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Abstract
Knowledge graphs (KGs) have emerged as a compelling abstraction for organiz-
ing the world’s structured knowledge and for integrating information extracted
frommultiple data sources. They are also beginning to play a central role in rep-
resenting information extracted byAI systems, and for improving the predictions
of AI systems by giving them knowledge expressed in KGs as input. The goals of
this article are to (a) introduce KGs and discuss important areas of application
that have gained recent prominence; (b) situate KGs in the context of the prior
work in AI; and (c) present a few contrasting perspectives that help in better
understanding KGs in relation to related technologies.

INTRODUCTION

The term knowledge graph (KG) has gained several differ-
ent meanings across a range of usage scenarios. This paper
focuses on the use of KGs in the context of two important
current trends: the desire and need to harness the large and
diverse data that are now available and the advent of new
machine learning capabilities for extracting meaning from
unstructured text and images. It provides the authors’ per-
spective on this area and tracks recent efforts in the NSF
Convergence Accelerator Track A on Open Knowledge
Network (OKN), where the first author was a participant
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in one of the projects (Baru el al. 2022). All coauthors
were speakers in a graduate seminar on KGs at Stanford
University, coorganized by the first author, which featured
presentations by over 50 speakersi. This article strives to
provide a synthesis of those diverse perspectives—rather
than being an exhaustive survey of the topic area.

KNOWLEDGE GRAPH DEFINITION

A KG is a directed labeled graph in which domain-specific
meanings are associated with nodes and edges. A node

AI Magazine. 2022;43:17–29. wileyonlinelibrary.com/journal/aaai 17



18 AI MAGAZINE

could represent any real-world entity, for example, people,
companies, and computers. An edge label captures the rela-
tionship of interest between the two nodes. For example,
a friendship relationship between two people; a customer
relationship between a company and person; or a network
connection between two computers.
There are multiple approaches for associating meanings

with the nodes and edges. At the simplest level, the mean-
ings could be stated as documentation strings expressed in
a human understandable language such as English. At a
computational level, the meanings can be expressed in a
formal specification language such as first-order logic. An
active area of current research is to automatically compute
themeanings captured in a vector consisting of a sequence
of numbers. We will contrast these approaches for captur-
ingmeaning in a later section on symbolic versus vector rep-
resentations.
Information can be added to a KG via a combination

of human-driven, semiautomated, and/or fully automated
methods. Regardless of the method, it is expected that the
recorded information can be easily understood and veri-
fied by humans. We will contrast different approaches to
creating a KG in a later section on human curation versus
machine curation.
Search and query operations on KGs can be reduced

to graph navigation. For example, in a friendship KG,
to obtain the friends of the friends of a person A, one
can first navigate the graph from A to all nodes B con-
nected to it by a relation labeled as friend. One can
then recursively navigate to all nodes C connected by the
friend relation to each B. Directed labeled graph repre-
sentation and graph algorithms are effective for several
classes of problems. They are, however, insufficient to
capture all inferences of interest. We will discuss this in
more detail in a later section on big semantics versus little
semantics.
Practical systems adapt the directed labeled graph rep-

resentation to suit specific application requirements. For
example, a KG model prominently used over the World
Wide Web, called the Resource Description Framework
(RDF) (Cygniak, Wood, and Lanthaler 2014), uses Inter-
national Resource Identifiers (IRIs) to uniquely identify
“things” (entities). Property graphmodels (Robinson,Web-
ber, and Eifrem 2015) associate properties and values with
each node and each edge. Edge properties can be used for
a variety of purposes: to represent facts that are in dis-
pute (for example, a country in which Kashmir resides);
highly time-dependent information (for example, the pres-
ident of USA); or genuine diversities (for example, user
behaviors). With the recent emphasis on responsible AI,
annotating the edges with information on how they were
obtained plays a key role in explaining inferences based on
the KG. For example, an edge property of confidence could

be used to represent the probability with which that rela-
tionship is known to be true. Finally, query languages, such
as SPARQL (Pérez et al. 2006) for RDF and Graph Query
Languageii for property graph models, provide the ability
to query the information in respectively RDF and property
graph KGs.

APPLICATIONS OF KNOWLEDGE
GRAPHS

Two key applications that have led to a surge in popular-
ity of KGs are: (1) integration and organization of infor-
mation about known “entities,” either as an openly acces-
sible resource on the webiii, or as a proprietary resource
within an enterprise/organization; and (2) representation
of input and output information for AI/ML algorithms.
These application use cases are explored further in the fol-
lowing sections.

Organizing open information

Wikidata is a collaboratively edited open KG that pro-
vides data for Wikipedia and for other uses on the web
(Vrandečić and Krötzsch 2014). As illustrated in the fol-
lowing example, the Wikidata KG can help enhance and
improve the quality of information in Wikipedia. Con-
sider theWikipedia page for the town,Winterthuriv, which
includes a list of all of Winterthur’s twin towns: two are in
Switzerland, one in the Czech Republic, and one in Aus-
tria. Wikipedia also has an entry for the city, Ontario, in
Californiav, which lists Winterthur as its sister city. The
“sister city” and “twin city” relationships are meant to be
identical as well as reciprocal. Thus, if a city A is a sis-
ter (twin) of another city B, then B must be a sister (twin)
of A. In Wikipedia, “Sister cities” and “Twin towns” are
simply section headings without any relationship/linkage
specified between the two. Therefore, it is difficult to detect
this discrepancy automatically. In contrast, the Wikidata
representation of Winterthurvi includes a relationship
called twinned administrative body, which includes the
city of Ontario, CA. As this relationship is defined to be
a symmetrical relationship in the KG, a SPARQL query
engine can infer that the Wikidata page for the city of
Ontario, CAvii is to be linked to the Wikidata page of
Winterthur.
Wikidata solves the problem of identifying inverse rela-

tionships through the relation definitions created by cura-
tors and by using inference made possible through a KG
inference engine. More advanced forms of such inference
are illustrated in the Environmental Intelligence OKN
(Janowicz et al. 2022) and the flood impact evaluationOKN



AI MAGAZINE 19

Graph Underlying Wikidata 

Winterthur Ontario
Twinned administra�ve body

Zurich Metropolitan Area

Switzerland

part of

part of

country

United States

part of

North America

Winterthur

same as

LIBRARY OF CONGRESS

F IGURE 1 A fragment of the Wikidata knowledge graph

(Johnson et al. 2022) reported in this issue. To the degree
that theWikidata KG is fully integrated intoWikipedia, the
discrepancy of missing links in the example provided here
would not be present. Figure 1 depicts the two-way rela-
tionship betweenWinterthur andOntario and shows some
of the other objects to which Winterthur and Ontario are
connected.
Wikidata includes information from several indepen-

dent providers including, for example, the Library of
Congressviii. By using unique internal identifiers for dis-
tinct entities, for example, Winterthur, from a variety of
sources, such as, the Library of Congress and others, the
information about an entity can be easily linked together.
Wikidata makes it easy to integrate the different data
sources by publishing a mapping of the Wikidata rela-
tions to the schema.org ontology. Such tools were recently
leveraged to add information about COVID 19 to Wikidata
(Waagmeester et al. 2021). Mappings from relation names
in Wikidata to relation names in other sources enable
formulation and processing of queries spanning multiple
datasets across such sites using relations that are common
to that set of sites (Peng et al. 2018). An example of such a
request is: Display on a map the birth cities of people who
died in Winterthur. Without a common relation vocabu-
lary, for example, birth city, it would be necessary to cre-
ate appropriate translations between relations used in one
site to the relations used in other sites. Search engines are
routinely using the results of such queries to enhance their
results (Noy et al. 2019).
As of 2021, Wikidata contained over 90 million distinct

objects with over one billion relationships among those
objects. Wikidata makes connections across over 4872 dif-
ferent catalogs in 414 different languages published by
independent data providers. As per a recent estimate, 31%
of all websites and over 12 million data providers are cur-
rently using the vocabulary of schema.org to publish anno-

tations to their web pages (Guha, Brickley, and Macbeth
2016).
There are many new and exciting aspects of the Wiki-

data KG. First, it is a public graph of unprecedented scale,
and one of the largest KGs openly available today. Second,
even though it is manually curated, the cost of curation is
shared by a community of contributors. Third, while some
of the data in Wikidata may be automatically extracted
from sources (Wu, Hoffmann, and Weld 2008), all infor-
mation is required to be easily understandable and ver-
ifiable as per the Wikidata editorial policies. Lastly, and
importantly, there is a commitment to providing seman-
tic definitions of relation names through the vocabulary in
schema.org.
A recent example of another openly accessible KG is

from the Data Commonsix effort whose goal is to make
publicly available data readily accessible and usable. Data
Commons performs the necessary cleaning and joining of
data from a variety of publicly available government and
other authoritative data sources and provides access to
the resulting KG. It currently incorporates data on demo-
graphics (US Census, Eurostat), economics (World Bank,
Bureau of Labor Statistics, Bureau of Economic Analy-
sis), health (World Health Organization, Center for Dis-
ease Control), climate (Intergovernmental Panel on Cli-
mate Change, National Oceanic and Atmospheric Admin-
istration), and sustainability.

Organizing enterprise information

Data integration is essential to the functioning of mod-
ern enterpriseswhere corporate data typically reside across
many distinct databases and unstructured sources. Fur-
thermore, the broad shift to online operations for almost
all enterprises has resulted in the accumulation of very
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large amounts of valuable user behavior data across dis-
tributed locations. In addition, a proliferation of data avail-
able from third-party data vendors is providing enterprises
highly valuable information which needs to be integrated
with internal data for more effective business operations.
Consider the following example: a financial news report

has been released stating that “Acma Retail Inc’’ has filed
for bankruptcy due to the pandemic because of which
many of its suppliers will face financial stress (Ding et al.
2021). If company C, that is a supplier to Acma, is undergo-
ing financial stress, one might expect that a similar stress
is also experienced, in turn, by suppliers to C. Such supply
chain relationships are currently being curated as part of a
commercially available dataset called Factsetx.
A “360-degree view” of a customer of a company

includes the data about that customer from within the
company and the data about the customer from sources
outside the company. A company could create a “360-
degree view” of its customers by combining third-party
data, for example, Factset and information from the open
financial newswith the company’s own internal databases.
This often requires solving the entity disambiguation prob-
lem to uniquely identify entities under question—which
is also a problem being addressed in the OKN-related
projects described in (Cafarella et al. 2022) and (Pah et al.
2022) in this special issue. The resulting KG could be used
to track the Acma supply chain and help identify stressed
suppliers whose risk may be worth monitoring.
The data integration process for creating the 360-degree

view of a customer might begin with knowledge engineers
working with business analysts to sketch out a schema
of the key entities, events, and the relationships that they
are interested in tracking (see Figure 2). An essential part
of this process is for the users to agree on the meanings
of the terms. For example, when does an “organization”
become a “customer”—at the time of placing an order,
or at the time when the product is delivered? In prac-
tice, the visual nature of the graph-oriented KG schemas
facilitates whiteboarding of the schemas by the busi-
ness users and subject matter experts in specifying their

requirements. Next, the KG schema needs to be mapped to
the schemas of the underlying sources so that the respec-
tive data can be loaded into the KG engine. The meaning
of the data stored in enterprise databases is hidden in logic
embedded in queries, data models, application code, writ-
ten documentation, or simply in the minds of subject mat-
ter experts requiring both human andmachine effort in the
mapping process (Sequeda and Lassila 2021).
Let us consider new and exciting aspects of the use of

KGs for data integration. First, the integrated information
may come from text and other unstructured sources (for
example, news, social media, and others) as well as struc-
tured data sources (for example, relational databases). As
many information extraction systems already output infor-
mation in triples, using a generic schema of triples sub-
stantially reduces the cost of starting such data integration
projects. Second, it can be easier to adapt a triple-based
schema in response to changes than the comparable effort
required to adapt a traditional relational database. This is
because a relational system is typically modeled to support
the application (McComb 2018), and thus, schema changes
often require database reorganization. On the other hand,
in a KG system, the schema is modeled to represent the
enterprise (McComb 2019), and its representation in triples
remains fixed. Lastly, modern KG engines are highly opti-
mized for answering questions that require traversing the
graph relationships in the data. For the example schema of
Figure 2, a typical graph engine would be able to employ
built-in operations for identifying (1) the central suppli-
ers in a supply chain network, (2) closely related groups of
customers or suppliers, and (3) spheres of influence of dif-
ferent suppliers. All these computations leverage domain-
independent graph algorithms such as centrality detection
and community detection.
Due to the relative ease of creating and visualizing the

schema and the availability of built-in analytics operations,
KGs are becoming a popular solution for turning data into
intelligence in the enterprises. For example, the precision
medicine OKN reported later in this special volumemakes
an extensive use of the graph-based visualization and infer-
ence for solving problems in biomedicine (Baranzini et al.
2022).

Representing information for AI
algorithms

KGs are an essential technology for natural language pro-
cessing (NLP), computer vision (CV), and commonsense
reasoning. As a result of recent advances in deep learning
for NLP and CV, algorithms in these domains are moving
beyond basic recognition tasks to extracting relationships
among objects, thereby requiring a representation scheme
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F IGURE 3 A knowledge graph created using entity and
relation extraction

in which the extracted relations could be stored for further
processing and reasoning. In commonsense reasoning,
the success of hybrid methods employed in IBM’s Watson
(Ferrucci et al. 2010) has prompted many to pursue a
combination of symbolic and statistical approaches for
common sense reasoning that requires the use of KGs.
Figure 3 depicts an example of the use of KGs to repre-

sent knowledge extracted byNLP. It shows a sentence from
which one can extract the entities: Albert Einstein, Ger-
many, Theoretical Physicist, and Theory of Relativity; and
the relations born in, occupation, and developed. Once this
snippet of knowledge is incorporated into a larger KG, we
can use logical inference to derive additional links (shown
by dotted edges), such as a Theoretical Physicist is a kind of
Physicist who practices Physics, and that Theory of Relativ-
ity is a branch of Physics. The court records OKN project
described in this special issue makes an extensive use of
similar entity extraction techniques (Pah et al. 2022).
In CV, an image is represented as a set of objects with

a set of properties, where each object corresponds to a
bounding box, identified by an object detector, and the
objects are interconnected by a set of named relationships
that are predicted by a model trained for identifying visual
relationships. In Figure 4, a CV algorithm produces the KG

shown to the right with objects such as a woman, a cow,
and amask, and relationships such as holding, feeding, and
others. In modern CV research, such a KG is referred to as
a scene graph (Chen et al. 2019), which has become a cen-
tral tool for achieving compositional behavior in CV algo-
rithms. That is, once a CV algorithm has been trained to
recognize certain objects, then by leveraging scene graphs,
it can be trained to recognize any combination of those
objects with fewer examples. Scene graphs also provide
the foundation for tasks such as visual question answering
(Zhu et al. 2016).
We next take the example of a specific kind of com-

monsense reasoning known as cause-and-effect reasoning.
Given an event such as X repels Y’s attack, humans can
make many commonsense inferences about why did the
repel happen? How does X feel about the attack? What
might be the likely effect of such a repel? A general strat-
egy to program such reasoning is to first curate a KGman-
ually and then use it in conjunction with a machine learn-
ing algorithm to predict the effects for events that do not
exist in the KG. For example, given a new event such as
X leaving without Y, the system makes inference such as
X wanting to be alone, X wanting to go home, Y might miss
his friend, etc. Two examples of such systems are ATOMIC
that contains over 300,000 event nodes and over 800,000
cause-effect triples (Sap et al. 2019), and GLUCOSE that
contains over 670,000 cause-effect triples (Mostafazadeh,
et al. 2020).
In these uses of KGs in AI, automated creation of the

KG is a central component of the approach. For the com-
monsense reasoning KGs, even though there is a signifi-
cant upfront manual effort to create the training set, once
trained, the learning algorithmwould deal withmany new
cases at no additional cost. Second, there is a clear recog-
nition that KG representations are a central ingredient to
achieving the compositional behavior in AI systems. This
is clearly illustrated in the context of a scene graph, but
also in capturing the output of NLP and in the rationale for
creating cause-effect KGs.

woman

mask

grass

cow

wearing

feeding

holding
ea�ng

F IGURE 4 A knowledge graph created using computer vision techniques
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PRIOR RESEARCH RELATED TO
KNOWLEDGE GRAPHS

Graph-based representations of data are employed
widely throughout computer science (Borgida and
Mylopoulos 2009). AI agents maintain representations of
real/simulated worlds and utilize these representations
for reasoning in the domain. Indeed, choosing represen-
tations that allow agents to store information and derive
new conclusions is a problem that is central to AI.
The earliest research in AI used frame representations,

known as semantic networks, which were directed labeled
graphs (Woods 1975). This directed labeled graph repre-
sentation has been adapted depending on the needs of
a given application. A directed labeled graph where the
nodes are, say, people, and the edges capture the par-
ent relationship is sometimes referred to as a relational
structure. A directed labeled graph where the nodes are
classes of objects (for example, Book, Textbook, and oth-
ers), and the edges capture the subclass relationship, is
known as a taxonomy. In some data models, given a
triple (A, B, C), we refer to A, B, C as the subject, the
predicate, and the object of the triple, respectively. For
example, given the triple (“Biden,” “President,” “USA”),
“Biden” is the subject, “President” is the predicate, and
“USA” is the object of the triple. A directed labeled graph
containing data and taxonomy is often referred to as an
ontology.
While some researchers used first-order logic (FOL) to

computationally understand semantic networks (Hayes
1981), others advocated that FOL was required to rep-
resent the knowledge needed for AI agents (McCarthy
1989). Because of the computational difficulty of reason-
ing with FOL, different subsets of FOL, such as descrip-
tion logics (Brachman and Levesque 1984) and logic pro-
grams (Kowalski 2014), were investigated. There was an
analogous development in databases where the initial
data systems were based on a network data model (Tay-
lor and Frank 1976), but a desire to achieve indepen-
dence between the data model and the query process-
ing eventually led to the development of relational data
model (Codd 1982), which shares its mathematical core
with logic programming. A need to handle semistruc-
tured data (Buneman 1997) inspired the investigation of
“schema-free” systems or triple stores that capture an
important class of problems addressed by modern KG
systems.
Implemented KR systems accompanied the founda-

tional research. For example, the representation system
CycL (Lenat andGuha 1991) combined ideas fromFOL and
semantic networks in the context of the practical require-
ments of coding knowledge on a spectrum of topics (Lenat
1995). These early systems were used to capture the knowl-

edge of an intelligent agent, including the rules of causal-
ity, implications of relationships between entities, com-
monsense rules, expert rules, and others. This trajectory
of development in AI can be loosely characterized as start-
ing from the need for explicit representations (McCarthy
1989; Newell 1982) to expert systems (Feigenbaum 1984) to
large common sense knowledge bases (Lenat 1995). These
systems had complex axioms with sophisticated inference
mechanisms, but the overall scale, measured in terms of
the number of axioms, has been relatively small. The goal
was to use the rules to model human reasoning.
The mid-1990s saw an explosion of information on the

web, and better methods to access and search this infor-
mation were needed. There was a tremendous success in
using information retrievalmethods such as the PageRank
algorithm (Page et al. 1999), and yet it was felt that more
was possible if there was a way for us to convey the seman-
tics to our search algorithms (Berners-Lee, Hendler, and
Lassila 2001). That vision is coming to fruition with the
improvement in search results with the help of resources
such as Wikidata and Data Commons which use repre-
sentations heavily influenced by an earlier language called
the Meta Content Format (Guha 1996). In contrast to the
early AI systems, today’s KGs emphasize capturing many
ground facts that are used in applications such as search
and analytics with much less emphasis on complex infer-
ence. A broader account of the historical developments
of KGs outside AI is available elsewhere (Gutiérrez and
Sequeda 2021).
Table 1 describes KG models currently being used by

the OKN projects described in this special issue. These
include RDF and property graph data models, as well as
key-value representation in JSON, and mapping of data
into a relational database through suitable translations.
Each project addresses semantics either through the devel-
opment of new ontologies or through leveraging existing
ontologies.

CONTRASTING PERSPECTIVES

With the increasing adoption and use of KGs in differ-
ent scenarios and use cases, three contrasting perspec-
tives have emerged: symbolic representation versus vec-
tor representation, human curation versus machine cura-
tion, and “little semantics” versus “big semantics.” There
are spirited debates in the community about the effective-
ness and efficacy—sometimes even the validity of each
approach, with the adherents of one perspective claim-
ing superiority of their approach over the other. Given
the breadth of potential applications, it is not neces-
sary for us to settle these debates, but it is important
to try many different approaches in parallel and explore
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TABLE 1 OKN projects covered in this special issue

OKN project Representation used Technical problems addressed
Environmental Intelligence (Janowicz et al. 2022) RDF Spatial knowledge, n-degree property path queries,

modular ontology development
Flood Impact Evaluation (Johnson et al. 2022) RDF Ontology-based inference, multiple related graphs
Precision Medicine (Baranzini et al. 2022) Property graphs Graph-inference, network visualization, biomedicine

ontologies
Infrastructure for OKNs (Cafarella et al. 2022) JSON Author disambiguation, data refinement, data life cycle
Court Records (Pah et al. 2022) Object relational mapping

to a SQL database
Entity disambiguation, ontology of litigation events

OKN, Open Knowledge Network; RDF, Resource Description Framework.

means of combining various approaches to advantage.
Our objective in presenting the differing perspectives here
is to enable a better understanding of each and articu-
late the problems where a solution of a certain kind is
appropriate.

Symbolic representation versus vector
representation

Machine learning algorithms used for NLP and CV rely on
a vector representation of text and images. The recent suc-
cess of deep learning onmultiple tasks has promptedmany
to reject the need for any symbolic representation. We will
examine these alternative views more closely.
A commonly used vector representation in NLP is word

embeddingxi. For example, given a corpus of text, one can
count how often a word appears next to every other word,
resulting in a vector of numbers. Sophisticated algorithms
are available for reducing the dimensions of the vectors to
calculate a more compact vector, known as a word embed-
ding (Mikolov et al. 2013). Word embeddings capture the
semantic meaning of the word in a way that can be com-
putationally leveraged in tasks, such asword similarity cal-
culation, entity extraction, and relation extraction. Anal-
ogously, the CV algorithms operate on vector represen-
tation of images. Graph embedding is a generalization of
word embedding, but for graph-structured input (Hamilton
2020).
Algorithms using vector representations have excelled

at many tasks, for example, web search and image recog-
nition. Using web search of today, we can answer ques-
tions such as: Who was the prime minister of the UK in
October of 1956? But the search fails if the question is
modified to an unusual combination of inference steps,
for example, Who was the prime minister of the UK
when Theresa May was born? Humans have little diffi-
culty in understanding such questions (Lenat 2019a; Lenat
2019b). The limitations of vector representations can be
addressed by encoding the information extracted from text

and images into a KG, as we saw in Figures 3 and 4.
Complementing the vector and symbolic representations
enables the programs to achieve compositional behav-
ior and facilitates inference and reasoning. The use of
graph embeddings with a neural network—also known
as machine learning with graphs—is being used for han-
dling unseen actions in the cause-effect KGswe considered
earlier.
Neuro-symbolic reasoning is a fast-emerging area of

research that leverages the benefits of automatic calcula-
tion of embeddings while recognizing the need for a dis-
crete KG to produce a human-understandable represen-
tation. We illustrate neuro-symbolic reasoning on a story
understanding task (Dunietz et al. 2020). Consider the fol-
lowing story: Fernando went to a plant shop. He liked the
minty smell of the leaves. He bought a plant and placed
it next to a window. Given this story we want to answer
the question:Why did Fernando buy the plant? A possible
human-understandable chain of reasoning to answer this
question involves the following steps: (a) If A (plant) has
part B (leaf), and B has property P (minty) thenAhas prop-
erty P; (b) If A (person) likes property P (minty leaves) of
B (plant), then A likes B; and (c) If A likes B, A may buy B.
In this chain of reasoning, steps (a) and (b) are examples
of the rules that may exist in a traditional symbolic knowl-
edge base, whereas (c) is a probabilistic rule of the sort that
we may find in a cause-effect KG that we considered in
the earlier section. Such rules may already exist as part of
the curated portion of the KG or could be inferred ahead
of time using a graph neural network or could be inferred
dynamically in response to a query. A neuro-symbolic
reasoner can manage and execute this reasoning process
(Kalyanpur et al. 2020).

Human curation versus machine curation

Industrial KGs, such as the Google KG, Amazon Product
Graph (APG), and Microsoft Academic Graph (MAG) are
of unprecedented scale (Noy et al. 2019). There has often



24 AI MAGAZINE

been debate on the degree to which one could create such
KGs exclusively through automatedmethods (also referred
to as machine curation) versus creation through human
effort. This tradeoff is illustrated via two examples based on
the MAG and APG, which leveraged significant automa-
tion; and two examples based on the Wikidata KG and the
Cyc knowledge base (Lenat 1995), which were primarily
created through human curation.
TheMAG teamusedmachine curation to solve the prob-

lem of uniquely identifying authors and their publications
(Wang et.al 2020). A human curation strategy advocates
setting up standards such as Document Object Identifier
(DOI) for uniquely identifying publications, and Open
Researcher and Contributor ID (ORCID) for uniquely
identifying authors. This approach relies on the authors
and publishing organizations contributing manual effort
to annotating documents with DOIs and ORCIDs. How-
ever, human curation of even such simple tasks has been
problematic for several reasons. First, such identifiers have
had low human readability discouraging their use. Second,
frequent typographical errors have created an adoption
barrier. Third, not havingDOIs for the publications has not
hampered their accessibility as there are multiple ways to
find publications on the web. Finally, there is some abuse
of the uniform identifiers. For example, some individuals
acquire multiple identifiers to partition their publications
into separate profiles defeating the design goal of ORCID
being a unique identifier. The MAG team consequently
leveraged machine curation by identifying a publication
by its contents and disambiguating authors based on their
field(s) of research, affiliation(s), coauthor(s), and other
factors that are more natural to humans.
The APG is multilingual and aims to collect product

knowledge for millions of categories of products and thou-
sands of attributes of each of those products. While one
might reasonably assume that vendors interested in sell-
ing their products via Amazon might volunteer structured
information that could be directly input into the APG,
that is not the case in practice, and the structured data
are sparse and noisy. However, creating the APG entirely
through human curationwould have required hundreds of
person years of effort. Machine curation techniques were
leveraged at different levels of scaling. To get the project off
the ground, highly accurate automated knowledge extrac-
tion models were created to generate trustworthy data on
a small scope of products, where each model extracted
knowledge for a single attribute from a single product
domain (Zheng et al. 2018). Even though neural networks
were explored to automate the process, tremendous man-
ual work was involved to create training data, conduct
human evaluation, and to identify postprocessing rules to
remove extraction noise. The next level of scaling aimed
to reduce modeling cost through AutoML and automatic

cleaning techniques (Wang et al. 2020) so thatmanual tun-
ing for each knowledge extraction model could be signifi-
cantly reduced. Scaling further required reducing the total
number of models required for the variety of knowledge to
be extracted, which was achieved through transfer learn-
ing techniques such that a model can extract knowledge
for multiple attributes and for multiple domains (Kara-
manolakis, Ma, and Dong 2020). The final level of scaling
aimed to increase knowledge extraction yield throughmul-
timodal information, for example, extraction from text as
well as images (Lin et al. 2021; Yan et al. 2021). Human-
created and highly precise models were the foundation of
this process. Different levels of scaling required leveraging
techniques such as named entity recognition, closed infor-
mation extraction, knowledge cleaning, and knowledge-
based question answering.
The Wikidata KG was launched to address the problem

that data in Wikipedia is buried across 30 million articles
in 287 different languages from which automatic extrac-
tion is inherently difficult. The same information often
appears in articles in many languages and in many articles
within a single language. Population numbers for Rome,
for example, can be found in English and Italian articles
about Rome but also in the English article, “Cities in Italy.”
The data is inconsistent—the population numbers in these
different Wikipedia documents are all different. Having
been founded on the principle of plurality, it is not easy,
or even possible, to arrive at a global consensus on the
“true” data, since many facts are disputed or simply uncer-
tain. Unlike, MAG and APG, Wikidata allows conflicting
data to coexist and provides mechanisms to organize this
plurality in values. Checking, verifying, and allowing such
a plurality of data is something the Wikipedia commu-
nity has been doing for years. Wikidata’s human cura-
tion effort involves a community of over 400,000 editors,
with over 20,000 active editors. In this process, Wikidata
has leveraged standard published identifiers, including the
International StandardName Identifier (ISNI), ChinaAca-
demic Library and Information System (CALIS), Interna-
tional Air Transport Association (IATA), MusicBrainz for
albums and performers, and North Atlantic Basin’s Hurri-
cane Database (HURDAT). Wikidata itself publishes a list
of standard identifiers for items that appear in its corpus,
which are now increasingly being used in commercial KGs.
Finally, consider Cyc, the largest available knowledge

base that captures complex human common sense. The
Cyc knowledge base was largely created through human
curation because the project aims to capture “hidden”
knowledge that is not explicitly written down in text and,
thus, cannot be automatically extracted. Early versions
of Cyc employed representations like present-day KGs.
Since 1989, Cyc has used a representation language called
CycL which is based in higher-order logic and nested
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F IGURE 5 Example sentences and their representation in knowledge graph and first order logic

modals (Lenat and Guha 1991). CycL was needed to rep-
resent and reason about answers to queries like: When
Juliet drank her potion, what did she expect that Romeo
would believe once he heard that she was dead, and
why (Lenat 2019a)? Automatically extracting knowledge
into such highly expressive languages is out of the reach
of present NLP techniques even if the knowledge to be
entered had been explicitly written down. Cyc is building
increasingly automatic tools that help lower the bar for
creation and modification of its KB. The project’s Knowl-
edge Axiomatization Institute (KNAXI) is also interested
in education and professional training in “ontological engi-
neering” at all education levels to facilitate creation of
CycL knowledge bases.

Little semantics versus big semantics

The big semantics perspective may be viewed as one that
advocates for capturing more meaning about concepts.
Whereas, the little semantics perspective, is focused on
capturing/recording the basic facts and not so much the
concept meanings. A KG defined as a directed labeled
graph is a representative technique of the little semantics
approach. The representation kanguage CycL is a repre-
sentative technique of the big semantics approach.
Using only directed labeled graph representation for

KGs has its inherent limitations. A simple example of such
a limitation is in representing the statement: Los Ange-
les is between San Diego and San Jose along US 101. This
statement could be captured in a directed labeled graph
using a technique known as reification but requires multi-
ple triples (see Figure 5A). The statement can be captured
directly if we allow four-place predicates which are not
supported in directed graphs—although many implemen-

tations of graph and semantic web databases do include
this capability. For this example, the KG representation is
akin to using assembly language as opposed to a higher-
level programming language. Use of triples and reification
makes downstream tasks such as natural language gen-
eration more difficult as they must now assemble infor-
mation spread across multiple triples. As a more involved
example, consider the statements Every Swede has a King,
and Every Swede has a mother, which are syntactically
similar in English, and many KGs would represent them
identically, but these statements have very different com-
putational meanings (see Figure 5B). It is possible to
extend the directed graphs in a variety of ways to cor-
rectly capture the semantics of the example considered
in Figure 5B (Chaudhri et al. 2004; Sowa 2008), but such
extensions lose the simplicity offered by the triple repre-
sentation. Not surprisingly, similar efforts are underway
for machine learning of nonbinary relationships as well
(Fatemi et al. 2019).
Despite the above stated limitations of the directed

labeled graph representation for KGs, it has been found
useful for solving many practical problems that are well
served by little semantics. Wikidata, Data Commons,MAG,
and APG all employ a directed labeled graph representa-
tion at their core and their existence and commercial use-
fulness is a strong evidence that a little semantics goes a
long way (Hendler 2007). Furthermore, even for the sim-
ple directed labeled graph representation, there are numer-
ous unsolved problems. For example, how might we cre-
ate open KGs?—which is precisely the question being
addressed by multiple OKN projects in this special issue.
What common naming conventions will allow users to
interact with multiple existing KGs and create their own
combined products, which in turn can be used by others
and combined still further, ad infinitum? How do we
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TABLE 2 Difference between research on semantic networks and knowledge graphs

Semantic networks Knowledge graphs
Scale Thousands of objects Billions of objects

Complex logical inference Scalable graph algorithms
Neuro symbolic reasoning

Development methods Top-down design Bottom-up design
Complex rules and ontologies Triples and embeddings

Modes of construction Knowledge engineering Knowledge engineering, crowdsourcing, machine learning

support codesignation of objects in different KGs, that is,
which objects reference the same real object? Robust solu-
tions to these types of issues will be critical in advancing
our ability to create open KGs.

SUMMARY AND CONCLUSION

KGshave emerged as indispensable information structures
that enable access, integration, and use of the vast amounts
of data that are currently being generated. AKG also serves
the purpose of capturing knowledge learned and used by
modernmachine learningmethods. Themost notable uses
of directed labeled graphs in AI and databases (data mod-
eling) have taken the form of data graphs, taxonomies,
and ontologies. While this representation schema may fall
short of the full capability of reasoning and inferencing
that is required by general-purpose repositories of knowl-
edge for AI programs, it still provides a scalable and pow-
erful representation that serves many needs.
Even though a directed labeled graph is a common

thread linking present day KGs with the early semantic
networks inAI, there are some important differences in the
research methodology and technical problems addressed.
Early semantic networks were created by top-down design
methods and manual knowledge engineering processes.
They never reached the size and scale of today’s KGs. In
contrast, modern KGs tend to be large in scale; employ
bottom-up development techniques; and employ manual
as well as automated strategies for their construction. The
differences are summarized in Table 2.
The emphasis in the early AI semantic networks was

on complex logical inferencing, in contrast to the focus
on supporting analytics operations in modern KGs. Fur-
thermore, vast proliferation of available data, difficulty
in arriving at a top-down schema design for data inte-
gration, and the data-driven nature of machine learning
have all led to a bottom-up methodology for creating
KGs. Contemporary KGs are also supplementing manual
knowledge engineering techniques with crowdsourcing
and significant automation that is now possible through
progress in machine learning. However, we posit that

modern KG construction methods should also learn the
lessons from classical knowledge representation, as there
is much to benefit from the substantial body of prior
research without reinventing available methods and tools.
We conclude by noting that making progress does not

require us to settle all the debates, for example, on symbolic
representation versus vector representation, manual cura-
tion versus machine curation, and little semantics versus
big semantics. Indeed, as reflected by the ethos of the NSF
Convergence Accelerator program, we should drive future
research by exploring and prototyping various approaches
in the context of real-world use cases. Setting a use-inspired
context enables us to justify the need and helps specify the
requirements for the specific innovations for KGs to have
the maximum societal and scientific impact.
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