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Abstract
A digital map of the built environment is useful for a range of economic,
emergency response, and urban planning exercises such as helping find places
in app driven interfaces, helping emergency managers know what locations
might be impacted by a flood or fire, and helping city planners proactively
identify vulnerabilities and plan for how a city is growing. Since its inception
in 2004, OpenStreetMap (OSM) sets the benchmark for open geospatial data
and has become a key player in the public, research, and corporate realms.
Following the foundations laid by OSM, several open geospatial products
describing the built environment have blossomed including the Microsoft USA
building footprint layer and the OpenAddress project. Each of these products
use different data collection methods ranging from public contributions to
artificial intelligence, and if taken together, could provide a comprehensive
description of the built environment. Yet, these projects are still siloed, and
their variety makes integration and interoperability a major challenge. Here, we
document an approach for merging data from these three major open building
datasets and outline a workflow that is scalable to the continental United States
(CONUS). We show how the results can be structured as a knowledge graph
over which machine learning models are built. These models can help propa-
gate and complete unknown quantities that can then be leveraged in disaster
management.

INTRODUCTION

As cities become more complex, integrative, and digital,
there is a need to understandwhere urban features are, and
what is their primary purpose. Recognizing the intercon-
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nectedness of systems such as buildings, transportation,
power, and water is critical to the success, safety, and sus-
tainability of urban regions. Collectively, this systemof sys-
tems is referred to as an Urban Multiplex. Currently, no
information system exists where all of this infrastructural
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information is collected and aggregated.We are developing
a first of its kind Urban Multiplex Inventory (UrMI) using
knowledge graph technologies.
Within any urban multiplex, buildings serve as a lynch-

pin determining where many interactions occur, and how
these interactions impact human well-being, comfort, and
at times, life. Examples of these interactions are reflected
in a range of queries ranging from “how do we get a bur-
rito delivered from this restaurant to this home” to “which
buildings to evacuate during a flood.”
Yet, there is amajor discrepancy in the way building and

relatedmultiplex data is collected across the United States.
There is no harmonization in what data are recorded by
city, county, or state governments let alone at a national
scale. Most previous efforts to harmonize the urban multi-
plex are proprietary, owned by groups such asGoogle, Yelp,
and Zillow, and utilized solely in their respective apps. Our
goal is to have a uniform, relatively open dataset that cap-
tures the critical information about urban infrastructure.
To this end, there are three primary open datasets of urban
infrastructure, which form the foundation of our project.
However, these three open datasets are driven by differ-

ent organizational priorities and inclusion criteria. Open-
StreetMap (OSM) features provide verifiable building foot-
prints along with key and value annotations. Microsoft
building footprints (Microsoft, 2018) are built from a
machine-learning approach to provide an unprecedented
level of completeness; and the OpenAddress (OA) project
aggregates address information from authoritative agen-
cies but provides no information on the building area, type,
or purpose. Formanyurban-environmental analyses, there
is a critical need for information about location (all), area
(MS), address (OA), and building type (OSM) but work-
ing between and across these datasets can be a challeng-
ing task. Not only do they come with different informa-
tion, but they have no shared identifier outside of spatial
location. Similarly, they are represented in a variety of data
formats including pbf, geojson, shp, and CSV. While there
is an opportunity to integrate these datasets under a single
resource, there is an equal opportunity to structure them in
a way that increases interoperability and their use outside
of more traditional GIS environments to support advanced
analytics and additional data enhancements.
One way to enhance the interoperability of these

datasets is using knowledge graphs. Although the term
knowledge graph was popularized with the release of
Google’s Knowledge Graph in 2012 (Hitzler 2021), the def-
inition of “knowledge graph” remains contentious (see
Hogan et al. 2021 and references therein). Here, we adopt
the inclusive Hogan et al. (2021) definition that a knowl-
edge graph is “a graph of data intended to accumulate and
convey knowledge of the real world, whose nodes repre-
sent entities of interest and whose edges represent rela-

tions between these entities.” Much of the contention in
defining knowledge graphs comes from the breadth and
depth of their design and use. Knowledge graphs can be
openly accessible as in the case of Wikidata (Vrandečić
and Krötzsch 2014), or they can be enterprise knowledge
graphs (e.g., efforts byGoogle, Facebook, and eBay) serving
internal business needs and not entirely accessible outside
of the company (Noy et al. 2019; Hitzler 2021). Addition-
ally, data can be structured as a graph in several different
ways with some of the more popular techniques including
directed edge-labeled graphs and property graphs (Angles
et al. 2017; Hogan et al. 2021). Placed in this context, UrMI
is a collection of both open and enterprise directed edge-
labeled knowledge graphs encoded using the standard-
ized data models Resource Description Framework (RDF,
Cyganiak, Wood, and Lanthaler 2014) and Web Ontology
Language (OWL, Hitzler et al. 2009).

TECHNICAL APPROACH

It is often desirable to manage several graphs rather than
one monolithic graph (Hogan et al. 2021). This approach
makes it possible to update or refine data independently
and in parallel. UrMI is built on three knowledge graphs
with the capability to addmore use case focused graphs for
additional environmental shocks (i.e., floods or wildfires)
or contextual data. The first graph describes the build-
ing resources – hereby UrMIStructure(s) – while the sec-
ond divides the US into geographical regions that may
be queried individually or collectively. The UrMIStructure
graph pattern (see Figure 1) is instantiated with initial
data from OSM. Where available, the Address is instanti-
ated from Open Address information and geometry com-
ing fromOpen Street Map and/or Microsoft. CollectionOf-
Features allows grouping related features. For example,
a sports arena and its parking garage are each described
as an UrMIStructure. The two instances together form a
CollectionOfFeatures instance. A benefit of the knowledge
graph’s Open-World Assumption is that it accommodates
all combinations of OSM-MS-OA availability. For example,
buildings are known to have addresses even though we
may not know them for every feature (e.g., MS or OSM-
MS UrMI structures). The third UrMI knowledge graph is
a socio-economic graph built from the U.S. Census’ Amer-
ican Community Survey (ACS). The ACS graph enhances
risk assessment due to environmental shocks with addi-
tional demographic and socio-economic context.
It is anticipated that the UrMI knowledge graph triple

count will be in the billions when UrMI graph patterns are
instantiated for the continental United States (CONUS).
This presents a daunting challenge for graph maintenance
and efficient query execution. These challenges are muted
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F IGURE 1 The CONUS is divided into twelve areas to manage graph size and query execution. Examples of the UrMI structure graph
and the CONUS Regions graph are also shown. CONUS, continental United States; UrMI, Urban Multiplex Inventory

by the second knowledge graph – the CONUS regions
graph (Figure 1). This second graph divides the CONUS
into 12 regions, each of which has its own named graph
in the UrMI graph database. Each of the twelve regions
has a Geometry (the polygon outlining the region), a list of
states included in that region, and a reference to the named
graph containing data from that region. Users (directly via
SPARQL queries or from within UrMI apps) can query
the region graph with state(s) or county(s) names or a
bounding box of interest. The user is returned the relevant
graph(s) to query for feature information.
UrMIStructures are populated via an efficient software

pipeline that executes data downloading and preprocess-
ing, spatial integration, and RDF/OWL encoding for any
county in the US. The pipeline is automated through
the use of an Amazon Web Services Lambda service that
watches for new or modified county level files.

AUTOMATED INFERENCE AND
MACHINE LEARNING

Identifying unknown structures is critical for assessing
the number of people impacted by a natural disaster. Yet,
of our three source datasets, OSM is the only one that
seeks to describe building types through its key and value
tags and there is a volunteer preference for tagging build-
ings in large urban areas. In New Hanover, North Car-
olina, for example, 22,489 of the county’s 25,394 OSM

buildings (89 percent) do not have a building type. This
is where basic RDF/OWL inferencing becomes benefi-
cial. As an example, consider the case of 105 Tennessee
Avenue in New Hanover, North Carolina, which has no
OSM associated name/value data. Yet, from OA integra-
tion, we find that this building has 22 addresses (105 Ten-
nessee Avenue Unit 100, 105 Tennessee Avenue Unit 101,
etc.). This building at 105 Tennessee Avenue is inferred
to be a multiunit building through address cardinality
axioms. Additional class membership inferences are made
using owl:hasValue. For example, the knowledge graph
defines Residential to be a subclass of UrmiStructure and
includes in this class all UrmiStructure instances whose
UrmiStructure#name property is “residential.” This sim-
ple inference has immense practical benefit in that seman-
tics are removed from the data generation/preprocessing
stage and maintained entirely in the knowledge graph.
There is no need for the RDF generation software to
care about OSM building types and subclasses, some of
which are irrelevant to the goals of UrMI. Instead, all
urban features are inserted into the knowledge graph sim-
ply as instances of UrmiStructure. The knowledge graph
then takes care of sorting and classifying features as
needed.
The sparseness of truly informative tags speaks to the

challenges of volunteer efforts and varying completeness,
but also an opportunity to leveragemachine learning to fill
in information in the graph. We are developing K-Nearest
Neighbors and Decision Tree approaches to infer the most
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F IGURE 2 Mixing SPARQL, GeoSPARQL, and online Census Data with Urban Multiplex Inventory (UrMI) to estimate flood impacts
during the 100-year flood event in New Hanover County, North Carolina

likely type of unknown buildings based on known quan-
tities such as building area and address. In initial tests,
we are able to predict that the aforementioned multiunit
building is likely an apartment building, which is then
inferred to be a type of residential building. The combina-
tion of OWL inferences and machine learning takes this
entity from being a generic “building” to a large residen-
tial structure needing the focus of emergency responders
in a flood event.

CHALLENGES AND NEED FOR AI – A
FLOOD CASE STUDY

Continuingwith the example forNewHanover, NorthCar-
olina, we obtained the 100-year flood map from the FEMA
National FloodHazards Layer. The term“100-year flood” is
used to describe the extent of a flood that statistically has
a 1-percent chance of occurring in any given year (Maid-
ment 2009). Here, it is used for illustrative purposes of an
overall disaster response application of UrMI and the need
for AI, but other flood representations could come from
real-time flood mapping efforts like those being pursued

by NOAA (Maidment 2016; Liu et al. 2018; Johnson et al.
2019). Equally, any other disaster that can be represented
as a polygon could be used in its place (snow warning, fire
extent, etc.).
Flooded UrMIStructures can be identified at the county

level using GeoSPARQL WithIn queries. The results
(Figure 2) indicate that 12,328 New Hanover buildings
would be inundated and of these, nearly 60 percent have
an associated address and footprint, while 96 percent
have an associated address only. Integration with cen-
sus ACS graph reveals that one tract has an approxi-
mate population of 2920 people, of which, 472 are under
19 years old, and 893 are over 60 years old. In addi-
tion to flooded buildings, impacts to public transportation
have secondary socio-economic impacts. From the census
ACS graph, we can learn when most workers are on the
roads in this tract (most commute between 7 and 8 am),
the general occupational makeup of the tract (manage-
ment and business), and the vehicles expected on road-
ways (most inhabitants drive to work alone). While this
is a simulated flood event, it demonstrates how a com-
bination of building level structural assessments, paired
with neighborhood level socio-economic summaries can



44 AI MAGAZINE

provide a richer context to those seeking to understand
a location in the context of the human–environmental
interface.

CURRENT STATUS

Here, we have documented an approach for merging data
from three major open building datasets and outlined a
workflow that is scalable to the CONUS. We have devel-
oped three knowledge graphs over which machine learn-
ing models are built. These machine learning models help
complete unknown quantities that can be leveraged in
disaster management. This integrated product can serve
as a backbone for linking other data systems, environ-
mental models, and digital representations of the human–
environment interface to help answermore integrative and
convergent questions in an era of increasing complexity.
At present, UrMI contains data from twoUS states. Hav-

ing worked out the software pipeline enabling automated
knowledge graph instantiation from OSM, MS, and OA,
we are now ready to expand to CONUS scale. As a scala-
bility example, the software pipeline processed the county
of New Hanover, North Carolina in about twenty minutes.
This led to approximately 1.8 million statements in the
knowledge graph with approximately 1.2 million explic-
itly asserted and about 636,000 inferred. This is an expan-
sion ratio (total/explicit) of 1.52. The 1.8 million statements
were inserted into the knowledge graph in just under two
minutes once the building file became available, leading
to near immediate availability for urban planning and risk
assessment.

FUTURE PLANS

The Urban Multiplex sits at the center of many economic,
emergency response, and planning exercises. To analyze
the Urban Multiplex, there is a need for an UrMI that
describes the features comprising the independent sys-
tems, as well as the connections between the systems at the
feature level. We are developing such an integrated frame-
work at CONUS scale from disparate open datasets that
were originally built using different methods, criteria for
inclusion, and overarching goals.
The Urban Multiplex information fits naturally into a

graph-based data model, and representing the UrMI as a
knowledge graph provides an opportunity for answering
questions related to system interactions, disasters at the
environmental interface, and for connecting multiple rep-
resentations of relative location. UrMI is developing the
infrastructure to do this at scale (CONUS) with plans for
adding additional layers and networks embedded in the
Urban Multiplex. Future work will document how this

process works in production and at scale, how it supports
national scale, feature level disaster response, and ulti-
mately, how it can serve as a principal information back-
bone for our understanding of the human–environment
interface in the face of increasing social, environmental,
and infrastructural complexity. The adoption of multiple
knowledge graphs holds promise for others to leverage,
build on, and improve upon this initial release.
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