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Abstract

Emergency response (ER) workers perform extremely demanding physical
and cognitive tasks that can result in serious injuries and loss of life. Human
augmentation technologies have the potential to enhance physical and cognitive
work-capacities, thereby dramatically transforming the landscape of ER work,
reducing injury risk, improving ER, as well as helping attract and retain skilled
ER workers. This opportunity has been significantly hindered by the lack of
high-quality training for ER workers that effectively integrates innovative and
intelligent augmentation solutions. Hence, new ER learning environments are
needed that are adaptive, affordable, accessible, and continually available for
reskilling the ER workforce as technological capabilities continue to improve.
This article presents the research considerations in the design and integration of
use-inspired exoskeletons and augmented reality technologies in ER processes
and the identification of unique cognitive and motor learning needs of each
of these technologies in context-independent and ER-relevant scenarios. We
propose a human-centered artificial intelligence (AI) enabled training frame-
work for these technologies in ER. Finally, how these human-centered training
requirements for nascent technologies are integrated in an intelligent tutoring
system that delivers across tiered access levels, covering the range of virtual, to
mixed, to physical reality environments, is discussed.

These factors are indeed partially responsible for the acute
shortage of ER workers (Evarts and Stein 2019). In order

The COVID-19 pandemic reinforces that emergency
response (ER) workers perform extremely demanding
tasks in complex, stressful, and hazardous environments
associated with critical consequences, including loss
of life, serious injury, and significant property damage.

to reduce injury risk and improve ER response, as well as to
attract and retain skilled ER workers, there is a pressing need
for strategies to improve the training and work conditions of
ER workers. Human augmentation technologies (HATS),
such as robots and augmented reality (AR) interfaces,

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. AI Magazine published by Wiley Periodicals LLC on behalf of the Association for the Advancement of Artificial Intelligence

Al Magazine. 2022;43:83-92.

wileyonlinelibrary.com/journal/aaai | 83



Y/

AI MAGAZINE

have the potential to dramatically transform the landscape
of ER work, and improve the safety, performance, and
quality of life of ER workers. Powered exoskeletons, worn
by workers, can augment physical capacity and hence
potentially deliver machine-like power to workers, while
still preserving human autonomy and decision making in
unstructured and unpredictable environments. Human-
machine interfaces, for example, novel AR interfaces, can
be used for the control and operation of ground robots,
as well as wayfinding, increased situation awareness, and
for improving team collaboration and decision making
under stress. Hence, a context-sensitive and use-inspired
combination of HATSs is likely to tremendously impact
both the ER work and worker.

However, despite tremendous potential, existing HAT
solutions have been slow to penetrate ER work. In Novem-
ber 2019, our team organized a stakeholder workshop at
the Texas A&M Engineering Extension Service’s Disaster
City, where first responders from across domains came
together to discuss the opportunities, needs and challenges
of integrating augmentation technologies into ER training
and field use. From our convergence discussions during
this event, we learned that a vital bottleneck has been
the lack of high-quality training for ER personnel that
effectively integrates training on innovative HAT solutions
during emergencies. Hence, new ER training paradigms
are needed that are adaptive, affordable, accessible, and
continually available for reskilling the ER workforce as
technological capabilities continue to improve. The overall
vision of our Convergence Accelerator effort is to develop
LEARNER - Learning Environments with Augmentation
and Robotics for Next-gen Emergency Responders — a
novel mixed reality learning platform, that accelerates
integration of HATs for safer and efficient ER work,
supports personalized and adaptive learning sensitive to
ER workers’ socio-technical opportunities and budgetary
constraints, builds and retains skilled ER personnel,
and ultimately accelerates next-gen workforce expertise
development across different industry domains such as
manufacturing and construction.

A COMPETENT EMERGENCY RESPONSE
WORKFORCE

Throughout the global pandemic and continuing into the
post-COVID19 era, ER agencies have been forced to work
with fewer resources to provide an exponential increase
in ER services. This, coupled with being in the midst of a
digital transformation, indicates that traditional training
methods (i.e., face-to-face and text-based online training
methods) are inadequate to develop and sustain the ER
workforce. To develop a competent ER workforce, trainers

must develop critical knowledge, skills and abilities
needed for providing life-saving interventions and skilled
care in a crisis. However, ER workers also need skills
to access, process, and manage large amounts of data,
work with emerging assistive and collaborative technolo-
gies, and remain capable of making decisions in highly
complex, stressful, ill-defined situations. As the digital
transformation proceeds and the strain on resources con-
tinues, ER agencies will lean more on interventions such
as adaptive learning, dynamically adjusting technologies
that adapt to the learners’ abilities and skills (Capuano
and Caballé 2020; Abujelala et al. 2021), to develop and
maintain their workforce.

Developing a competent ER workforce is a complex and
daunting endeavor. ER trainers must develop the knowl-
edge and skills required to provide often life-saving inter-
ventions in a crisis and develop decision making skills
and abilities for complex, dynamic and unique challenges.
As traditional ER training curricula (i.e., face-to-face) are
developed, the trainer is a central part of the development
team as he/she guides the content development to ensure it
is current and appropriate. More critically, these training
professionals lead the development of the skills and cog-
nitive activities to reinforce the students’ learning progres-
sion and skills development. As the digital transformation
continues and adaptive learning technologies increase, the
role of the instructor remains central to the success of ER
training. The ER training profession must not only ensure
that the content and skills activities are appropriate, but
they must also ensure that the context is translated appro-
priately for each learning intervention. For example, teach-
ing patient handling and lifting techniques with exoskele-
tons without context may result in good technique, but
may fall short of training responders on how to adjust the
technique for situations in the field. In other words, teach-
ing ER workers in an environment devoid of context fails
to prepare them adequately for the dynamic nature of the
work and then fails to build competency.

HUMAN-CENTERED INTELLIGENT
TRAINING FRAMEWORK FOR HUMAN
AUGMENTATION TECHNOLOGIES

Processes that govern human learning
with HATs

Human learning encompasses distinct neurophysiolog-
ical signatures and cognitive/motor processes that are
propelled by bottom-up (stimulus-driven) or top-down
(goal-driven) approaches (Wolpert, Diedrichsen, and
Flanagan 2011). For the learning process to result in skilled
performance individuals need to develop expertise across a
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number of interacting components, including, infor-
mation extraction, decision making, understanding the
classes of control, motor learning, and its representations
(Cisek and Kalaska 2010). For for example, during a mass
casualty triage event, a responder, equipped with AR tools,
should identify victims by urgency, the specific pattern of
injury, and if needed - apply a life-saving mode of interven-
tion, all within a short window of time before moving to the
next victim or mediating other levels of care. These steps
demand high levels of situation awareness, decision mak-
ing, and motor skills that require feedforward or feedback
motor coordination (Wagner and Smith 2008). Unsurpris-
ingly, there are distinct regions of the brain responsible for
coordinating these highly asynchronous, and distributed
action sequences (Cisek and Kalaska 2010; Tyagi et al.
2021); in fact, unique learning modes are known to govern
these skills (Poldrack and Gabrieli 2001). Therefore, the
modes of training that facilitate skill learning must be
tuned to evoke those responses in simulated situations,
while being adapted to the behaviors of each trainee.

Need for adaptive learning

The need for adaptation and personalization in learn-
ing originates from a key ideological standpoint — that
is, to treat learning as an “experience” that is learner-
centered and competency-focused, and not just an “activ-
ity” (Mangaroska, Vesin, and Giannakos 2019). This dis-
tinction should be made by both the instructors and
the trainees, with the expectation being, in its terminus,
a “learning experience” will provide a complete learn-
ing outcome through some enabling learning objectives,
whereas an activity points to some level of continuing
training demand for expertise development. Several stud-
ies have demonstrably shown the individuality of human
learning across cognitive (Wilmer et al. 2012) and sensori-
motor tasks (Gaunt and Hallam 2009). Unlike some biolog-
ical phenomena, species-level characterizations or a one-
size fits all approach to learning remain pedagogical relics
that appeal to convenience over effectiveness, and there-
fore, form the crux of limitations in ER training today.
Human learning is a distributed process, therefore,
adaptation and personalization strategies demand cross-
platform, multimodal analytics to enable data-driven deci-
sions that augment the learning experience (Mangaroska,
Vesin, and Giannakos 2019). These analytics can derive
from performance, neurophysiological, and behavioral
(PNB) indicators that are collected during an exercise, with
adaptations that follow asynchronously or at time-scales
relevant to the overall learning activity (Sarrafzadeh et al.
2008). In the past, these methods were encumbered by
challenges in the interoperability of data sources or syn-

chronization between frameworks (Blikstein and Wors-
ley 2016). However, with the advent of cross-platform,
fully interoperable HATs, particularly AR, virtual reality
(VR), and exoskeletons, we have resolved some past obsta-
cles and found newer ones. Data from disparate sources
are now easier to collect, yet difficult to interpret, com-
plex to understand, synchronize, and utilize. Furthermore,
researchers need to consider the nature of the adaptation,
their temporal resolution, and the workload demand these
strategies place on the trainee, as adaptation when improp-
erly introduced can have the opposite effect.

Researchers have explored several measures to drive
adaptation within intelligent tutoring systems, with vary-
ing levels of success. These include time spent on learn-
ing environments, interaction data, self-reports, or test per-
formances (Julian and Smith 2019). However, we find that
these systems often fail to gather context-aware informa-
tion from the heterogeneous data-streams, or reliably cap-
ture the state of the trainee during the learning exercise.
Furthermore, there’s a need for these systems to consider
user affect and behavior that precede oft-used interaction
or performance indicators (Normadhi et al. 2019). Data-
integration from multiple sources has been successfully
shown to improve learning time, retention, and skilled per-
formance using AR, VR, and other multimodal sources
(Marienko, Nosenko, and Shyshkina 2020). Therefore, we
envision that a similar approach would work reliably for
ER training scenarios. Furthermore, there is a need for
such systems to be both proficiency and deficiency-driven;
previous approaches often look at deviations of the trainee
from the canonical expert model encoded within the learn-
ing system (Asterhan and Dotan 2018), and the subse-
quent adaptation strategy is centered on trainee deviations
from the model or “errors,” with no adaptations or sup-
port when trainees showed some level of expertise going
in. This might be a missed opportunity to overall learning
outcomes especially in the ER domain.

Proposed framework

The dimensions of technology-enhanced learning intro-
duced by FitzGerald et al. (2018) aid in explaining our
vision for the adaptive learning framework in LEARNER:
What is being personalized? We wish to personalize
training and support for emergency responders during
HAT-enabled learning experiences. This personalization
will serve individual learning modes and adapt to the
requirements of each trainee. How? Adaptation and
personalization will be driven by PNB markers collected
during or prior to the learning exercise and at different
time scales contingent on the needs of the learner. To what
benefit? A data-driven adaptation strategy will quicken the
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FIGURE 1

learning rate, improve retention, and the skill levels of the
trainees, while offloading some responsibilities from the
instructors.

The learning curriculum designed for this exercise
embodies a hierarchical structure with modules designed
for each HAT entailing distinct learning objectives (activ-
ities) that together form the LEARNER’s core experience
(Figure 1). We envision that this will be technology-
agnostic and human-centered, where the individual is
actively involved in the loop, and enabled by the changes
introduced through the LEARNER system. The frame-
work will operate on three key constructs: actionable mea-
sures, adaptable elements, and a guiding strategy. Action-
able measures include PNB markers that are captured
during the learning exercise; these can be obtained
through wearable sensors (e.g., eye-tracking), self-reports,
and/or interaction behaviors. Adaptable elements refer
to the elements of the learning experience that can be
modified to elicit a change in the trainee’s response,
reinforce positive actions, or to promote behaviors that
counter an observed deficiency. For example, if we note
that a trainee’s performance is poor in identifying a spe-
cific injury type during triage, the system should provide
more instances of that injury during iterations of that
activity. A guiding strategy ties in with the fundamental
premise that drives “learning” on the task which could
be observational, error-based, or reinforcement-driven,
this is determined through discussions with instructors on
the field and experts on human sensorimotor training. The
strategy can be implemented in a repetition-, change-,
or an alteration-centric manner, where the learner is
presented with more iterations, a new experience or an
altered form of the same experience based on their needs.
The nature of the trainee’s response will determine the
guiding strategy applied or this can be presets as identified
by the instructor for each access level.

Given the hierarchical nature, each module entails a
finite space of properties, these properties include trainee

Adaptive - -
recommender

Adaptive learning framework for emergency response training

attributes such as role, skills; sensor attributes such as
modality, output parameters; task attributes such as dura-
tion, number of attempts, objectives; interface attributes
such as elements displayed, saliency of the scene, callouts;
and performance attributes such as time on task, task-
outcome, etc. We envision that the LEARNER framework
will consider individual PNB data in selecting appropri-
ate presets for these parameters at the start of an activ-
ity. During the exercise, the module actively processes
the PNB data, and determines the need and mode of
intervention contingent on the guiding strategy. This fea-
ture will be mediated by an adaptive recommender sys-
tem that is fed by both PNB heuristics that we transfer
from other related experiments, the user’s history across
all learning exercises, and user baseline estimates mea-
sured before the start of the specific activity. The rec-
ommender is then responsible for choosing the appropri-
ate presets for the experience and any modifications in
between. This process will continue until the trainee meets
the relevant criteria for completion or to move onto subse-
quent experiences within the training module. Our current
approach is geared toward the generation of useful data
for each HAT, task-context, and module relevant to the
core LEARNER platform. Subsequently, we will explore
the transferability of markers and models found relevant in
these exercises to the trainees’ experience on LEARNER,
where explainability and computational overhead will
help distill our choice of architecture and adaptation
workflow.

AUGMENTED REALITY TO ENHANCE
TRIAGE OPERATIONS

When designed properly, AR systems can extend users’
perceptual and cognitive capabilities by overlaying 2D and
3D graphics onto a users’ forward-looking field of view.
While not yet this size, we can envision in the near future
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LEARNER provides several AR tools for triage in mass casualty events including: (A) hand-relative touch-based menus, (B)

SALT virtual assessment tool, (C) virtual triage tag, and (D) scene annotation tools

AR head-worn displays that are as lightweight as glasses
and integrated into head- and eye-based personal protec-
tive equipment. This soon-to-be-realized vision of AR will
immediately transform a number of occupations; moving
information currently contained on 2D surfaces that must
be held (papers, mobile phones, and tablets) to the users’
work environment. And while AR systems are already
showing value in military, manufacturing, healthcare, and
transportation domains, we have chosen ER in which to
field our early LEARNER AR prototypes. AR is particu-
larly well-suited to augment the perceptual and cognitive
capabilities of responders by, for example, cueing impor-
tant hazards in the scene, supporting hands-free access to
shared information systems, and allowing responders to
virtually annotate to coordinate teams of first responders
in large-scale incidents.

LEARNER leverages AR as both an operational human-
augmentation technology (i.e., teaching users’ how to use
AR tools), as well as a learning delivery technology (i.e.,
leveraging AR to assist in learning how to use other HATS,

such as an exoskeleton or unmanned aerial vehicle). This
article focuses on the former, where we first developed
a set of AR tools to enhance triage during mass casualty
events, and subsequently consider how best to train users
on these AR tools. Specifically, we employed a human-
centered design process to identify how best to integrate
AR into triage processes and practices, and then iteratively
designed and developed a handful of AR tools includ-
ing aids for Sort, Assess, Lifesaving Interventions, Treat-
ment/Transport (SALT) triage, a virtual triage tag, and AR
annotation system. These tools are accessed via a hand-
menu that appears when users raise their hand in front
of them, palm facing toward them (Figure 2A). All AR-
based LEARNER tools support multimodal interaction, in
that user interface elements can be selected using a fin-
ger poke gesture (for AR graphics within arms’ reach, see
Figure 2A), a ray cast + pinch gesture (for graphics outside
arms’ reach), and via voice command (voice prompts are
displayed to assist in learning and recall when users glance
at a specific AR interface element).
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The SALT virtual assessment tool (VAT) presents first
responders with a series of questions that effectively walk
through a first-contact process of sorting, assessing, per-
forming life-saving interventions, and triage (Figure 2B).
These aids can be very useful for experienced first respon-
ders in high stress environments as well as provide guid-
ance for new first responders in their first experiences with
mass casualty events. The virtual triage tag (Figure 2C)
replaces commonly used paper tags, and supports second-
and subsequent-contact responses by providing means
to electronically document patient name, demographics,
injuries, vitals, suspected contamination, allergies, and
drugs administered. The virtual triage tag also supports
voice-based patient annotations, that can either be played
back aurally, or presented via transcribed text (as shown in
Figure 2C). The scene annotation tool allows users to place
symbology in the scene or use virtual spray paint to mark
areas of interest and hazards. As shown in Figure 2D, this
tool can be useful in coordinating sorting by augmenting
landmarks with custom content.

The LEARNER system leverages AI to adaptively
personalize the learning content and learning experi-
ences, including the AR-based learning. However, we
envision future AR-based capabilities in the field that
leverage Al to create adaptive AR user interfaces. These
AR interfaces would move beyond simple personalization
or preferences, but instead focus on supporting specific
cognitive learning needs, as previously identified, via the
adaptive recommender system that is fed by both PNB
heuristics, as well as the trainee’s historical expertise data.
In the current user interface design paradigm, human
factor engineers use anthropometry to design for the 95th
percentile in hopes that “one size fits all,” while HCI prac-
titioners design sets of intuitive and accessible interaction
techniques associated with specific devices that must be
learned by all users of said devices (e.g., click the left mouse
button to select). These approaches then simply map many
users to one interaction technique. Using Al, we intend
to flip these approaches, and instead of prescribing inter-
action techniques we will build smart, sensor-based Al
systems to drive the user experience that instead over time
learn users’ preferences and abilities, their tasks, and the
environments in order to render an intuitive and effective
user experience. Individualized interactions will therefore
be personalized and adapt to individual differences of all
kinds; physical, cognitive, social, etc. and embolden our
unique aptitudes, dispositions, and perspectives. Further,
individualized interactions will necessarily include the
broader context of ones’ tasks and goals at any given time,
the setting in which one is interacting, past strategies
and preferences when performing similar interactions
and so on. These differences can change from moment to
moment (e.g., based on transitory levels of stress/arousal)

and will also change longitudinally as our abilities change
with age and experience. We envision integrating these
concepts not only into the operational AR user interfaces
but also the LEARNER learning experience.

VR-BASED EXOSKELETON TRAINING
FOR PATIENT HANDLING

Assistive devices, such as exoskeletons, have shown great
potential to augment human physical capabilities and
reduce injury risk in responders during physically stren-
uous missions such as patient/victim handling. With an
increase in the development and adoption of exoskele-
tons, the need for training platforms that can quickly
adapt to varying device designs is vitally important. Since
motor skills training plays an important role across a wide
range of occupational and rehabilitation fields (Holden
2005), we propose a VR-based training framework. The
proposed framework incorporates biomechanical model-
ing, multimodal feedback, and online task evaluation,
while aiming to train users on the use, benefits, and
limitations of exoskeletons. To assess the effectiveness
of training, trainee motion will be measured in VR and
assessed via musculoskeletal modeling methods. To facil-
itate VR-based exoskeleton training, we propose a train-
ing framework that integrates multiple feedback modal-
ities, including visual, vibrotactile, and force-feedback,
that can simulate various parameters of exoskeleton
operation.

The proposed training framework follows the schematic
illustrated in Figure 3, which captures two modes of train-
ing (“offline” and “online”). The starting point for both
modes (Box 1) is the creation of a motion and modeling
data library, that comprises a range of expert data collected
on a variety of tasks, as inputs to a musculoskeletal model.
Data will be collected to represent a broad range of human
(e.g., anthropometry) and task characteristics, and will be
incorporated into simulation-based musculoskeletal mod-
eling tools to enable the synthesis and analysis of motion
paths and characteristic values. Possible combinations of
the synthesized motion data and a variety of exoskeleton
parameters are inputs to musculoskeletal modeling tools,
to create a library of input-output relations that estimate
body-joint torques and metabolic outcomes for a given set
of inputs (i.e., human task, exoskeleton characteristics).

In both training modes, the trainee is immersed in a
virtual presentation of a task to perform and can “choose”
exoskeleton parameters for performing such a task.
Exoskeleton parameters of choice include shoulder/back
device, assistance level, and specific passive/powered
torque profiles. Once the trainee makes the choice, they
perform the task presented in VR, and their body motion
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is tracked (see Box 2). The red arrows show the flow of
logic for “offline” model-based training (Boxes 1-2-3-4).
In this mode, the tracked motion of the trainee and
their exoskeleton choices are matched with relevant
inputs in our modeling library, and the corresponding
musculoskeletal and metabolic outputs are selected from
the modeling library. These results are presented to the
trainee as an info-graphic (Box 4). The green arrows show
the additional flow of logic for “online” model-based
training (1-2-5-6): In this mode, the trainee “experiences”
the exoskeleton not only visually, but also through vibro-
tactile or force-feedback modes. In addition, the trainee
also receives real-time, multimodal feedback to help
improve their movement strategies, through guided trajec-
tories. In the force-feedback mode, a robotic device sim-
ulates physical interactions by providing a least-resistance
path for trainees to follow. The target strategies pathways
can be generated to either mimic expert exoskeleton
users, or through optimization outputs from the modeling
software, based on human body-joint loading.

THE LEARNER ARCHITECTURE

The LEARNER platform (Figure 4) is built on top of
Generalized Intelligent Framework for Tutoring (GIFT;
Sottilare et al. 2017), which makes it open, modular, and
distributed/cloud enabled. The LEARNER architecture
includes domain knowledge plug-ins/modules which
provide the training content builder with the constructs
for training in a specific domain. Training content is stored
in a common content format (represented partially in
SCORM/XAPI) for utilization by the training configuration
manager during the execution of training events. Training
delivery plug-ins/modules convert training content to
specific training delivery environments (e.g., web-based,
AR/VR/MR, haptic suit) and send back trainee actions
as the training executes. The LEARNER architecture
supports both performance-based and state-based (using
PNB measurements) evaluation, which also enables
both macro- and microadaptation in order to optimize
training effectiveness. The LEARNER platform supports
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multiple accessibility levels to serve the training needs
of the future ER workforce be it from home, to modest
rural ER facilities, to large metropolitan operations.
Instructors and trainees can login to the system and
interact with the various core components. The Training
Content Builder provides training instructors/creators
with the ability to both define domain knowledge plug-ins
as well as build training content (using the plug-ins).
The Training Configuration Manager allows trainees to
access and execute training content as well as deliver
training content, capture response information from the
training delivery plug-ins, and orchestrate the use of PNB
data collection devices. The Performance and State-based
Monitor initializes PNB device use and captures data using
PNB plug-ins. Finally, the Personalized Training Adaptor
includes algorithms that analyze trainee data during and
after training to dynamically update content for personal-
ized training. Trainers/instructors can access training and
performance data across all trainees to gain insights into
training progress, performance trends, and specific user
results.

CONCLUSION

There is little question of the importance of having a well-
developed, capable, and competent workforce, especially
when the workers respond to dangerous, ill-defined situ-
ations in which human life hangs in the balance. Devel-
oping this workforce often requires a transdisciplinary
team to develop and implement effective training. Yet,
we are in the midst of great changes in the workplace.

Some changes have been induced by global events, such
as the COVID19 pandemic, that result in fundamental
changes to the workers’ performance requirements (i.e.,
increased outputs with fewer resources). Other changes
are brought on by the evolution and implementation of
emerging and innovative technologies intended to improve
human performance. Developing the workforce to adopt
and accept technologies, such as exoskeletons, AR/VR, and
Al, to work effectively and efficiently in the transformed
workplace will require innovation. Designing, developing,
implementing, and evaluating these development experi-
ences for this continually transforming workplace requires
a new paradigm and new tools, processes, knowledge, and
skills to meet the demands of the current and future work-
force. Throughout this article, we have provided a glimpse
of LEARNER to describe what human-centered efforts may
be required to meet the needs of training ER workers
in the use of nascent human augmentation technologies.
Our transdisciplinary approach converges and enhances
the existing knowledge from the disciplines of learning
science, computer science, AR/VR, human factors, cog-
nitive psychology, and systems engineering to create the
LEARNER platform that integrates training course design,
innovative and emerging technology implementation, and
new techniques of work.
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