomic distribution], and f4 [busing
costs], respectively, and weight 0.5 to all of the
other evaluation criteria.) This process (referred
to as “weighted” in table 2) yields only slightly
higher diversity (0.048 on average, still below
the baseline).

The plans using both hill climbing methods
have very low combined F values. A typical
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Figure 5. A Comparison of One of the Best Plans (According to the Measure) Found by 
Weighted Hill Climbing (Inner Ring) to the Recommended (Green) Plan (Outer Ring).



plan (with w1 = 1.0 (capacity) and the other wi
= 0.5) is compared to the recommended plan
in figure 5. The outer shade in each planning
polygon shows the school assigned by the rec-
ommended plan; the inner shade shows the
school assigned by the weighted hill climbing
plan. The overall measure for this plan is 0.91,
lower than any of the manually generated
plans or any of the average search results in
table 1. Not surprisingly, this plan performs ex-
tremely well on the capacity measure (f1 =
0.20), while maintaining fairly good perform-
ance along the other dimensions (f2 = 0.21, f3 =
0.20, f4 = 0.16, f5 = 0.15). Comparing these
measures to those given in table 1, it is clear
that this plan is better than the manually gen-

erated plans with respect to all of the evalua-
tion criteria. The figure shows that the weight-
ed hill climbing plan assigns a number of poly-
gons to a more distant (but still nearby) school
than the recommended plan. However, al-
though it is not stated explicitly in the evalua-
tion criteria, the geographic “pocketing” that
this plan displays is likely to be undesirable.

Figure 6 compares three plans produced by a
single representative run of weighted hill
climbing. The variation in the plans produced
by the weighted hill climbing method is pri-
marily in the capacity, busing, and walk usage
measures. Although one of the weight assign-
ments emphasizes socioeconomic distribution,
there is not much difference in the f2 values for
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Figure 6. Three-Way Comparison of Plans from a Representative Run of Weighted Hill Climbing.



these plans. This may be because significantly
decreasing socioeconomic distribution would
require busing students a very long distance,
entailing a severe penalty in busing costs and
walk usage. Interestingly, two of the plans are
quite similar, so only one planning polygon
shows three different school assignments for
the three plans. (This polygon is in the south-
ern part of the county, and is assigned to Reser-
voir by the first plan [outer ring], River Hill by
the second, and Atholton by the third.)

Biased hill climbing with a blind (random)
bias also gives very little diversity (0.032 on av-

erage). However, biased hill climbing with di-
versity bias gives the highest diversity of any
method, and much higher diversity than the
baseline set of plans (0.389 on average). Note
that this is accomplished at some loss of quali-
ty: the average combined measure (F) for di-
versity-biased search is 1.36, compared to aver-
ages ranging from 0.96–1.04 for the other
search methods. Three plans produced by a
typical run of diversity-biased hill climbing are
shown in figure 7. Although the average diver-
sity is high, the three plans are not equidistant
in evaluation space. Rather, one of the plans

Articles

FALL 2007   69

Figure 7. Three-Way Comparison of Plans from a Representative Run of Diversity-Biased Hill Climbing. 



(plan 1) falls “between” the other two plans,
with pairwise distances of 0.36, 0.37, and 0.67.

Note that pairwise distance is a somewhat
naive notion of diversity. Recently, we have
studied measures of set diversity in the context
of preference modeling (desJardins and
Wagstaff 2005). We plan to explore whether al-
ternative measures yield better performance in
the biased search process.

It remains to be seen whether the “diverse”
plans that we are generating are useful for the
end user. However, on initial inspection, they
appear to be reasonable plans that effectively
show some of the key trade-offs in the evalua-
tion space.

Related Work
The problem of school redistricting is related to
that of political redistricting. Several software
packages (such as Maptitude5) are available for
building and analyzing political and school re-
districting plans. These packages do not gener-
ally provide automated or interactive search
methods, do not provide visual comparison
techniques such as our “tree-ring” comparison,
and do not facilitate the discovery of qualita-
tively different plans.

Heldig, Orr, and Roediger (1972) were
among the earliest researchers to discuss com-
putational approaches to political redistricting.
The focus of their approach is on geographic
criteria (compactness, contiguity, and “preser-
vation of natural or political boundaries”) and
population balancing, although they also men-
tion the possibility of considering other crite-
ria, such as demographic distributions. Their
approach is based on linear programming,
minimizing an objective function that is
specifically designed to maximize geographic
compactness of the districts, subject to a popu-
lation-balancing constraint. Variations of this
basic approach form the core of most of the
more recent computational approaches to re-
districting.

Altman’s 1998 dissertation discusses the ob-
jective principles that should ideally be used in
political redistricting, including population
equality, compactness, and contiguity. He ana-
lyzes the computational complexity of politi-
cal redistricting and shows that different meas-
ures of geographic compactness can produce
very different plans, supporting our claim that
it is important to generate multiple plans from
different perspectives.

School redistricting differs from political re-
districting in several important ways. First, al-
though compactness is an important factor
(both for community building and to mini-

mize busing costs), it is not as important as in
political redistricting. Second, the walk usage
and feeder issues complicate the scenario for
school redistricting. Third, redistricting occurs
more frequently (at least in Howard County)
than in most political districts, and students
are greatly affected by the process. As a result,
minimizing the number of students who are re-
districted is also an important criterion. Final-
ly, the nature of the decision-making process,
in which alternative plans are explicitly com-
pared and contrasted to each other, raises the
desirability of generating multiple plans that
represent different trade-offs.

Although we do not yet address all of these
issues in our work, we believe that the general
optimization framework we have developed,
based on local search methods, is more appli-
cable than those that are commonly used for
political redistricting, which typically use spe-
cialized optimization algorithms that focus pri-
marily on geographic constraints.

The problem of multicriteria optimization
(also referred to as “multiobjective” and “mul-
tiattribute” optimization) has been explored by
researchers in artificial intelligence, economics,
and operations research. Keeney and Raiffa
(1993) discuss a variety of approaches for com-
bining multiple objectives into a single multi-
attribute utility function. They focus largely on
methods for eliciting a single combined utility
function. However, in practice, as Keeney and
Raiffa point out, it is not always easy to create
a single utility function. This supports our
claim that a key component of a decision-mak-
ing system for school redistricting is to provide
tools that help the user to understand the na-
ture of the evaluation criteria and the trade-offs
among them.

Multiattribute optimization techniques in-
clude weight-based optimization (where each
criterion is assigned a weight, and a combined
objective function is optimized), priority-based
optimization (where the most important crite-
ria are optimized first), and goal programming
(in which one objective is minimized while
constraining the others to be within a given
range). None of these methods are ideal for our
application, where the trade-offs are difficult to
prioritize or quantify. They also do not yield
multiple qualitatively different solutions; to
our knowledge, this problem has not been ex-
plicitly addressed.

School redistricting is somewhat analogous
to the NP-complete problem of multiobjective
graph partitioning (Selvakkumaran and Karyp-
is 2006), which attempts to optimize multiple
objectives, each of which can be expressed as a
sum of edge weights in a graph. Research on
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this problem has primarily used priority-based
and weight-based optimization. The analogy to
graph partitioning breaks down in the case of
some of our criteria (walk usage, demographic
distribution), and as mentioned above, priori-
ty-based and weight-based optimization meth-
ods do not help us with our goal of finding
multiple qualitatively different solutions.

Future Work
Our future work focuses on four primary areas:
usability, the criteria for plan evaluation, visu-
alization of feeder systems and gradients, and
new methods for multiattribute optimization.

Usability
We have demonstrated the current prototype
to the HCPSS superintendent’s office and re-
ceived a very positive response. We plan to use
our system to produce visualizations that high-
light the trade-offs made by the alternative pro-
posed plans in the 2006–2007 redistricting
process. Our goal is to make a web-based ver-
sion of our tool available to the 2007–2008 re-
districting committee for viewing, modifying,
and evaluating proposed redistricting plans.
We are also planning a more formal user study.

Plan Evaluation Criteria
Additional evaluation criteria that we have ex-
plored include feeder quality, compactness,
and robustness to future development.

In a pure feeder system, each elementary
school would move as a group to a single mid-
dle school, and each middle school would
move to a single high school. Because of geo-
graphic and capacity constraints, a pure feeder
systems is impractical; nonetheless, maintain-
ing “feeds” of reasonable size is an important
criterion in the process. We have developed a
feeder criterion to add to the set of evaluation
criteria, 

In most political redistricting approaches,
compactness is one of the key factors—and, in
fact, is sometimes the only factor that is con-
sidered. In school redistricting, compactness is
desirable, but not explicitly mentioned in the
HCPSS measured criteria. Furthermore, com-
pactness is already captured indirectly in the
busing cost and walk area criteria. However, we
plan to explore whether significantly different
plans are produced if compactness is added as
an explicit criterion.

Finally, one ongoing problem with the re-
districting process is that new developments
(and new schools) are continually being built.
This results in shifting demographics and can
mean that today’s best plan may lead to over-

crowding at certain schools in a few years. The
county does produce population projections,
but these are inherently uncertain. Future re-
search includes using these projections to
measure the “robustness” of a plan to future
planned development.

Visualization
We are currently working on new visualization
techniques that will show feeds more clearly.
The problem is a challenging one from a visu-
alization perspective, because showing multi-
ple school regions simultaneously produces a
significant amount of “clutter” and correspon-
ding cognitive overload.

Another focus of our visualization research is
on gradient displays. The gradient along a
boundary between two school regions charac-
terizes how the plan would change if a polygon
on one side of the boundary were moved to the
other school. If the gradient is positive, then
the plan tends to “pull” the polygons along the
boundary towards the first school. If it is nega-
tive, then the plan tends to “push” the poly-
gons away from the first school. Each evalua-
tion criterion can have its own gradient, so
some of the gradients may pull, while others
push. Developing effective ways to visualize
these “tensions” on the plan will give the user
insight into how local changes to the plan
would change its evaluation. Supporting these
displays will also require novel computational
techniques for computing and summarizing
gradients.

Multiattribute Optimization
We are also exploring different methods for
multicriteria optimization. We have imple-
mented a simulated annealing approach,
which is a common technique for such prob-
lems. The preliminary results for this approach
are not particularly encouraging. Part of the
problem is that there are many regions of the
search space that are quite poor (for example,
plans that create islands of students traveling a
large distance). Adding an annealing step tends
to lead to poor plans in this search space unless
the cooling schedule is extremely slow.

We also plan to implement an evolutionary
search approach and are developing a novel
multiagent approach. This approach builds on
recent research in combinatorial auctions in a
scenario where each polygon can “bid” on
schools to attend.

Conclusions
School redistricting is an interesting and chal-
lenging problem both computationally and
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from an application perspective. We
have developed a prototype system
that uses novel heuristic search and vi-
sualization techniques to aid an end
user in generating, evaluating, and
comparing alternative plans. These
tools should provide end users with
significant insights into the trade-offs
among alternatives.

The school redistricting problem is
closely related to the resource posi-
tioning problem of deciding where to
build schools, locate fire or police sub-
stations, or position emergency re-
sponse equipment. Our optimization
framework, search methods, and visu-
alization tools can all potentially be
applied to these other application do-
mains.
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Notes
1. These visualization methods are summa-
rized here; they are described in detail in an
earlier publication (Shanbhag, Rheingans,
and desJardins 2005).

2. Map-based tools are used to show the
proposed school districts, and a set of
spreadsheets is used to generate evaluation
data. No other decision support tools are
used in the current process.

3. The reasoning behind this normalization
is that there is very rarely a need to send
students further than the third closest
school. As a result, normalizing by the most
distant school in the county would result
in extremely small values for any “reason-
able” school assignment, making it difficult
to differentiate among alternatives.

4. The walking distance, k2, depends on the
age of the children; for high schools, we use
1.5 miles. Note that this computation is an
approximation, since the actual assign-
ment of walk areas is more complicated, us-
ing actual distance traveled, and taking in-
to account “walkability” (for example, side-
walks are required, and busy streets must be
avoided).

5. See Maptitude, Caliper Corporation,
www.caliper. com/mtredist.htm.
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